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Abstract

We present a novel vanishing point detection algorithm
for uncalibrated monocular images of man-made environ-
ments. We advance the state-of-the-art by a new model of
measurement error in the line segment extraction and min-
imizing its impact on the vanishing point estimation. Our
contribution is twofold: 1) Beyond existing hand-crafted
models, we formally derive a novel consistency measure,
which captures the stochastic nature of the correlation be-
tween line segments and vanishing points due to the mea-
surement error, and use this new consistency measure to
improve the line segment clustering. 2) We propose a novel
minimum error vanishing point estimation approach by op-
timally weighing the contribution of each line segment pair
in the cluster towards the vanishing point estimation. Un-
like existing works, our algorithm provides an optimal so-
lution that minimizes the uncertainty of the vanishing point
in terms of the trace of its covariance, in a closed-form. We
test our algorithm and compare it with the state-of-the-art
on two public datasets: York Urban Dataset and Eurasian
Cities Dataset. The experiments show that our approach
outperforms the state-of-the-art.

1. Introduction
In man-made environments, structural objects such as

building facades and road lane marks frequently present

sets of parallel lines that intersect at points at infinity in the

world, whose projections in an image are called vanishing
points (VPs). For example, street curbs and building floor

separation lines are all parallel and converge to horizontal

VPs; all vertical lines, usually from buildings, converge to

a common VP known as zenith.

Accurate detection of VPs is an important problem in

computer vision because it provides a unique character-

ization of the geometric scene structure. In particular,

VPs uniquely determine the orientations of parallel line

clusters in the world. Therefore, VP detection has found

many important real-world applications such as building fa-

Figure 1. An illustration of vanishing point detection. Line seg-

ments with each color correspond to a vanishing point.

cade detection [12], 3D geometric scene structure analysis

[5], self-calibration [17], and robot navigation [7], among

many others. Accordingly, many VP detection algorithms

[1, 6, 9, 13–15, 17] have been developed.

The challenge for VP detection arises from the inher-

ent measurement error. Ideally, assuming perfect imaging

condition and line segment extraction, parallel lines should

intersect at the corresponding VPs. However, in the real-

world, there exists pixel noise, image distortion, discretiza-

tion error, and line segment extraction error, which make

the problem much more challenging. The problem becomes

even harder when camera parameters or motion cues are un-

available, or the scene becomes complex and does not sat-

isfy the Manhattan world assumption [3] which considers

only three mutually parallel line clusters.

In this paper, we present a novel minimum error van-

ishing point detection algorithm for uncalibrated monocular

images of man-made environments, without the Manhattan

world assumption. By error, we mean the uncertainty of

the VP. We tackle the VP detection problem by modeling

the measurement error in the line segment extraction and

minimizing its impact on the ultimate error in VP estima-

tion. The main novelty and contribution of our algorithm

are twofold as follows.
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First, a novel consistency measure is developed, which

evaluates the consistency between a line segment and a hy-

pothesized VP. Unlike existing hand-crafted models [4, 6,

13, 17], we formally derive a novel consistency measure,

which captures the stochastic nature of the correlation be-

tween line segments and vanishing points due to the mea-

surement error. This new consistency measure is used to

improve the assignment of line segments to corresponding

hypothesized VPs.

Second, a novel minimum error vanishing point estima-
tion method is presented. Given a cluster of line segments,

the extension lines of any line segment pair intersect at a

hypothesized VP, establishing a minimal solution. Unlike

existing works, our approach estimates the VP of the clus-

ter by reconciling all minimal solutions. The error prop-

agated from line segment endpoints towards the final VP

estimation is minimized by optimally weighing all minimal

solutions. Our algorithm provides an optimal solution that

minimizes the uncertainty of the vanishing point in terms

of the trace of its covariance, in a closed-form. The error

analysis quantitatively indicates to what degree each line

segment pair should be trusted.

In experiments, we compare our approach with the state-

of-the-art [6, 13–15, 17] on two public datasets, namely,

York Urban Dataset and Eurasian Cities Dataset, which

have been widely used as benchmarks for VP detection al-

gorithms. Our experiments showcase the strength of our

algorithm where it outperforms the state-of-the-art with a

significant margin.

