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Abstract

Image cropping is a common operation used to improve
the visual quality of photographs. In this paper, we present
an automatic cropping technique that accounts for the two
primary considerations of people when they crop: removal
of distracting content, and enhancement of overall compo-
sition. Our approach utilizes a large training set consist-
ing of photos before and after cropping by expert photogra-
phers to learn how to evaluate these two factors in a crop.
In contrast to the many methods that exist for general as-
sessment of image quality, ours specifically examines differ-
ences between the original and cropped photo in solving for
the crop parameters. To this end, several novel image fea-
tures are proposed to model the changes in image content
and composition when a crop is applied. Our experiments
demonstrate improvements of our method over recent crop-
ping algorithms on a broad range of images.

1. Introduction
Captured photos can often be improved with some digital

manipulation. One of the most common forms of such edits

is cropping, which cuts away areas of an image outside of

a selected rectangular region. Cropping is performed main-

ly to remove unwanted scene content and to improve the

overall image composition [1], as exemplified in Figure 1.

Though photos can be appreciably enhanced in this way,

cropping is often a tedious and time-consuming task, espe-

cially when done for a large set of images. Moreover, high-

quality cropping can be difficult to achieve without some

amount of experience or artistic skill. For these reasons,

much attention has been focused on developing automatic

cropping algorithms.

1.1. Previous work

The various techniques that have been proposed for im-

age cropping follow one of two general directions. The first

takes an attention-based approach that focuses on identify-

ing the main subject or principal region in the scene accord-
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Figure 1. Photo cropping. (a)(e) Original images, with (e) from

[1]. (b)(f) Distracting regions shown within blue frames. (c)(g)

Our computed crop regions, bounded by red frames, which avoid

distracting regions and aim for good composition. (d)(h) Cropped

images.

ing to attention scores (e.g. saliency [9]) computed over the

image. Several of these methods search for the region with

the highest attention score and then place the crop window

around it. Ma and Guo [15] assess regions based on entropy,

size, and distance from the image center. Zhang et al. [26]

use face detection to find regions of interest, and then crop

the image in a manner that aligns the faces according to one

of 14 predefined templates. Ciocca et al. [6] detect a subject

region based on human faces, skin color and/or high salien-

cy map values, and place a bounding box around it. Santella

et al. [18] use eye tracking to help determine the main atten-

tion region, then set the crop boundaries such that the region

center lies at a certain position in the final image.

Aside from region-based processing, other attention-

based methods search for a crop window that would re-

ceive the greatest attention. Suh et al. [21] determined crops

based on the summed saliency values of candidate windows.

Stentiford [19] cropped the photo by finding the window

with the highest average attention score among its pixels.

Luo [12] computed a subject belief map and found the win-

dow that maximizes subject content. Marchesotti et al. [16]

trained a classifier based on an annotated image database

to determine salient regions and selected the largest, most

central region as a thumbnail. While the attention-based

approach to image cropping helps to remove unnecessary

content from an image, it gives little consideration to over-

all image composition, and thus may lead to a result that is

not visually pleasing.

The other major direction of cropping methods is an

aesthetics-based approach that emphasizes the general at-
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tractiveness of the cropped image. In contrast to attention-

based methods, the aesthetics-based approach is centered on

composition-related image properties. These methods have

much in common with the large amount of work on pho-

to quality assessment [14] [10] [13] [22], which evaluate

the aesthetic quality of an image according to low-level im-

age features and certain rules of photographic composition,

such as the well-known rule of thirds. Taking these aes-

thetical factors into account, Nishiyama et al. [17] trained

an SVM to label subject regions of a photo as high or low

quality, then find the cropping candidate with the highest

quality score. Later, Cheng et al. [4] and Zhang et al. [25]

learned local aesthetic features based on position relation-

ships among regions, and used this to measure the quality

of cropping candidates.

1.2. Our approach

The use of aesthetic evaluation has been broadly ap-

plied to various problems other than conventional image

cropping, such as image quality assessment [14] [10] [13]

[22], object rearrangement in images [2] [11], and view-

finding in large scenes [4]. While a generic aesthetics-based

approach is sensible for evaluating the attractiveness of a

cropped image, we argue in this paper that it is an incom-

plete measure for determining an ideal crop of a given input

image, as it accounts only for what remains in the cropped

image, and not for what is removed or changed from the

original image. Aesthetics-based methods do not directly

weigh the influence of the starting composition on the end-

ing composition, or which of the original image regions are

most suitable for a crop boundary to cut through. They also

do not explicitly identify the distracting regions in the input

image, or model the lengths to which a photographer will

go to remove them at the cost of sacrificing compositional

quality. Though some of these factors may be implicitly in-

cluded in a perfect aesthetics metric, it remains questionable

whether existing aesthetics measures can effectively capture

such considerations in manual cropping.

