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Abstract

We present the first variational framework for multi-label
segmentation on the ray space of 4D light fields. For tradi-
tional segmentation of single images, features need to be ex-
tracted from the 2D projection of a three-dimensional scene.
The associated loss of geometry information can cause se-
vere problems, for example if different objects have a very
similar visual appearance. In this work, we show that using
a light field instead of an image not only enables to train
classifiers which can overcome many of these problems, but
also provides an optimal data structure for label optimiza-
tion by implicitly providing scene geometry information. It
is thus possible to consistently optimize label assignment
over all views simultaneously. As a further contribution, we
make all light fields available online with complete depth
and segmentation ground truth data where available, and
thus establish the first benchmark data set for light field
analysis to facilitate competitive further development of al-
gorithms.

1. Introduction
Recent developments in light field acquisition sys-

tems [2, 18, 19, 20] strengthen the prediction that we might

soon enter an age of light field photography [17]. Since

compared to a single image, light fields increase the con-

tent captured of a scene by directional information, they re-

quire an adaption of established algorithms in image pro-

cessing and computer vision as well as the development

of completely novel techniques. In this work, we develop

methods for training classifiers on features of a light field,

and for consistently optimizing label assignments to rays

in a global variational framework. Here, the ray space of

the light field is considered four-dimensional, parametrized

by the two points of intersection of a ray with two parallel

planes, so that the light field can be considered as a collec-

tion of planar views, see figures 2 and 3.

Due to the planar sampling, 3D points are projected onto

lines in cross-sections of the light field called epi-polar-

plane images. In recent works, it was shown that robust dis-

parity reconstruction is possible by analyzing this line struc-

Input user scribbles single view labeling ray space labeling

Figure 1. Multi-label segmentation with light field features and
disparity-consistent regularization across ray space leads to re-
sults which are superior to single-view labeling.

ture [1, 4, 9, 23]. In contrast to traditional stereo matching,

no correspondence search is required, and floating-point

precision disparity data can be reconstructed at a very small

cost. From the point of view of segmentation, this means

that in light fields, we not only have access to the color of a

pixel and information about the neighboring image texture.

Instead, we can assume that disparity is readily available as

a possible additional feature.

Disparity turns out to be a highly effective feature for in-

creasing the prediction quality of a classifier. As long as the

inter-class variety of imaged objects is high and the intra-

class variation is low, state of the art classifiers can easily

discriminate different objects. However, separating for ex-

ample background and foreground leafs poses a more dif-

ficult task, see figure 1. In general, there is no easy way

to alleviate issues like this using only single images. How-

ever, for a classifier which also has geometry based features

available, similar looking objects are getting readily distin-

guishable if their geometric features are separable.

In the following, we will show that light fields are ideally

suited for image segmentation. One reason is that geome-

try is an inherent characteristic of a light field, and thus we

can use disparity as a very helpful additional feature. While

this has already been realized in related work on e.g. multi-

view co-segmentation [15] or segmentation with depth or

motion cues, which are in many aspects similar to dispar-

ity [21, 10], light fields also provide an ideal structure for

a variational framework which readily allows consistent la-

beling across all views, and thus increases the accuracy of

label assignments dramatically.
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Figure 2. One way to understand a 4D light field is as a collection of images of a scene, where the focal points of the cameras lie in a 2D
plane. The rich structure becomes visible when one stacks all images along a line of view points on top of each other and considers a cut
through this stack (denoted by the green border above). The 2D image in the plane of the cut is called an epipolar plane image (EPI).

Contributions

In this work, we leverage the intrinsic geometry of 4D light

fields to overcome problems of classical segmentation of

single images. Typical examples are different objects with

similar texture properties or identical objects on different

spatial positions which cannot be discriminated by a clas-

sifier without geometry based features. The contribution of

this work is threefold. First, we show that ray space based

features enable a classifier to distinguish between objects

similar in appearance. Second, we propose a variational

multi-label optimization framework which makes use of the

ray space regularizers in a related work [12] in order to ob-

tain a consistent labeling over the complete ray space of

the light field. To our knowledge, this is the first labeling

framework which is designed to work on ray space. Third,

we will provide all of our data sets online together with

ground truth information for label assignments and depth

where available, and thus establish the first benchmark data

set for light field analysis.