2. Related Work
Over the last decade, there have been many previous

works dedicated to VP detection from monocular images.

An early class of the VP detection algorithms, assum-

ing known camera intrinsic parameters, relies on the Hough

transform of the line segments on the Gaussian sphere [2]

and clusters line segments in a bottom-up manner using

their orientation votes. These approaches usually do not

handle noise and outliers very well, and suffer from the sub-

optimality, which leads to misclassification of line segments

[10]. To address these issues, iterative approaches [15] such

as EM [6] algorithm are usually used to refine the initial

clustering results.

Many recent work assumes the Manhattan world [3],

where only three mutually orthogonal vanishing directions

are considered: one vertical and two horizontal. With

known camera intrinsic parameters, [9] enforces this mutual

orthogonality into the global optimization for simultaneous

detection of all three VPs. With the Manhattan world as-

sumption, a 4-line RANSAC algorithm [17], has been pro-

posed. However, many man-made scenes do not satisfy the

Manhattan world assumption. Also, for many applications

such as robot navigation and surveillance, camera intrinsic

parameters may change (e.g., zoom), hence, they are hard

to be pre-calibrated and maintained. Our work does not re-

quire the Manhattan world or camera calibration.

Tardif [13] proposes to use a variant of RANSAC algo-

rithm, called J-linkage, to generate line segment clusters.

As described in Sec. 4.1, our algorithm is similar to [13] in

the overall structure, but, uses our new consistency measure

and minimum error VP estimation, which results in substan-

tial improvement in accuracy.

Tretyak et al. [14] propose to jointly use different lay-

ers of geometric primitives and construct empirical energy

functions for each layer with respect to hypothesized VPs.

VPs are estimated by minimizing the overall energy across

layers, which results in a non-convex optimization problem.

In contrast, the optimization problem in our approach has a

closed-form solution.

Bazin et al., [1] propose an algorithm to globally max-

imize the number of inlier line segments for all VPs. Our

approach is different because line segment pairs are opti-

mally weighted to minimize the VP error. Our reasoning is

that the uniform use of more inlier segments [1] does not

necessarily guarantee more accurate VP estimation (imag-

ine a lot of short, noisy line segments versus a few long,

certain line segments.)

Most aforementioned works require a consistency mea-

sure that assesses the degree to which geometric primitives

such as edges and line segments are consistent with hypoth-

esized VPs. For brevity, detailed discussions on existing

approaches are deferred to Sec. 4.2 where their limitations

are analyzed to provide the motivation and design principles

for our new probabilistic consistency measure.

3. Problem Description

In this section, we formally define the VP detection prob-

lem, and enlist the underlying assumptions and notations to

be used in the following sections.

The input of the problem is an uncalibrated image of a

man-made scene. The output of the problem is a set of m
VPs V = {v1,v2, ...,vm}, which are the image projections

of the intersections at infinity of parallel lines in the scene.

The number of VPsm is unknown and needs to be automat-

ically computed.

To facilitate the problem formulation, we assume:

• Man-made scenes that contain structural objects which

present parallel lines.

• Radial distortion is either removed or reasonably

small. This assumption is necessary for almost all

geometry-based VP detection algorithms.

As a notation convention, we use bold font to denote vec-

tors and matrices. Any point in the image is denoted by its

coordinate e = [u, v]. We denote any line segment by its

two endpoints, l = [e1, e2] = [u1, v1, u2, v2]. For any line
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Figure 2. Existing consistency measures.

segment l, we define l̂ as its corresponding extension line in

the homogeneous image coordinate system l̂ = [a, b, c].

4. Algorithm
In this section, we first describe the overview of our ap-

proach in Sec. 4.1, then, focus on the details of two of our

main contributions in Sec. 4.2 and Sec. 4.3, respectively.

4.1. Approach Overview

Our algorithm consists of two steps for VP detection:

initialization and refinement.