In this work, we present a technique that directly ac-

counts for these factors in determining the crop boundaries

of an input image. Proposed are several features that model

what is removed or changed in an image by a crop. Togeth-

er with some standard aesthetic properties, the influence

of these features on crop solutions is learned from training

sets composed of 1000 image pairs, before and after crop-

ping by three expert photographers. Through analysis of

the manual cropping results, the image areas that were cut

away, and compositional relationships between the original

and cropped images, our method is able to generate effec-

tive crops that are shown to surpass representative attention-

based and aesthetics-based techniques.
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Figure 2. Overview of change-based image cropping. A cropping

dataset which includes pairs of original/cropped images is used

for training. Crop-out and cut-through values are used to identify

promising crop candidates, and then composition scores are addi-

tionally considered to obtain the final crop.

Figure 3. Example training set photos. First row: Original photos

obtained from [13]. Second row: Crops by an expert photographer.

2. Change-based Cropping
In this section, we introduce our method for change-

based image cropping, which involves training set construc-

tion, feature extraction, and crop optimization. A basic

overview of our algorithm is diagrammed in Figure 2.

2.1. Training set construction

Our technique learns the impact of various change-based

cropping features on cropping results. This learning is per-

formed on an image dataset containing 1000 photos collect-

ed from an image quality assessment database [22]. The

photos are of varying aesthetic quality and span a variety

of image categories, including animal, architecture, human,

landscape, night, plant and man-made objects. Each image

is manually cropped by three expert photographers (gradu-

ate students in art whose primary medium is photography)

to form three training sets. For each crop we record its four

parameters: the horizontal and vertical coordinates of the

upper left corner (x1, y1) and lower right corner (x2, y2) of

the crop window. Examples of some of the crops are shown

in Figure 3. For 300 of the images, one of the photographers

also provided up to three reasons for choosing the crop win-

dow. This information was helpful to us in selecting image

features for our algorithm. Our cropping dataset will be

made publicly available upon publication of this work.
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Figure 4. Image decomposition. (a) Original image. (b) Segmen-

tation Result. (c) Foreground detection result. (d)(f) Region isola-

tion graph.

2.2. Feature extraction

We utilize features designed to capture changes between

the original and cropped images. They are particularly

aimed at modeling major considerations of photographers

as they crop a picture. Among these are measures of how

likely an image region will be cropped away or cut through

by the crop boundaries. In addition, they account for com-

positional changes from the original to the cropped image.

In the following, we describe these features and how they

are computed.

2.2.1 Image decomposition

A photo can be regarded as a spatial arrangement of atomic

objects and regions. The most significant of these regions is

the foreground, which is the focus of an image and the area

around which a crop is produced. To obtain the foreground

region, we augment the foreground detection method of [5]

by incorporating a human face detector [23] into the salien-

cy map computation. Several of the proposed cropping fea-

tures will later be defined with respect to this foreground.

The remainder of the image is then segmented using the

graph-based algorithm of [8], which incrementally merges

smaller regions with similar appearance and small mini-

mum spanning tree weights. Large non-foreground regions

with low average saliency values are taken to be background

regions. An example of this image decomposition is shown

in the first row of Fig. 4.

2.2.2 Exclusion features

The first class of features that are extracted in our algorith-

m are referred to as exclusion features, as they model what

types of regions are within original images but are often ex-

cluded from final crops. We specifically consider two kinds

of exclusion features: the crop-out value and cut-through
value of each non-foreground region. A region’s crop-out

value indicates the likelihood that a region with a certain set

of features will be cropped out of an image. The cut-through

value represents the chance that a crop boundary will pass

through a region with certain properties.

Since what is removed from an input image is common-

ly determined based on its relationship with the foreground

and background, we represent several of a region’s proper-

ties in terms of its distance from the foreground/background

in the following respects:

Color Distance We describe a region’s color properties in

terms of color moments [20], in particular, the three central

moments of a region’s RGB distribution. In determining

whether a region should be cropped out or cut through, it is

not the color of the region itself that matters, but rather its

difference from the foreground and background (e.g., to de-

termine how distracting the region is). To measure the color

differences between regions, we compute the Euler distance

between their color moments. For images with more than

one detected background region, the minimum color dis-

tance to any of those regions is used.

