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Abstract

This paper proposes novel density modulated binary pat-
terns for depth acquisition. Similar to Kinect, the illumina-
tion patterns do not need a projector for generation and can
be emitted by infrared lasers and diffraction gratings. Our
key idea is to use the density of light spots in the patterns
to carry phase information. Two technical problems are ad-
dressed here. First, we propose an algorithm to design the
patterns to carry more phase information without compro-
mising the depth reconstruction from a single captured im-
age as with Kinect. Second, since the carried phase is not
strictly sinusoidal, the depth reconstructed from the phase
contains a systematic error. We further propose a pixel-
based phase matching algorithm to reduce the error. Exper-
imental results show that the depth quality can be greatly
improved using the phase carried by the density of light
spots. Furthermore, our scheme can achieve 20 fps depth
reconstruction with GPU assistance.

1. Introduction

Microsoft Kinect is a structured-light-based depth cam-

era [8, 14]. By replacing the projector with an infrared laser

and a diffraction grating, Kinect becomes cheap and con-

venient for millions of users to use in many applications

[12, 24, 29, 3, 22]. As shown in Figure 1(a), the simulated

binary pattern used in Kinect consists of random light spots.

The position of light spots in every small region is unique.

So depth can be reconstructed by establishing the corre-

spondences between the reference and captured images.

However, depth reconstructed in this way suffers from

holes and severe noise caused by the pattern to some extent.

First, the position of light spots has to be identified by a

block of pixels. When a block is projected onto the bound-

∗This work was done during Z. Yang’s internship at MSRA.

ary of an object, it will be so deformed that the correspon-

dences in the region are hard to find. Second, the pattern in

Figure 1(a) is binary and thus is difficult to be interpolated

to a higher resolution. The found correspondences have a

limited accuracy, causing the Kinect depth to have random

errors from a few millimeters to 4 cm [14]. It would be

desirable to improve the quality of the Kinect depth.

Phase shifting, which projects a series of phase-shifted

sinusoidal patterns [23], achieves better quality. Depth can

be reconstructed at every camera pixel with a set of captured

images. Thus the depth has higher spatial resolution. Fur-

thermore, the depth is calculated from sinusoidal phase dif-

ferences. So noise is suppressed and the depth is more accu-

rate. However, as shown in Figure 1(b), the phase shifting

patterns are grayscale and hard to generate using infrared

lasers and diffraction gratings like Kinect.

In this paper, we propose a novel approach to embed

phase information into binary patterns that can still be gen-

erated with infrared lasers and diffraction gratings. Similar

to image dithering, our idea is to use the density of light

spots to represent phase, as shown in Figure 1(c). Figure

1(d) shows the energy images averaged in a sliding window

from the patterns in Figure 1(c), which have similar prop-

erties to the phase shifting patterns in Figure 1(b). The im-

mediate advantage is that the depth quality can be improved

with extracted phase information.

Our technical contributions are twofold in this paper.

First, an algorithm is proposed to design three density mod-

ulated binary patterns. The goal is to carry more phase

information without compromising the depth reconstructed

from a single captured image as with Kinect. Second, since

the carried phase is not strictly sinusoidal, the depth re-

constructed from the phase contains a systematic error. A

pixel-based phase matching algorithm is further proposed

to reduce the error. Finally, the depth data reconstructed by

the position of light spots in one captured image and by the

phase carried in three captured images are adaptively inte-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.11

25

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.11

25

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.11

25



(a) (b) (c) (d)

Figure 1. (a) Simulated binary pattern used in Kinect. (b) Sinusoidal fringe patterns used in phase shifting. (c) The proposed density

modulated binary patterns. (d) The energy images generated from (c) using a sliding window.

grated toward better quality.

Before this paper, Zhang proposed generating phase-

shifting patterns from binary patterns by projector defocus-

ing [31]. However, this method still requires a projector for

defocusing and cannot use a single captured image to re-

construct depth. In our scheme, every captured image con-

sists of light spots and thus depth can be reconstructed just

like Kinect. Meanwhile, experimental results show that the

depth quality can be greatly improved using the phase car-

ried by the density of light spots.