For initialization, first, line segments are extracted from

images. Let us assume that total N line segments are ex-

tracted, which are denoted as {l1, ..., lN}. While any line

segment extraction approach can be used, we used [16] in

this paper. Then, an initial set of VPs are computed by clus-

tering line segments using our novel consistency measure
(see Sec. 4.2). In this work, the J-linkage algorithm [13]

is used to cluster line segments to respective VP clusters

in the following manner: first, M line segment pairs (e.g.,

M = 3000) are randomly sampled where each pair pro-

vides a potential hypothesized VP; for each line segment l,
we measure its consistency with respect to all hypothesized

VPs and identify a set of VPs that associate with l above

a pre-defined consistency threshold η; the identified set is

called a “preference set” for l; this step produces a binary

N ×M association matrix; then, clusters of line segments

are obtained in a bottom-up manner using the Jaccard dis-

tance of their preference set; finally, we obtain |V0| number

of line segment clusters and associated VPs where line seg-

ments across clusters do not share any hypothesized VP in

their preference sets and |V0| � M . After initialization,

there are usually a number of noisy and small line segment

clusters, which need to be corrected in the refinement step.

For more details on the J-linkage clustering, readers are re-

ferred to [13].

In the refinement step, we refine the VP detection results

through an iterative approach which is an EM-like algo-

rithm. In the M-like step, for each cluster of line segments,

we compute its corresponding VP using a novel minimum
error vanishing point estimation method (see Sec. 4.3). In

the E-like step, given a set of hypothesized VPs, we re-

assign each line segment to a VP such that the consistency
measure (in Sec. 4.2) between the line segment and the VP

is maximal and greater than a threshold (otherwise, assign

to an outlier cluster). The resulting assignment forms a new

line segment clusters for the M-like step. At the end of each

EM-like iteration, similar VPs are merged and small outlier

VPs are removed.

In the following sections, we describe both the justifica-

tion and algorithmic details for the newly developed consis-

tency measure and minimum error vanishing point estima-

tion in Sec. 4.2 and Sec. 4.3, respectively.

4.2. Consistency Measure

A consistency measure c(l,v), between a line segment

l and a hypothesized VP v, is one of the most important

algorithmic component required by most VP detection al-

gorithms. It is used to evaluate the degree of l being con-

sistent with v. While there are existing consistency mea-

sures [4, 6, 13, 17] which work fairly well in practice, how-

ever, most of them are hand-crafted; and do not encode the

measurement error during line segment extraction and its

impact on the VP estimation in a principled manner.

To provide the motivation for our new probabilistic con-

sistency measure, we briefly review existing consistency

measures and their potential limitations first.

As shown in Figure 2(a), Kosecka and Zhang [6] model

the consistency measure based on the orthogonal distance d
from v to l in image. This formulation is biased against VPs

far away from the line segment (along the direction of the

line segment). Intuitively, in Fig. 2(a), l should have higher

consistency with v1 than v2 and v3; and c(l,v3) should

be zero since the projection of v3 on l̂ resides on l itself

while any finite line segment in the world should not pass

through its own VP. However, under the formulation in [6],

c(l,v1) = c(l,v2) = c(l,v3) > 0. This would lead to the

frequent incorrect assignment of a line segment to a nearby

VP; and degrade the detection of VPs at infinity or far away.

Although a normalization step is applied in [6] with a rough

guess on the camera parameters, it does not fully address

the bias.

In another work illustrated in Figure 2(b), Denis et al. [4]

use the angular deviation θ between the line segment and

the line connecting the centroid e of the line segment and

the VP. Intuitively, similar to the case in Fig. 2(a), while

c(l,v1) > c(l,v2) and c(l,v3) = 0, it is not the case under

this formulation either, similar to [6].

In another approach shown in Fig. 2(c), Tardif [13] mod-

els the consistency measure based on the projection distance

13761376137613781378
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Figure 3. An illustration of consistency measure modeling. (a)

Error of endpoints is modeled as 2D Gaussian (ellipses); (b) Ap-

proximated modeling using 1D Gaussian (bell curves).

d from the endpoints of l to the line connecting the VP and

the line segment centroid e. This formulation favors shorter

line segments such as l2 in Fig. 2(c), which is intuitively

less consistent with v than l1.
Another common issue with the aforementioned mod-

els is that they do not encode the impact of the length L
of the line segments on the VP detection. For example, in

Fig. 2(b), shortening the line segment without changing e
will not change its consistency measure. However, intu-

itively, very short line segments are frequently noisy, hence,

their contribution should be constrained compared to the

long segments. Though a weighting approach using weights

proportional to length has been used [12], it is still empirical

and does not capture the impact in a principled manner.