2. Light field structure and parametrization

This paper builds upon our light field regularization

framework, which is introduced in a related work [12]. We

will first give a summary of the necessary ideas and notation

here. Note that the first two subsections are almost verba-

tim copies, since they contain the basic definitions and are

already formulated as compactly as possible.

Ray space

A 4D light field or Lumigraph is defined on a ray space R,

the set of rays passing through two planes Π and Ω in R
3,

where each ray can be uniquely identified by its two inter-

section points. For the sake of simplicity, we assume that

both planes are parallel with distance f > 0, and equipped

with 2D coordinate systems which are compatible in the

sense that the base vectors are parallel and the origins lie

on a line orthogonal to both planes.

The parametrization for ray space we choose is slightly

different from the standard one for a Lumigraph [13], and

inspired by [4]. A ray R[s, t, x, y] is given by a point

(s, t) ∈ Π and (x, y) ∈ R
2. The twist is that (x, y) is not

a coordinate pair in Ω (as in the Lumigraph parametriza-

tion), but in the local coordinate system of the pinhole pro-

jection through (s, t) with image plane in Ω. This means

that R[s, t, 0, 0] is the ray which passes through the focal

point (s, t) and the center of projection in the image plane,

i.e. it is perpendicular to the two planes, see figure 3. In

the following, coordinates (x, y) are always relative to the

“base point” (s, t). We assume that the coordinate system

of the pinhole view is chosen such that x is aligned with s
and y is aligned with t, respectively.

Light fields and epipolar plane images

A light field L can now simply be defined as a function

on ray space, either scalar or vector-valued for gray scale

or color, respectively. Of particular interest are the images

which emerge when ray space is restricted to a 2D plane. If

we fix for example the two coordinates (y∗, t∗), the restric-

tion Ly∗,t∗ is the map

Ly∗,t∗ : (x, s) �→ L(x, y∗, s, t∗), (1)

other restrictions are defined in a similar way. Note that

Ls∗,t∗ is the image of the pinhole view with center of pro-

jection (s∗, t∗). The images Ly∗,t∗ and Lx∗,s∗ are called

epipolar plane images. They can be interpreted as horizon-

tal or vertical cuts through a horizontal or vertical stack of

the views in the light field, see figure 2, and have an inter-

esting structure which seems to consist mainly of straight

lines. The slope of the lines is linked to disparity, and deter-

mines correct regularization, as we will review now.
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Figure 3. Light field parametrization. Each camera location (s, t)
in the view point plane Π yields a different pinhole view of the

scene. The two thick dashed black lines are orthogonal to both

planes, and their intersection with the plane Ω marks the origins

of the two different (x, y)-coordinate systems for the views (s1, t)
and (s2, t), respectively.

Consistent functions on ray space

The planar camera movement leads to a linear dependency

between the change of the view point and projection co-

ordinates in the epipolar image plane. The rate of change

depends on the depth of the scene point being projected,

and is called the disparity. This dependency leads to the

characteristic structure of epipolar plane images we have

observed, since it implies that the projection of a 3D scene

point in epipolar plane image space is a line. Previous works

showed that this enables a very robust estimation of dispar-

ity on a light field, since line patterns can be detected with-

out computing correspondences [9, 23].

In segmentation problems, when one wants to label rays

according to e.g. the visible object class, the unknown func-

tion on ray space ultimately reflects a property of scene

points. In consequence, all the rays which view the same

scene point have to be assigned the same function value.

Equivalent to this is to demand that the function must be

consistent with the structure on the epipolar plane images.

In particular, except at depth discontinuities, the value of

such a function is not allowed to change in the direction of

the epipolar lines, which are induced by the disparity field.