Texture Distance Besides color distances, we also in-

clude texture distances in terms of the widely used HOG

descriptor [7], obtained by evaluating the normalized local

histograms of image gradient orientations in a dense grid.

In our implementation, a 3× 3 grid is used for each region.

Similar to colors, texture differences are calculated as the

Euler distance between the HOG features of two regions.

Isolation from Foreground Also incorporated is a fea-

ture that represents how isolated a region is from the fore-

ground, as such isolation may suggest a greater likelihood

for exclusion. We evaluate this feature by constructing a

graph in which each region is represented by a node. A pair

of nodes is linked only if their regions are adjacent in the

image, as illustrated in Fig. 4(d)(f), and the link cost is de-

termined as a function of the color and texture distances, as

well as the two region sizes:

wi,j = (DHi,j +DCi,j)×
√

Mi ×Mj (1)

where wi,j denotes the connection weight between re-

gion i and j, DHi,j and DCi,j are the texture and color

distances between region i and j, and Mi and Mj are the ar-

eas of region i and j, respectively. Treating the foreground

node as the source point (e.g., point f in Fig. 4(f)), we find

the shortest path from the source to each region, and set the

isolation features of the regions to these path lengths. We

note that the dependence of link costs on Mi and Mj is in-

tended to account for greater path distances when passing

through larger regions.

We additionally account for several region features that

are computed independently from the foreground or back-

ground, but may influence crop-out or cut-through values:

971971971973973



Shape Complexity The shape complexity of a region

may play a role in deciding whether to crop it out or cut

through it. For example, a region with a complex shape

may be more desirable to cut through than one with a sim-

pler, more predictable structure, through which a cut may be

more visually noticeable. As a measure of shape complex-

ity, we use the high-frequency component of the region’s

boundary, computed as the sum of all Fourier descriptors

[24] except for the first six.

Sharpness Likewise, the sharpness of a region may influ-

ence region exclusion, since cuts through blurred regions

may be less distracting. We model region sharpness in a

manner similar to [14], by taking the ratio of the region’s

high frequency power to its total power:

fsharpness =
||C||
||R|| (2)

where R denotes the region, C = {(u, v) : |F (u, v)| > θ}
for a predefined threshold θ, and F = FFT (R).

Others We additionally include a few basic attributes of

regions that may have an effect on whether they are cropped

out or cut through. They are the region’s area, average

saliency value and centroid position in the original image.

Figure 5 shows examples that suggest the benefits of con-

sidering the various exclusion features. An aggregation

of these features gives a 13-dimensional feature vector for

each image region. To learn a mapping between this fea-

ture vector and its corresponding crop-out and cut-through

values, we utilize SVM regression [3] and the training set

described in Section 2.1. After decomposing the original

images according to Section 2.2.1, we first compute the ex-

clusion feature vector for each non-foreground region. For

each of these regions, we also determine its crop-out and

cut-through values by examining the crop provided by the

expert photographer. The crop-out value is set to the per-

centage of the region that is left out of the cropped image.

The cut-through value is set to 1 if a crop boundary passes

through the region, and is otherwise set to 0. The relation-

ship between these values and the feature vectors is then

learned using SVMs.

2.2.3 Compositional features

The second class of features are related to image compo-

sition. Some well-known compositional features, such as

visual balance and the rule of thirds, have been used in

aesthetics-based methods. In our work, the following com-

mon compositional features of cropped images are utilized:

a. Distance of saliency map centroid and detected fore-

ground region center from nearest rule-of-thirds point.

��� �
� �	�

Figure 5. Exclusion features. Top row: original images with high-

lighted areas inside light blue frames. Middle row: mediocre crop

windows that may result from not considering certain exclusion

features. Bottom row: better crop windows that could be obtained

by accounting for certain exclusion features. (a) The highlighted

region has a large color distance, texture distance, and isolation

from the foreground, and thus may be preferable to crop out. (b)

A crop boundary through the highlighted region with low shape

complexity is less desirable than a boundary that passes through a

more complex region. (c) Cropping through blurred areas is better

than through sharp regions.

b. Distribution statistics of saliency map values: average,

standard deviation, skewness, and kurtosis.

c. Segmented region area statistics: average, standard devi-

ation, skewness, and kurtosis.

d. Perspective ratio.

e. Prominent line features (extracted by Hough transfor-

m): average position and angle, after classification into

horizontal and vertical classes.