4.2.1 Probabilistic Consistency Measure

We propose a new consistency measure which models the

measurement error in line segment extraction and its impact

on the VP estimation. For each line segment, the proposed

model builds a probabilistic consistency distribution over all

possible VP locations, and explicitly captures the impact of

segment length as well.

The overall model is illustrated in Fig. 3(a) in which an

extracted (solid black) line segment l = [e1, e2] is shown

with the measurement uncertainty in its endpoint locations

illustrated with ellipses around them. Following the end-

point distribution, any possible true line segment l′ collinear

with a hypothesized VP v is shown as a red line. While the

location error of e1 and e2 depends on the line segment ex-

traction algorithm and sensor noise, in this work, we use a

widely accepted isotropic Gaussian distribution1 [8].

Let’s define L = {l} as the set of all possible true line

segments, then, we define a subset L′ = {l′} ⊂ L as the set

of line segments which are collinear with v. Our new prob-

abilistic consistency measure is defined as c(l,v) = p(L′),
which can be computed as the integral over all lines in L

′.
During integration, the probability of each possible true line

1Our algorithm can be easily extended to incorporate other error models

such as uniform distribution.

(a) L = 40, σ = 0.5. (b) L = 80, σ = 0.5.

(c) L = 40, σ = 1. (d) L = 80, σ = 1.

Figure 4. Visualization of the consistency measure. Longer line

segments and smaller σ produce narrower ridges, meaning more

certainty about the location of the hypothesized vanishing point.

segment is computed as the product of two probabilities

of hypothesized end points with respect to two 2D uncer-

tainty ellipses. For brevity, we derive the 1D approximation

shown in Fig. 3(b), which also works well in practice. The

rationale for the 1D approximation is that the collinearity

between l′ and v mostly depends on the endpoints’ devia-

tion along the normal direction of l. Also, the standard de-

viation of the endpoint error is usually at the magnitude of

sub pixel, and thus significantly smaller than L along the

tangential direction of l.
For the convenience of derivation and without loss of

generality, as shown in Fig. 3(b), we make l align with the

u-axis of the image, and endpoint e1 is at the origin. Then

any possible endpoints of the true line segment can be pre-

sented as e′1 = [0, v′1] and e′2 = [L, v′2], with v′1 ∼ N (0, σ)
and v′2 ∼ N (0, σ), where σ is the standard deviation. De-

fine the hypothesized VP as v = [uv, vv]. When uv > L
and l′ is collinear with v, we have, v′2 = uv−L

uv
v′1 + vvL

uv
.

Accordingly, both v′1 and v′2 can be jointly parameterized

with an auxiliary variable t ∈ R : v′1(t) = uvt√
u2
v+(uv−L)2

and v′2(t) =
(uv−L)t√

u2
v+(uv−L)2

+ vvL
uv

. Therefore,

c(l,v) = p(L′) =
∫ ∞

−∞
f
(
v′1(t); 0, σ

2
)
f
(
v′2(t); 0, σ

2
)
dt

=
1√
2πσ

e
− v2

vL2

2σ2(u2
v+(uv−L)2) , (1)

where f(·;μ, σ2) is a Gaussian PDF.

From (1), we can observe that our formulation allows

us to encode the measurement error σ explicitly and cap-

tures the intuitive impact of line length L, which provides

a more sound framework compared to empirical set-ups by

other approaches [4, 6, 13, 17]. In detail, Fig. 4 visualizes

the consistency measure distributions with different L and
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σ. It shows a ridge-like distribution across potential VP lo-

cations. Longer line segments produce narrower ridges,

meaning more certainty about the location of the hypoth-

esized VP. Smaller σ, i.e., more accurate line segment ex-

traction and less image noise, produces higher confidence

about the VP location.

During the E-like step described in Sec. 4.1, we asso-

ciate each line segment with one of the hypothesized VPs

or outlier class, using the consistency measure in (1). Given

hypothesized VPs V = {v1, ...,vm} and line segment l, we

determine the VP that l belongs to by:

ζ(l;V) =

{
argmax

v∈V
c(l,v) if max

v∈V
c(l,v) > η,

outlier otherwise,
(2)

where η is a threshold.