Regularization on ray space

The above considerations give rise to a regularizer Jλμ(U)
for vector-valued functions U : R → R

n on ray space. It

can be written as the sum of contributions for the regulariz-

ers on all epipolar plane images as well as all the views,

Jλμ(U) = μJxs(U) + μJyt(U) + λJst(U)

with Jxs(U) =

∫
Jρ(Ux∗,s∗) d(x∗, s∗),

Jyt(U) =

∫
Jρ(Uy∗,t∗) d(y∗, t∗),

and Jst(U) =

∫
JV (Us∗,t∗) d(s∗, t∗),

(2)

where the anisotropic regularizers Jρ act on 2D epipolar

plane images, and are defined such that they encourage

smoothing in the direction of the epipolar lines. This way,

they enforce consistency of the function U with the epipo-

lar plane image structure. For a detailed definition, we refer

to our related work [12]. The spatial regularizer JV encodes

the label transition costs, as we will explore in more detail

in the next section. Finally, the constants λ > 0 and μ > 0
are user-defined and adjust the amount of regularization on

the separate views and epipolar plane images, respectively.

3. Optimal label assignment on ray space
In this section, we introduce the new variational labeling

framework on ray space. Its design is based on the represen-

tation of labels with indicator functions [6, 16, 25], which

leads to a convex optimization problem. We can use the ef-

ficient optimization framework presented in [12] to obtain a

globally optimal solution to the convex problem, however,

as usual we need to project back to indicator functions and

only end up within a (usually small) posterior bound of the

optimum.

The variational multi-label problem

Let Γ be the (discrete) set of labels, then to each label γ ∈ Γ
we assign a binary function uγ : R → {0, 1} which takes

the value one if and only if a ray is assigned the label γ.

Since the assignment must be unique, the set of indicator

functions must satisfy the simplex constraint

∑
γ∈Γ

uγ = 1. (3)

Arbitrary spatially varying label cost functions cγ can be

defined, which penalize the assignment of γ to a ray R ∈ R
with the cost cγ(R) ≥ 0.

Let U be the vector of all indicator functions. To reg-

ularize U , we choose Jλμ defined in the previous section.

This implies that the labeling is encouraged to be consistent

with the epipolar plane structure of the light field to be la-

beled. The spatial regularizer JV needs to enforce the label

transition costs. For the remainder of this work, we choose

a simple weighted Potts penalizer [24]

JV (Us∗,t∗) :=
1

2

∑
γ∈Γ

∫
Ω

g |(Duγ)s∗t∗ | d(x, y), (4)

where g is a spatially varying transition cost. Since the total

variation of a binary function equals the length of the inter-

face between the zero and one level set due to the co-area

formula [11], the factor 1/2 leads to the desired penaliza-

tion.

While we use the weighted Potts model in this work,

the overall framework is by no means limited to it. Rather,
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we can use any of the more sophisticated regularizers pro-

posed in the literature [6, 16], for example truncated linear

penalization, Euclidean label distances, Huber TV or the

Mumford-Shah regularizer. An overview as well as further

specializations tailored to vector-valued label spaces can be

found in [22].

The space of binary functions over which one needs to

optimize is not convex, since convex combinations of bi-

nary functions are usually not binary. We resort to a convex

relaxation, which with the above conventions can now be

written as

argmin
U∈C

⎧⎨
⎩Jλμ(U) +

∑
γ∈Γ

∫
R
cγuγ d(x, y, s, t)

⎫⎬
⎭ , (5)

where C is the convex set of functions U = (uγ : R →
[0, 1])γ∈Γ which satisfy the simplex constraint (3). After

optimization, the solution of (5) needs to be projected back

onto the space of binary functions. This means that we usu-

ally do not achieve the global optimum of (5), but can only

compute a posterior bound for how far we are from the op-

timal solution. An exception is the two-label case, where

we indeed achieve global optimality via thresholding, since

the anisotropic total variation also satisfies a co-area for-

mula [25].