This paper is organized as follows. Section 2 gives an

overview of structured light and phase shifting. Section 3

proposes the pattern generation algorithm. Section 4 pro-

poses the depth reconstruction algorithm. Experimental re-

sults and comparisons are presented in Section 5. Finally,

Section 6 concludes the paper.

2. Related Work
2.1. Structured Light

Triangulation-based structured light (SL) schemes are

similar to passive stereo, except that one of the cameras

is replaced with a projector [2]. In the early stages, SL

schemes mainly use binary coded or Gray coded patterns

[11, 19]. They require multiple patterns and the scene

cannot have motion when the patterns are projected. SL

schemes have made solid progress in terms of both pattern

design and pattern emitting in recent decades.

Currently, most of the SL schemes target using one pat-

tern. Salvi et al. proposed a cross-point pattern [20]. Albitar

et al. proposed a disc, circle, and stripe pattern [1]. Mau-

rice et al. further proposed using the Hamming distance to

drive the pattern generation [17]. By taking geometric de-

formation into account, Kawasaki et al. proposed a simple

grid pattern formed by a number of straight lines [13]. Kon-

inckx et al. proposed a coded line pattern adaptively gener-

ated according to epipolar geometry [15]. In addition, color

information was also considered in the pattern design. Fong

et al. proposed combining a set of parallel color stripes and

a perpendicular set of sinusoidal intensity stripes [7]. Chen

et al. proposed a tessellated pattern with seven colors [4].

For pattern emitting, although some patterns can be emit-

ted by a laser, all the above schemes use a projector. Kinect

features an infrared laser that can generate and emit a con-

stant pattern with light spots [8, 14], which makes a depth

camera available as a consumer-grade device. However, the

Kinect depth still suffers from noise and holes. By design-

ing new patterns with the phase information embedded, our

scheme greatly improves the depth quality.

2.2. Phase Shifting

Phase shifting is a special SL scheme that emits a series

of phase shifted sinusoidal patterns. Increasing the num-

ber of stripes in the patterns can improve the measurement

accuracy, but high frequency results in ambiguities that re-

quires phase unwrapping. Weise et al. used stereo to over-

come the problem but an additional camera is required [27].

Wang et al. proposed embedding a period cue into the phase

shifting patterns without reducing the signal-to-noise ratio

[26]. As a result, each period of the sinusoidal patterns can

be identified. Wissmann et al. used a similar idea but em-

bedded the signal during pattern emitting [28].

Global illumination and defocusing are practical factors

that often introduce errors into depth measurement. Nayar

et al. showed that high-frequency sinusoidal patterns can be

used to separate global illumination [18]. Chen et al. pro-

posed multiplying a high-frequency signal with other sig-

nals [6]. Gu et al. derived a lower bound for the number of

required patterns and proposed a multiplexed illumination

scheme to achieve it [9]. Gupta et al. constrained the fre-

quencies of sinusoidal patterns to a narrow high-frequency

band, which greatly reduces global illumination and de-

focusing [10]. Chen et al. proposed using polarization-

difference imaging to filter out subsurface scattering [5].

For phase shifting, when a set of patterns is emitted, the

scene is assumed to be static. This assumption is not true

in many practical scenarios. Koninckx et al. proposed es-

timating lines from the projected sinusoidal patterns and
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calculating motion as line translation [16]. However, this

method is not suitable for high-speed acquisition. Zhang

et al. reduced the motion effects by setting the last pat-

tern as flat [32]. Weise et al. compensated for the motion

by introducing the first-order Taylor term in phase shifting

[27]. Recently, several approaches are proposed to combine

single-shot and multi-shot SL together for scalable depth

sensing. Taguchi et al. designed spatio-temporal decodable

patterns [25] and Zhang et al. used hybrid patterns of ran-

dom speckle and sinusoidal fringe [33].

Our key contribution in this paper is designing the phase

shifting patterns that can be emitted by infrared laser, where

the phase information is approximated by the density of

light spots in a local region. In our scheme, the phase ambi-

guity problem is solved naturally by the random position of

light spots. When the scene contains moving objects, depth

in the corresponding regions can be still reconstructed from

a single captured image as with Kinect.