4.3. Vanishing Point Estimation

4.3.1 Maximum Likelihood (ML) Estimation

By (2), we form clusters of line segments {Si}. For each

cluster Si, a straightforward way to estimate its VP is,

v∗i � ψ(Si) = argmin
v

∑
l∈Si

− log (c(l,v)). (3)

Although the minimization problem in (3) is not a strict

convex optimization problem, as visualized in Fig. 5(a),

there almost always exists a large neighborhood around

v∗i where
∑

l∈Si − log (c(l,v)) is quasiconvex (unimodal.)

With reasonable initialization methods such as the least

squares approach in [6], the initial point is almost always

in this neighborhood. Therefore any local optimum solver

can find the global optimal solution efficiently.

However, besides the possible sub-optimality issue, the

VP estimation in (3) ignores the uncertainty of the result-

ing VP. By allowing all line segments uniformly contribute

to the optimization, the surface of
∑

l∈Si − log (c(l,v))
around the maximum (as illustrated in Fig. 5(a)) could be

very flat (i.e., large uncertainty) especially due to short line

segments (see Fig 4) and subset of line segments that are

close to parallel to each other. Then the solution is less reli-

able and even little numerical error from the optimizer could

greatly compromise the solution quality.

4.3.2 Minimum Error Estimation

To resolve the aforementioned issues, we propose a novel

minimum error VP estimation by optimally weighting min-

imal solutions produced by line segment pairs. Here, by

error, we mean the uncertainty of the VP, in particular, the

trace of the covariance matrix of the VP.

Given a line segment pair (lj , lk) ∈ L
2
i , j �= k, the

intersection of corresponding l̂j and l̂k is a minimal so-

lution as a hypothesized VP. In particular, given lj =

(a)

� �� ��
�

����

���

����

	
�	�
��

Sorted Index of (lj , lk)

tr
(ṽ

(j
,k
))

(r
a
d
ia
n
2
)

(b)

Figure 5. An illustration of the maximum likelihood and minimum

error VP estimation approaches. (a): The level-set visualization of

the cost function
∑

l∈Si
− log (c(l,v)), where the star indicates

the maximum likelihood VP. (b): The visualization of the trace of

ṽj,k from different line segment pairs. The pair with the least trace

is highlighted with a larger width in (a).

[uj1, vj1, uj2, vj2] and lk = [uk1, vk1, uk2, vk2], the inter-

section v(j,k) as a VP is shown in (4).

Define the Jacobian matrix of function g(·) in (4) with

respect to (lj , lk) as G(j,k),which is a 2×8 matrix (omitted

here for space, presented in supplementary material), then

the covariance of the respective VP v(j,k) in the image is,

Σv(j,k) = G(j,k)Σ(j,k)G
T
(j,k)

= G(j,k)σ
2I8G

T
(j,k) = σ2G(j,k)G

T
(j,k), (5)

where Σ(j,k) = σ2I8 is the covariance matrix of the end-

points of lj and lk, and I8 is an 8× 8 identity matrix.

Eq. (5) shows that the covariance of the hypothesized VP

is a function of lj , lk, and σ. It encodes the relative loca-

tion of line segments in the pair, line segment length, image

noise level, segmentation error, etc. However, the covari-

ance of the VP in the image space is less meaningful due to

camera projective distortion. For example, a large covari-

ance of a VP at infinity or very far away does not neces-

sarily means an inaccurate estimation. What really matters

is the vanishing direction, which can be represented as a

point on a unit Gaussian sphere [2]. The center of the unit

Gaussian sphere coincides at the camera center and its two

rotation axes are parallel with image u-axis (tilt rotation)

and v-axis (pan rotation), respectively. Here, we represent

a VP v on the Gaussian spherical surface as a pair of pan

and tilt angles ṽ = [θ, φ]. Following the coordinate system

convention in [11], we project v(j,k) to ṽ(j,k) as

ṽ(j,k) = [θ(j,k), φ(j,k)] � h(v(j,k))