In addition to measuring these compositional features,

we account for their changes in going from the original im-

age to the expertly cropped image, in order to infer how the

photographer tends to modify the composition of a given

photograph. To obtain these change-based features, each

of the aforementioned compositional features are extract-

ed for the original and cropped images, and their differ-

ences are computed. The overall compositional feature is

a 38-dimensional vector that includes both the standard and

change-based features.

In the learning procedure for compositional features, the

expert crops from our training set are treated as positive ex-

amples. Negative examples are generated by random per-

turbations of the expertly cropped window boundaries, such

that the modified boundaries are not too close to those of the

expert crop:
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C = {(x1, y1, x2, y2)| 1√
2πσ

e−
||pc−pt

c||2
2σ2 < τ} (3)

where pc = (x1,y1,x2,y2)
T are the four cropping pa-

rameters, pt
c = (xt

1,y
t
1,x

t
2,y

t
2)

T are the four cropping pa-

rameters of a positive example from the photographer, σ is

the Gaussian parameter, and τ is a threshold for negative

example generation. With the positive and negative exam-

ples, we use SVM regression to predict the probability of a

given crop to be a positive example, and use this value as

the composition score.

2.3. Crop Selection

The cropping parameter space is large, and each possi-

ble cropping solution requires calculation of its composi-

tion features. This makes an exhaustive search of the solu-

tion space impractical. For example, a 1000 × 1000 image

with parameters sampled at 30 pixel intervals has a space of
334

4 possible solutions, which would consume 8.24 hours of

computation if compositional feature extraction takes 0.1s
for each solution. It is thus feasible only to evaluate a limit-

ed number of candidate solutions.

In the solution space, we note that many candidates are

easy to eliminate, since crop boundaries should not pass

through regions with high cut-through values, and region-

s with large crop-out values should generally be excluded.

This observation is consistent with comments provided by

the expert photographer, which indicate that exclusion fea-

tures are typically considered prior to composition features

when deciding a crop. Such candidates to eliminate are

readily identified, because it does not require computation

of compositional features, and exclusion features of image

regions need only to be computed once for an image.

We therefore utilize exclusion features to identify a rela-

tively small set of candidates (500 in our implementation),

and then determine the final crop from this set using both

exclusion and compositional features. The exclusion energy

function used for selecting candidates is based on crop-out,

cut-through, and saliency values:

Eexclusion = Ecropout+λ1Ecutthrough+λ2Esaliency (4)

with the terms formulated as

Ecropout =
∑

Rj∈C
Rj

CropOutV alue (5)

Ecutthrough =
∑

Rj cut by C

Rj
CutThroughV alue (6)

Esaliency =

∑
Scropped∑

S
. (7)

The crop-out energy is the sum of crop-out values among
regions within the crop boundary, and the cut-through en-

ergy is the sum of cut-through values among regions cut

by the boundary, with Rj
CropOutV alue denoting the crop-

out value of region Rj , Rj
CutThroughV alue meaning the cut-

through value of region Rj , and C signifying the crop. The

saliency energy represents the proportion of the original im-

age’s saliency that is excluded by the crop, with
∑

Sk
cropped

as the sum of saliency values that are cropped out of the im-

age, and
∑

S denoting the sum of saliency values over the

original image.

The candidate selection energy is evaluated on an ex-

haustive set of crop windows with parameters sampled at

30 pixel intervals on 1000x1000 images. The crops corre-

sponding to the 500 lowest energies are taken as candidates

for the final crop selection.

In determining the final crop, we evaluate each of the

candidates with the following energy function, which addi-

tionally accounts for composition features:

Efinal = Eexclusion + λ3(1− Composition(C)). (8)

The crop that minimizes Efinal is selected as the final
crop. With our candidate selection process, the total exe-

cution time of our algorithm (implemented in Matlab on a

2.33GHz 4GB RAM PC) is about 1 minute. The run time

may be reduced significantly with an optimized and parallel

C++ implementation.

3. Experiments

To assess our technique, we did cross-validation experi-

ments with our data set, and performed a user study.