3. Density Modulated Binary Patterns
As shown in Figure 1(c), the three proposed patterns are

binary and can thus be generated using infrared lasers and

diffraction gratings. In this section, we discuss how to mod-

ulate the density of light spots to represent phase.

3.1. Pattern Generation

Let us define a pattern as P (r, c), row r = 1, ..., R and

column c = 1, ..., C. In Kinect, the light spots are ran-

domly and uniformly distributed in P (r, c). Contrastively,

in the proposed patterns, the number of light spots in differ-

ent rows is defined as a sinusoidal function

k(r) = Round{[sin(2π r

T
+ θ) + 1]× α+ 1}, (1)

where Round() is a function to round a floating number to

an integer, r is the row index, T is the number of rows in a

sinusoidal period, and α is a scaling factor to control k(r)
as an integer from 1 to K that actually determines the num-

ber of different densities in a period. The three patterns are

generated by setting θ as −2π/3, 0, and 2π/3, respectively.

In Figure 1(b), an important property is that pixels in the

same row have the same intensity. To achieve this, we pro-

pose a pattern generation algorithm (Algorithm 1). Let us

define 1 × N pixels as a basic unit for pattern generation,

where N is larger than the maximum k(r). The position of

light spots is random in a basic unit but the same for all ba-

sic units in the same row. This makes sure that every sliding

window located in the same row has the same average inten-

sity. At the same time, since the number of light spots and

their positions are different in different rows, the position of

light spots in every block is still unique.

In the proposed algorithm, there are two parameters that

must be determined, namely, the scaling factor α and the

Algorithm 1 Pattern Generation

Require: The number of rows in one period T , the scaling

factor α, and the initial phase θ
1: for r = 1, ..., R do
2: Calculate k(r) according to Eq. (1)

3: Divide a row into M non-overlapping basic units

4: for m = 1, ...,M do
5: Randomly select k(r) positions from 1 to N
6: Let pixels at selected positions be light spots

7: end for
8: end for

(a) (b)

(c) (d)

Figure 2. Two patterns with N = 8 and k(r) ∈ {1, ..., 5}. (a)

The pattern with light spots in every row. (b) The captured image

corresponding to (a). (c) The pattern with light spots in every other

row. (d) The captured image corresponding to (c).

period T . The former is decided by N and the range of

k(r). N is an empirical parameter. The larger N is, the

greater number of different values k(r) can have. If N is

too large, when k(r) is a small integer, the density k(r)/N
will be too small to establish the correspondences. Thus we

set N as 8 in this paper. When N is decided, the maximum

k(r) can be selected as large as 5 in order to have more

densities in a period.

In Figure 2, we test two different approaches to generate

patterns with N = 8 and k(r) ∈ {1, ..., 5}. In (a), every

row in the pattern contains a certain number of light spots

as calculated by Eq. (1). In (c), every other row contains

the light spots while the remaining rows are black. From

the captured images in (b) and (d), it is difficult to keep

the position of light spots clear if using the pattern in (a),

since the captured image may contain too many light spots.

Therefore, the pattern in (c) is adopted in this paper.
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As mentioned above, the smaller the period T is, the

more accurate the depth measurement will be. However,

in the proposed scheme, T also has a minimum value. For

N = 8 and k(r) ∈ {1, ..., 5}, if T is smaller than 32, not ev-

ery density k(r) appears because of the rounding. In other

words, the range of k(r) is not fully used. Therefore, in this

paper we set T = 32.

Finally, we briefly explain how to produce the diffrac-

tion gratings with the proposed patterns. They are produced

by photolithography, a process similar to that used in pro-

ducing integrated circuits (ICs). The grating consists of a

transparent substrate and an opaque film. The film is first

covered by the chemical photoresist and then the designed

pattern is projected to the photoresist. Exposed photoresist

and uncovered opaque materials can be removed. The rest

is the transparent substrate.