=

⎡
⎣tan−1

(
u(j,k)

f

)
,− tan−1

⎛
⎝ v(j,k)√

u2(j,k) + f2

⎞
⎠
⎤
⎦ , (6)

where f is a focal length. Here, we do not have the cali-

brated focal length. However, most cameras have a 15 to 60

degree field of view, which indicates f ∈ [0.28W, 3.80W ]
with W being the size of image’s longer side. We esti-

mate the focal length as f = 2W. This rough approxi-

mation is unacceptable for approaches that rely on accurate
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v(j,k) =

[
u(j,k)
v(j,k)

]T
� g(uj1, vj1, uj2, vj2, uk1, vk1, uk2, vk2) =

[
(uk1−uk2)(uj1vj2−uj2vj1)−(uj1−uj2)(uk1vk2−uk2vk1)

(uj1−uj2)(vk1−vk2)−(uk1−uk2)(vj1−vj2)
(vk1−vk2)(uj1vj2−uj2vj1)−(vj1−vj2)(uk1vk2−uk2vk1)

(uj1−uj2)(vk1−vk2)−(uk1−uk2)(vj1−vj2)

]T

.

(4)

l1
l2

l3

(a)

l1
l2

l3

(b)

Figure 6. An illustration of the intuition behind the minimum error

vanishing point estimation.

calibration. However, since our minimum error VP is rec-

onciled from competing minimal solutions, which are pro-

jected (back and forth) with the same estimated focal length,

this approximation is adequate for our purpose.

We define the 2× 2 Jacobian matrix of h(·) in (6) as,

H(j,k) =

⎡
⎣ f

ρ2
(j,k)

, 0

uv(
ρ2
(j,k)

+v2
(j,k)

)
ρ(j,k)

,
−ρ(j,k)

ρ2
(j,k)

+v2
(j,k)

⎤
⎦ ,

where ρ(j,k) =
√
u2(j,k) + f2. Then the Jacobian from four

endpoints of (lj , lk) to the respective VP’s pan-tilt angles is

J(j,k) = H(j,k)G(j,k). Then the covariance of ṽ(j,k) is,

Σṽ(j,k) = J(j,k)Σ(j,k)J
T
(j,k) = σ2J(j,k)J

T
(j,k). (7)

From (7), apparently, each line segment pair has a differ-

ent impact on the covariance of the VP estimation. As il-

lustrated in Fig. 6, even though the pair (l1, l2) have longer

line segments, since they are almost parallel, the covariance

of the intersection is larger than that from the pair (l1, l3),
which has shorter line segments. Fig. 5(b) visualizes the

sorted trace of ṽ(j,k) from different pairs of line segments

(in the same cluster) shown in Fig. 5(a). This indicates that

some line segment pairs are more important than others.

For example, in Fig. 5(a), the line segment pair with the

least trace (i.e., the most trustable) line segment pair is high-

lighted with a larger width. Uniformly using more line seg-

ments does not necessarily guarantee more accuracy. Ac-

cordingly, we derive an optimal weighting approach which

computes the VP by reconciling all minimal solutions and

weighs more on those with more certain VP estimations, so

that the reconciled solution is the most certain one.

Given the line segment cluster S with n line segments,

define the set of all line segment pairs, Γ = {(lj , lk)|lj , lk ∈
S, j �= k}. Define the minimal solution set produced by any

pair in Γ as Ψ = {ṽ(j,k)|(lj , lk) ∈ Γ}. Define the weight-

ing vector for Ψ as w = [w(1,2), w(1,3), ..., w(n−1,n)]
T ,

subject to 1T
(n−1)n/2w = 1, where 1(n−1)n/2 is a col-

umn vector with all elements being 1. We reconcile all

the minimal solutions via linear weight combination, ṽ =

∑n−1
j=1

∑n
k=j+1 w(j,k)ṽ(j,k). Define the corresponding co-

variance of ṽ as Σṽ, our goal is to find the w that minimizes

the trace of Σṽ,

w∗ = argmin
w

tr(Σṽ), s.t. −w < 0, and

1T
(n−1)n/2w = 1,

(8)

where function tr(·) returns the trace of any square matrix.