Optimization

Note that according to (2), the full regularizer Jλμ which is

defined on 4D ray space decomposes into a sum of 2D regu-

larizers on the epipolar plane images and individual views,

respectively. While solving a single saddle point problem

for the full regularizer would require too much memory, it

is feasible to iteratively compute independent descent steps

for the data term and regularizer components.

The overall algorithm is detailed in [12]. Aside from

the data term, the main difference here is the simplex con-

straint set for the primal variable U . We enforce it with

Lagrange multipliers in the proximity operators of the regu-

larizer components, which can be easily integrated into the

primal-dual algorithm [7]. An overview of the algorithm

adapted to problem (5) can be found in figure 4.

On our system equipped with an nVidia GTX 580 GPU,

optimization takes about 1.5 seconds per label in Γ and per

million rays inR, i.e. about 5 minutes for our rendered data

sets if the result for all views is desired. If only the result

for one single view (i.e. the center one) is required, com-

putation can be restricted to view points located in a cross

with that specific view at the center. The result will usu-

ally be very close to the optimization over the complete ray

space. While this compromise forfeits some information in

the data, it leads to significant speeds ups, for our rendered

data sets to about 30 seconds.

To solve the multi-label problem (5) on ray space, we ini-

tialize the unknown vector-valued function U such that the

indicator function for the optimal point-wise label is set to

one, and zero otherwise. Then we iterate

• data term descent: Uλ ← Uλ − τcλ for all λ ∈ Λ,

• EPI regularizer descent:

Ux∗,s∗ ← proxτμJρ
(Ux∗,s∗) for all (x∗, s∗),

Uy∗,t∗ ← proxτμJρ
(Uy∗,t∗) for all (y∗, t∗),

• spatial regularizer descent:

Us∗,t∗ ← proxτλJV
(Us∗,t∗) for all (s∗, t∗).

The proximation operators proxJ compute subgradient de-

scent steps for the respective 2D regularizer, and enforce

the simplex constraint (3) for U . The possible step size τ
depends on the data term scale, in our experiments τ = 0.1
led to reliable convergence within about 20 iterations.

Figure 4. Algorithm for the general multi-label problem (5).

4. Local class probabilities
We calculate the unary potentials cγ in (5) from the neg-

ative log-likelihoods of the local class probabilities,

cγ(R) = − log p
(
γ|v(R)), (6)

so that by solving (5), we obtain the maximum a-posteriori

(MAP) solution for the label assignment. The local class

probabilities p
(
γ|v(R)) ∈ [0, 1] for the label γ, conditioned

on a local feature vector v(R) ∈ R
|F | for each ray R ∈ R,

are obtained by training a classifier on a user-provided par-

tial labeling of the center view. As features, we use a com-

bination of color, Laplace operator of the view, intensity

standard deviation in a neighborhood, Eigenvalues of the

Hessian and the disparity computed on several scales.

While our framework allows the use of arbitrary classi-

fiers, we specialize in this paper to a Random Forest [5].

These are becoming increasingly popular in image process-

ing due to their wide applicability [8] and the robustness

with regard to their hyper-parameters. Random Forests

make use of bagging to reduce variance and avoid overfit-

ting. A decision forest is built from a number n of trees,

which are each trained from a random subset of the avail-

able training samples. In addition to bagging, extra ran-

domness is injected into the trees by testing only a subset

of m < |F | different features for their optimal split in each

split node. The above internal random forest parameters

were fixed to m =
√|F | and n = 71 in our experiments.

Each individual tree is now built by partitioning the set

of training samples recursively into smaller subsets, until

the subsets become either class-pure or smaller then a given

minimal split node size. The partitioning of the samples

is achieved by performing a line search over all possible
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Classifier

Features used IMG IMG-D IMG-GT

RGB value � � �
Intensity standard deviation � � �

(in local neighbourhood)

Eigenvalues of Hessian � � �
Laplace operator �
Estimated disparity �
Ground truth disparity �

Figure 5. Combination of features used for the experiments in this
paper. The individual scales of the features were determined via a
grid search to find optimal parameters for each dataset individu-
ally.

splits along a number of different feature axes for the op-

timal Gini-impurity of the resulting partitions, and repeat-

ing this process for the child partitions recursively. In each

node, the chosen feature and the split value of that feature

are stored.