3.2. Implicit Phase

Next we evaluate whether the densities of generated pat-

terns can approximate the sinusoidal fringe well. The ap-

proximation is conducted by calculating the average energy

in a N × N sliding window. For simplicity, we consider

the ideal case, namely, the signal k(r) is continuous. The

energy can be calculated as

E =
1

N2

∫ r+N/2

r−N/2

k(r)dr. (2)

Substituting Eq. (1) with ignoring the rounding and the con-

stant term, we get

E =
1

N2

∫ r+N/2

r−N/2

α sin(2π
r

T
+ θ)dr

= β sin(π
N

T
) sin(2π

r

T
+ θ), (3)

where β = αT
πN2 and sin(πN

T ) are constant. Thus the en-

ergy E in a sliding window in the proposed patterns is a

sinusoidal function mathematically.

However, since the proposed patterns are binary, k(r) in

Eq. (1) has to be rounded to an integer. What is the effect of

this rounding when approximating sinusoidal fringes? Fig-

ure 3 shows the actual energy calculated from the three pro-

posed patterns. We can observe that the overall shape of the

energy is still a good approximation. However, there are ob-

vious stair-wise errors. If these errors are not handled care-

fully during depth reconstruction, a systematic error will be

introduced to the reconstructed data.

4. Depth Reconstruction
In our scheme, depth can be reconstructed in two ways.

First, it can be reconstructed from every captured image by

block matching. Second, it can be reconstructed by phase

Figure 3. Approximation to sinusoidal fringes with N = 8, T =
32, and k ∈ {1, ..., 5}. Solid curves denote the energy in a sliding

window, and dotted curves denote ideal sinusoidal fringes.

shifting from three energy images. These two kinds of depth

data can be further integrated toward better quality.

4.1. Block Matching

Figure 4(a) shows one captured image with the emitted

pattern. Since the position of light spots in every small re-

gion is still unique, we can use a block matching method to

get the disparity of every pixel between the reference image

Ī(r, c) and the captured image I(r, c). The reference im-

age Ī(r, c) is captured at a reference plane with a known,

constant depth. Similar to [21], we adopt normalized cross-

correlation (NCC) between two blocks as the matching cri-

terion. The disparity at (r, c) is calculated as

D1(r, c)=argmax
r′,c′

∑
i,j A(r, c, i, j)B(r′, c′, i, j)√∑

i,j A
2(r, c, i, j)

∑
i,j B

2(r′, c′, i, j)
,

(4)

where A(r, c, i, j) = I(r+i, c+j)−I0 and B(r′, c′, i, j) =
Ī(r′ + i, c′ + j) − Ī0. I0 and Ī0 are the average intensity

of I and Ī in a block, respectively. D1(r, c) is the row and

column disparity with the largest NCC.

Every pixel belongs to multiple overlapping blocks for

calculating NCC and thus has multiple disparities calcu-

lated from Eq. (4). Similar to the method used in Kinect

[30], we adopt a winner-takes-all strategy. The disparity of

each pixel is finally decided by the block with the largest

NCC. Figure 4(b) shows the reconstructed depth from Fig-

ure 4(a). We can clearly observe the discontinuities on the

smooth surface.

4.2. Pixel-based Phase Matching

For every captured image, we can calculate an energy

image from the discrete version of Eq. (2). Figure 4(c) is

the generated energy image from Figure 4(a). Let us define

the energy images of the reference and captured images as
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(a) (b)

(c) (d)

Figure 4. (a) One captured image with the emitted pattern. (b)

Depth reconstructed from (a) by block matching. (c) The energy

image generated from (a). (d) Depth reconstructed from three en-

ergy images by pixel-based phase matching.

Ēi(r, c) and Ei(r, c), where i = 1, 2, 3 denote different θ′s.

Similar to original phase shifting [23], the three energy im-

ages can be represented as

E1(r, c) = E′(r, c) + E′′(r, c) cos[φ(r, c)− 2π/3],

E2(r, c) = E′(r, c) + E′′(r, c) cos[φ(r, c)], (5)

E3(r, c) = E′(r, c) + E′′(r, c) cos[φ(r, c) + 2π/3].