Eq. (8) can be rewritten as

w∗ = argmin
w

1

2
wTAw, s.t. −w < 0, and

1T
(n−1)n/2w = 1,

(9)

where A is an n(n − 1)/2 × n(n − 1)/2 matrix with its

positive diagonal elements A(a, a) = tr(Σṽ(j,k)), where

a is the index of w corresponding to the line segment pair

(lj , lk). The off-diagonal elements of A model the correla-

tion between two line segment pairs.

The minimization problem in (9) is a typical quadratic

programming problem, which can be efficiently solved. In

practice, very few observations dominate the contributions

to the covariance as illustrated in Fig. 5(b). In other words,

the correlation between observations, and in turn the re-

sulting difference in contribution, is very weak (i.e., off-

diagonal items in matrix A are small). Therefore we ap-

proximate the computation by assuming the independence

between observations. Assuming A is a diagonal matrix,

the problem in (9) has a closed-form solution,

w∗(j,k) = w∗a =
(A(a, a))−1∑(n−1)n/2

a=1 (A(a, a))−1
. (10)

With w∗, we compute the minimum error VP in the pan-

tilt space as ṽ∗ = [θ∗, φ∗] =
∑n−1

j=1

∑n
k=j+1 w

∗
(j,k)ṽ(j,k).

The corresponding optimal VP in image is,

v∗ = [u∗, v∗] =
[
f tan(θ∗),−f tan(φ∗)

√
tan2(θ∗) + 1

]
.

(11)

With the minimum error VP estimation in (11) and the

consistency measure in (1), we complete our algorithm de-

scribed in Sec. 4.1.

5. Experiments
For experiments, the proposed algorithm is implemented

in Matlab. For line segment detection, [16] with sub-pixel

accuracy is used. Considering this accuracy and possi-

ble image distortion, we conservatively set σ = 1 pixel.

We have implemented the J-linkage algorithm [13], with

a modification where the line segment-VP association is
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Figure 7. Sample qualitative results on York Urban Dataset (first rows) and Eurasian Cities Dataset (second rows.) For each image, it shows

clusters of line segments (with different colors), and the computed horizon (solid purple) compared with the ground truth (dashed cyan.)

determined by thresholding the new consistency measure.

We set the consistency measure threshold η = 1√
2πσ

e−
1
2 ,

which is the consistency measure at one standard deviation

away from the mean (see (1)). In J-linkage, we choose upto

M = 3000 line segment pairs for VP initialization.

We have tested our algorithm on two public datasets:

York Urban Dataset (YUD) [4], and Eurasian Cities Dataset

(ECD) [14]. YUD consists of 57 outdoor and 47 indoor im-

ages of urban scenes on the campus of York University and

in downtown Toronto, Canada. All the scenes satisfy the

Manhattan world assumption. Manually annotated line seg-

ments, ground truth VPs and camera intrinsic parameters

are provided. ECD consists of 103 outdoor images of Euro-

pean and Asian cities, covering different architectural styles

and diverse scene types. Many scenes in ECD do not satisfy

the Manhattan world assumption as more than two horizon-

tal vanishing directions exist and/or buildings with irregular

non-box shapes without clear straight lines are more com-

mon. Manually annotated line segments and ground truth

VPs are provided but camera intrinsic parameters are miss-

ing. Overall, ECD is more challenging than YUD dataset.

We compare our algorithm with the “Self-Similar

Sketch” algorithm [15], the 4-line RANSAC algorithm [17],

the “Geometric Parsing” algorithm [14], the J-linkage+EM

algorithm [13], and the well-known “Video Compass” algo-

rithm [6]. To the best of our knowledge, “Geometric Pars-

ing” [14] and “Self-Similar Sketch” [15] are the latest state-

of-the-art algorithms without the Manhattan world assump-

tion, and the 4-line RANSAC algorithm in [17] is the latest

state-of-the-art with the Manhattan world assumption.

For each image in YUD and ECD, our algorithm takes a

few seconds to finish on a moderate laptop. Considering its

un-optimized Matlab implementation, our algorithm is fast,

compared to non-Manhattan world works [14, 15], which

take a few seconds to a few minutes. Following the pro-

tocol from [14, 15, 17], for each image, we ran 5 trials for

the average performance. We also computed horizons using

VPs, which are widely used for quantitative comparison.