3.1. Cross-validation

In the cross-validation, we compared our method to two

alternative techniques for each of the three data sets. The

first of these comparison techniques is an extension of [19]

that searches for the crop window with the highest average

saliency. In this extension, instead of using the outdated

saliency map construction method in the original paper, it

employs the more advanced technique used in our work,

which incorporates a human face detector [23] into [5]. We

utilize this extension as a representative for attention-based

methods. The second comparison method serves to repre-

sent the aesthetics-based approach. It too is an extension

of an existing technique, namely, a modification of [17]

that identifies a crop box with the highest aesthetics score.

But rather than using the aesthetics measure of the original

paper, this extension utilizes the state-of-the-art metric of

[13]. These extensions are employed to maximize the per-

formance of these approaches. We additionally compare our

method to a version of it without the change-based compo-

sition features, and a version without the exclusion energy,

in order to examine the significance of these two change-

based components.
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Testing set Attention-

based

Aesthetics-

based

w/o Comp.

Change

w/o Exclu-

sion

Full method

Photographer 1 0.2033

(0.2543)

0.3964

(0.1775)

0.6720

(0.0885)

0.6591

(0.1062)

0.7487
(0.0667)

Photographer 2 0.1782

(0.2001)

0.3944

(0.1782)

0.6578

(0.0927)

0.6491

(0.1070)

0.7288
(0.0720)

Photographer 3 0.1990

(0.2588)

0.3855

(0.1828)

0.6550

(0.0937)

0.6565

(0.1066)

0.7322
(0.0719)

Table 1. Cross-validation results. First number is average overlap ratio. Second number (in parentheses) is average boundary displacement

error. Best values are shown in boldface.

The foreground detection method, though fairly ad-

vanced, does not always locate the foreground successful-

ly. For our images, we found its success rate to be roughly

80%. Since incorrect labeling of the foreground will ad-

versely affect the training of our method, we manually i-

dentify the images that have correctly labeled foregrounds,

and perform training using these images only. For testing,

all the images are used, regardless of whether their fore-

grounds are accurately detected.

Our method is trained using the data of one of the expert

photographers (Photographer 1). For cross-validation pur-

poses, 100 of the images are withheld at a time from training

and used for testing. This is done for ten sets of 100 images,

in order to test all 1000 photos in our data set.

Two common performance metrics are used for compar-

ison. One is the overlap ratio, area(Wp∩Wm)/area(Wp∪
Wm), where Wp is the expert photographer’s crop window,

and Wm is the generated crop box of a given method. The

other metric is the boundary displacement error, ||Bp −
Bm||/4, which measures the distances of generated crop

box boundaries, Bm, from those of the photographer, Bp.

Table 1 lists the results of this cross-validation. With

only Photographer 1’s cropping data used to train our sys-

tem, we performed tests using each of the expert pho-

tographers’ crops as ground truth. The table shows that

our method clearly outperforms the attention-based and

aesthetics-based cropping techniques. The results for Pho-

tographer 1’s test set are the highest, which can be expect-

ed as this data was used for training, while the results of

the other test sets are remarkably similar. This consisten-

cy suggests some commonality in the way that experts crop

images, and that the image crops of various professional-

s could readily be combined to form a large, concordant

training set. The results in the table also demonstrate the

importance of both the exclusion and change-based compo-

sition features in the performance of our method.

In Figure 6, crops from our method are compared to

those from the other techniques. It can be seen that

attention-based methods tend to concentrate on areas with

high saliency while disregarding the overall image compo-

sition. Aesthetics-based methods often are relatively better,

but may change an image differently than a human would,

place crop boundaries through regions that are better includ-

ed or removed as a whole, or maintain distracting content.

It can also be observed that neglecting exclusion or compo-

sitional change features may lead to results less satisfying

than those that account for both.

3.2. User study

We also evaluated our method through a user study, with

21 participants in total. The three expert photographers

were among the users, and the rest were non-experts. In

the study, the users were each shown sequences of an origi-

nal photograph together with three different crops below it.

They were instructed to double-click the crop they like best.

No time constraints were placed on making these selections.

Each user is shown a series of 210 photos. For the

first 60 images, the crop choices are generated using the

attention-based and aesthetics-based methods used in the

cross-validation, as well as our own method trained from

the data of Photographer 1. The three crops are arranged in

a random order at the bottom of the user interface. These

60 images are chosen randomly for each user from among

the 1000 in the training set.