E′(r, c) is the background intensity, E′′(r, c) is the sinu-

soidal amplitude, and φ(r, c) is the phase to be solved. From

the three equations in Eq. (5), φ(r, c) can be obtained as

φ(r, c) = arctan{
√
3[E1(r, c)− E3(r, c)]

2E2(r, c)− E1(r, c)− E3(r, c)
}. (6)

Since the proposed patterns contain a stair-wise error

for approximating sinusoidal fringes as shown in Figure 3,

we cannot calculate the depth directly from φ(r, c). In-

stead, we propose a pixel-based phase matching method.

First, we calculate φ̄(r, c) from the reference energy images

Ēi(r, c). For every phase φ(r, c), we then search for the

most matched φ̄(r −Δr, c) within one period. The dispar-

Figure 5. Accuracy of depth reconstruction. Curve “a” : depth

from original phase shifting. Curve “b” : depth directly from

φ(r, c). Curve “c” : depth by block matching. Curve “d” : depth

by pixel-based phase matching. The horizontal axis denotes pixel

index and the vertical axis denotes disparity in pixel.

ity in one period is calculated as

d2(r, c)=

{
Δr+ φ̄(r−Δr,c)−φ(r,c)

φ̄(r−Δr,c)−φ̄(r−Δr−1,c)
, φ(r, c)≤φ̄(r−Δr, c),

Δr− φ(r,c)−φ̄(r−Δr,c)

φ̄(r−Δr+1,c)−φ̄(r−Δr,c)
, φ(r, c)>φ̄(r−Δr, c).

(7)

Δr is the integer row disparity, and the other term in Eq.

(7) is the fractional row disparity obtained by linear inter-

polation. Here we assume the phase varies linearly at the

sub-pixel level. Also, for simplicity, the optics are vertically

aligned so d2(r, c) only contains the row disparity.

The phase ambiguity problem still needs to be solved.

If there are W periods in the captured images, we need to

identify in which period d2(r, c) is. It is easy to be solved

for the proposed patterns because the position of light spots

is unique in every period. We can check the NCC values

for w = 1, ...,W . Then w with the largest NCC is selected.

Finally, the disparity can be obtained by

D2(r, c) = d2(r, c) + w × L, (8)

where L is the number of rows in one period in the captured

images.

Figure 5 evaluates the accuracy of depth reconstruction

by different methods. The scene is a simple inclined plane.

The blue curve “a” is the reconstruction from original phase

shifting. It should have the best quality and is the anchor for

evaluation. The red curve “c” is the reconstruction by block

matching. It is stair-wise and consistent with the visual re-

sult in Figure 4(b). The green curve “b” is the reconstruc-

tion directly from φ(r, c). It has a considerable error on the

left side. The light-blue curve “d” is the reconstruction by

the proposed pixel-based phase matching algorithm. It is

most similar to original phase shifting. The visual result is
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shown in Figure 4(d), which looks much better than the one

in Figure 4(b).

4.3. Depth Integration

Although using the embedded phase to reconstruct depth

produces better quality, this method requires three captured

images and is not good at handling moving objects in the

scene. However, the depth reconstructed by block match-

ing only needs one captured image, which is more suitable

for moving objects. Therefore, the depth data D1(r, c) and

D2(r, c) should be integrated according to the motion de-

tected in the scene. We consider simple intensity change to

detect if there is any motion in the scene, by comparing the

current captured image with the previous third image be-

cause their patterns are the same. If the average intensity

change in a region is larger than a threshold, we mark the

region as moving. D1(r, c) is adopted in the moving regions

and D2(r, c) in the remaining regions.

Finally, the implementation of our scheme is briefly

discussed here. The block matching is carried out on a

GeForce GTX 580 GPU. The phase calculation and pixel-

based phase matching are carried out on an Intel Xeon

E5440 CPU with 2.83 GHz working frequency. The depth

integration is carried out on the same CPU too. The speed

of depth reconstruction is 20 fps currently.

5. Experimental Results

In this section, we evaluate the depth reconstructed by

different schemes. The first is Kinect, which we use as a

black box. The second is original phase shifting, which

uses three grayscale sinusoidal patterns emitted by a DLP

projector and reconstructs depth directly from phase. The

third is the proposed scheme, and the binary patterns are

also emitted by the DLP projector for simulation.