Examples of qualitative results by our algorithm on YUD

and ECD are shown in Fig. 7. It can be observed that our al-

gorithm achieves very accurate line segment clustering and

horizon detection for both indoor and outdoor scenes. On

a small number of images, there are minor errors observed

but they are reasonable, e.g., red cluster on bottom left-most

and yellow cluster on top right-most images.

For quantitative evaluation, following recent state-of-

the-art works [14, 15, 17], we use the error of horizon de-

tection as the metric. We compute the horizon by first filter-

ing out the zenith, which usually locates vertically and far

from the image center. Since the horizon should be orthog-

onal with the line connecting the zenith and the principal

point, by assuming the image center as the principal point

and the focal length f ∈ [0.28W, 3.8W ], we further filter

out VPs that are unlikely to be horizontal VPs, and the sur-

viving VPs are treated as the horizontal VPs. We compute

the horizon by enforcing orthogonality and linearly weight-

ing horizontal VPs. This procedure is similar to [14], except

that we use the inverse of the trace of each VP’s covariance

as the weight, instead of empirically choosing the number

of associated line segments as the weight in [14]. Follow-

ing [14, 15, 17], we define the horizon error as the max-

imum distance from the computed horizon to the ground

truth horizon in the image, normalized by the image height.

The cumulative distributions for the horizon error for

both datasets are shown in Fig. 8. The x-axis value is the

horizon error and the y-axis value is the share of the images

that have less horizon error than the corresponding x-value.

The area under the curve (AUC) for each algorithm is sorted

and depicted in the legend. Furthermore, to evaluate the im-

pact of the minimum error VP estimation (Sec. 4.3.2) sepa-

rately, two variations are used: our full approach is marked

as “Minimum Error”; while another run “Maximum Likeli-

hood” (ML) uses new consistency measure, but, with max-

imum likelihood estimation (Sec. 4.3.1).

On YUD, our “Minimum Error” algorithm achieves

slightly higher AUC than the latest state-of-the-art [17].

Note that all scenes in YUD satisfy the Manhattan world

assumption, which [17] utilizes to constrain the VP esti-
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(a) York Urban Dataset (b) Eurasian Cities Dataset

Figure 8. Cumulative histograms for the horizon error. The x-axis

value is the horizon error (see text for details). The y-axis value

is the share of the images that have less horizon error than the

corresponding x-value. The legends are sorted based on AUC.

mation. We do not assume the Manhattan world and still

achieve slightly better performance. Furthermore, it shows

that the maximum error by our “Minimum Error” algorithm

is bounded very tightly. Our maximum error across YUD

is 0.078 while the best maximum error from all compet-

ing algorithms is 0.158 (by [17]). Since the YUD is rela-

tively “easy” compared to ECD, while our “Minimum Er-

ror” method shows the best results, almost all the latest al-

gorithms perform well and our improvement is small.

On ECD, our “Minimum Error” algorithm outperforms

all competing approaches with a much larger margin. The

maximum error on ECD by our “Minimum Error” algo-

rithm is 0.081 while the best maximum error from all com-

peting methods is 0.532 (by [15]). In particular, the bottom

right-most image in Fig. 7 shows a very challenging scene.

The building facade is curvy and does not contain clear

straight lines. However, our algorithm is still able to cluster

small piecewise line segments and compute a fairly accu-

rate horizon. The average error by our “Minimum Error”

method on this image is only 0.034. In contrast, this image

is a failure case in [14]. This shows that our “Minimum Er-

ror” algorithm is more robust to image noise/distortion and,

to a certain extent, violation of the underlying assumptions.

Another important observation is that our ML algorithm

outperforms Tardif’s algorithm [13] on both datasets. In

fact, our ML algorithm is very similar to [13] except the

new consistency measure. Therefore, we attribute this im-

provement to the new consistency measure. Nevertheless,

our full “Minimum Error” algorithm always outperforms

ML version substantially, which showcases the clear ben-

efits of the minimum error VP estimation.

6. Conclusion
We have presented a new algorithm for VP detection

for uncalibrated monocular images without the Manhattan

world assumption. Our approach advances the state-of-the-

art using a new consistency measure and a minimum error

VP estimation approach. Our experimental results on two

public benchmark datasets are encouraging and shows the

strength of the proposed approach.
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