Among the next 120 images, 60 of them are used to com-

pare our method’s crops to those manually generated by t-

wo people who are non-experts in photography, while the

other 60 images are used for comparing to crops by two ex-

pert photographers. These two non-experts or experts each

cropped a total of 100 images from our training set, and the

user study randomly selects 60 of them for each user. The

remaining photographs are used to compare our method to

its variants described in the cross-validation, namely its ver-

sions without change-based composition features and with-

out the exclusion energy. Only 30 images are used for this

part. For a fair number of them, the differences between two

or more of the crops are somewhat subtle and require close

examination, so we limit the number of these comparisons

to avoid user fatigue.

The results of this user study are shown in Figure 7,

which exhibits the number of times a given method’s crop

was selected as the best choice. The study indicates a strong

preference for our method over the comparison techniques

based on attention and aesthetics. We note that this prefer-

ence is even stronger among the expert photographers, who

have a more discerning eye for crop quality. The compar-

974974974976976
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Figure 6. Cropped images by different methods. (a) Original. (b) Attention-based. (c) Aesthetics-based. (d) Ours without compositional

change features. (e) Ours without exclusion energy. (f) Our full method.
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Figure 7. Results of user study. Section 1: comparisons to other

cropping approaches. Section 2: comparisons to two non-expert

human croppers. Section 3: comparisons to two expert croppers.

Section 4: comparisons to variants of our method without compo-

sitional change features or exclusion energy.

ison to the two non-expert human croppers shows that the

humans are slightly favored. However, the differences in

preference are somewhat small, suggesting that our method

may have some utility for non-experts as a time-saving tool.

A larger difference exists in the comparison to the two ex-

pert croppers, which shows that there is a fair amount of

room for future improvement. The third set of comparison-

s indicate that the exclusion and change-based composition

features both play an important role in our technique.

3.3. Discussion

Our experiments provided us with some basic observa-

tions on the differences in cropping technique among the

various approaches. We found that human croppers tend

to keep much of the original image content, removing only

what is necessary and making some adjustments to improve

composition. For the most part, this has been reflected in the

crops produced by our system. By contrast, the aesthetics-

based method may crop radically with the goal of maximiz-

ing its aesthetic score within the crop window, even if this

means cropping out parts of the foreground. Though this

may yield nice-looking results, they are results that may

be inconsistent to what a human would normally produce

with the original image as the starting point. Moreover, we

observed that the optimal aesthetics-based crop window in

many instances is not especially pleasing, which leads us to

believe that there is much progress still to be made on com-

putational aesthetics evaluation. We feel that image crop-

ping is a problem less complex than general aesthetics eval-

uation and that it is better addressed by directly accounting

for its particular motivations, i.e., removing unwanted con-

tent and improving the overall image structure.

We also observed from the experiments some similarity

between attention-based methods and novice human crop-

pers. In both cases, they appear to identify the foreground

and place the crop box around it without much consider-

ation of image composition. However, a major advantage

of human croppers over any automatic technique is that re-

gardless of their cropping skill, they are able to clearly i-

dentify the foreground in the photograph, which is of great

importance in obtaining good cropping results.

An incorrect foreground detection result, which is gen-

erally caused by poor saliency map estimation, will lead

to low cropping quality, such as shown in Figure 8. This
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Figure 8. Incorrect foreground detection. (a) Original image. (b)

Saliency map. (c) Detected foreground. (d) True foreground. (e-g)

Attention-based, aesthetics-based, and our cropping result using

the incorrect foreground/saliency map. (h) Our cropping result

using the true foreground.

problem affects not only our algorithm, but other automatic

methods as well. In such cases, a simple manual labeling

of the foreground (done here by roughly tracing its bound-

ary) can significantly improve results. We suggest this as

an easy way to overcome the foreground detection problem

when needed.

4. Conclusion

We presented a technique for automatic image cropping

that directly accounts for changes that result from removing

unwanted areas. It is shown through extensive experimenta-

tion that the consideration of change-based features leads to

improvements over techniques based primarily on attention-

based or aesthetics-based features. Though our method uti-

lizes compositional properties in evaluating crops, it is rel-

atively efficient because of its use of exclusion features to

identify a small set of crop candidates.

As our work relies on existing techniques for foreground

detection and saliency map construction, shortcomings in

these methods can degrade the quality of our crops. Both of

these problems, however, have been receiving considerable

attention in recent years, and further advancements in these

areas should benefit our algorithm. In future work, we plan

to investigate other change-based features that could be in-

corporated into our method, and to examine the effects of

learning SVMs tailored to particular image categories, such

as landscapes, people, and indoor scenes.
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