5.1. Static Face

Figure 6(a) shows the depth from Kinect. It looks too

smooth and some surface details are lost. In addition, part

of the left cheek on the boundary is lost too. Figure 6(b)

is the depth reconstructed from original phase shifting. The

quality looks very good in terms of both surface details and

object boundaries, which is the target of our scheme.

Figure 6(c) is the depth reconstructed by the proposed

scheme but using block matching only. The result should

be similar to that from Kinect but it actually looks worse

because of the obvious stair-wise discontinuities. The main

reason is that the camera used in Kinect is 1280×1024

and 11-bit [22] while our camera is only 640×480 and 8-

bit. Figure 6(d) is the depth reconstructed by the proposed

scheme using the embedded phase and pixel-based phase

matching. It is much better than that from Kinect and also

close to that from original phase shifting. So it is verified

(a) (b)

(c) (d)

Figure 6. Depth reconstruction of David. (a) Kinect. (b) Original

phase shifting. (c) The proposed scheme using block matching.

(d) The proposed scheme using pixel-based phase matching.

(a) (b)

Figure 7. Point cloud of David. (a) The proposed scheme. (b)

Original phase shifting.

that carrying phase information in the binary patterns is a

feasible way to improve the depth quality over Kinect.

We further compare the point cloud from the proposed

scheme and original phase shifting, as shown in Figure

7. They look similar but we can still observe some un-

satisfactory regions (e.g., the mouth) in our result. Con-

tinuously improving the quality deserves future efforts, yet

there should be an inherent compromise as binary patterns

cannot represent phase as perfectly as grayscale patterns.

5.2. Indoor Scenes with Multiple Objects

We also evaluate the above three schemes in two indoor

scenes with multiple objects. The results are shown in Fig-

ure 8 and Figure 9. The depth from the proposed scheme is
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(a) (b)

(c) (d)

Figure 8. Scene with a pillow, a lamp and two oranges. (a) RGB

image. (b) Kinect. (c) Original phase shifting. (d) Our scheme.

(a) (b)

(c) (d)

Figure 9. Scene with an Xbox, a cup and a receptacle. (a) RGB

image. (b) Kinect. (c) Original phase shifting. (d) Our scheme.

always better than that from Kinect, while both of them emit

binary patterns. Although our results look close to the re-

sults from original phase shifting using grayscale patterns,

there are some noticeable differences. Since these scenes

are static, they favor original phase shifting. However, our

scheme can readily handle moving objects in the scene.

5.3. Scene with Moving and Static Objects

The test scene has two objects with the left one static

and the right one moving forward. Figure 10 shows three

results from the proposed scheme. (a) is the result obtained

using block matching. The two objects have the same qual-

ity whether they are moving or not. (b) is the result obtained

using pixel-based phase matching. The depth of the mov-

ing object is really poor because there is motion when the

three patterns are emitted. Original phase shifting will suf-

fer from the same problem. (c) is the result obtained by in-

tegrating the depth data of the above two algorithms, where

both objects have the optimal depth.

5.4. Limitations

The proposed scheme focuses on indoor scenes. If more

practical factors, such as global illumination and defocus-

ing, are taken into account, the frequency of the proposed

patterns should increase greatly. However, as we have dis-

cussed in Section 3.1, the period T has a minimum number

of rows, which constrains us to increase the frequency. We

have to find other ways to suppress the practical factors.

In our scheme, when the objects in the scene start to

move, the depth reconstruction will degrade to block match-

ing. Are there more intelligent ways to handle this problem?

For example, can we use the depth from block matching to

drive the previous obtained high quality depth? Or can we

use the depth from block matching to compensate for the

motion? This will definitely be something we will examine

in the future research.

6. Conclusions

The proposed density modulated binary patterns carve

out a feasible way to improve the depth quality over Kinect.

By embedding phase into the binary patterns, it provides

more information for depth acquisition. We propose the pat-

tern generation algorithm and the pixel-based phase match-

ing algorithm for reconstruction. Experimental results show

that our scheme consistently outperforms Kinect for static

scenes and original phase shifting for moving objects.
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