After building a single tree, the class distribution of the

samples in each leaf node is stored and used at prediction

time to obtain the conditional class probability of samples

that arrive at that particular leaf node. The leaf node with

which a prediction-sample is associated is determined by

comparing the nodes’ split value for the split feature with

the feature vector entry of a sample. Depending on whether

the sample value is smaller (larger) than the node value, the

sample is passed to the left (right) child of the split node,

until a leaf node is reached.

Finally, the ensemble of decision tree classifiers is used

to calculate the local class probability of unlabeled pixels

by averaging their votes. In our experiments, we achieved

total run-times for training and prediction between one and

5 minutes, depending on the size of the light field and the

number of labels. However, we did not yet parallelize the

local predictions, which is easily possible and would make

computation a lot more efficient.

5. Experiments
In this section, we present the results of our multil-

abel segmentation framework on a variety of different data

sets. To explore the full potential of our approach, we use

computer graphics generated light fields rendered with the

open source software Blender [3], which provides complete

ground truth for depth values and labels. In addition, we

show that the approach yields very good results on real

world data obtained with a plenoptic camera and a gantry,

respectively. A subset of the views in the real-world data

sets were manually labeled in order to provide ground truth

to quantify the results.

There are two main benefits of labeling in light fields.

First, we demonstrate the usefulness of disparity as an addi-

tional feature for training a classifier, and second, we show

Figure 6. Depth estimated using the method in [23] and spatial
regularizer weight computed according to (7) for the light field
view shown in figure 1.

the improvements from the consistent variational multi-

label optimization on ray space.

Disparity as a feature

The first step of our work flow does not differ from single

image segmentation using a random forest. The user selects

an arbitrary view from the light field, adds scribbles for the

different labels, and chooses suitable features as well as the

scales on which the features should be calculated. The clas-

sifier is then trained on this single view and, in a second

step, used to compute local class probabilities for all views

of the entire light field.

In advance, we have tested variations of common fea-

tures for interactive image segmentation on our data sets to

find a suitable combination of features which yields good

results on single images. The optimal training parame-

ters were determined using a grid search over the minimum

split node size as well as the feature combinations and their

scales for each data set individually. The number of differ-

ent scales we used for each feature was fixed to four. This

way, we can guarantee optimal results of the random forest

classifier for all data sets and feature combinations, which

ensures a meaningful assessment of the effects of our new

ray space features.

Throughout the remainder of the paper, we use the three

different sets of features detailed in figure 5. The classifier

IMG uses only classical single-view features, while IMG-D
and IMG-GT employ in addition estimated and ground truth

disparity, respectively, the latter of course only if available.

Estimated disparity maps were obtained using our method

in [23] and are overall of very good quality, see figure 6.

The achieved accuracy and the boundary recall for purely

point-wise classification using the three classifiers above are

listed in the table in figure 7. Sample segmentations for our

data sets can be viewed in figure 9. It is clearly obvious

that the features extracted from the light field improve the

quality of a local classifier significantly for difficult problem

instances.
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Classifier
IMG IMG-D IMG-GT

Data set acc br acc br acc br

synthetic data sets

Buddha 93.5 6.4 96.7 39.6 98.6 43.1

Garden 95.1 54.8 96.7 51.1 96.9 53.3

Papillon 1 98.6 59.3 98.3 57.4 99.0 78.9
Papillon 2 90.8 16.7 96.5 33.1 99.1 73.0

Horses 1 93.2 13.4 94.3 34.9 98.3 48.7
Horses 2 94.6 15.9 95.3 36.8 98.5 50.9

StillLife 1 98.6 36.3 98.7 41.2 98.9 45.3
StillLife 2 97.8 25.4 98.3 36.1 98.5 39.1

real-world data sets

UCSD [26] 95.8 8.9 97.0 11.2 - -

Plenoptic 1 [20] 93.7 3.5 94.5 4.4 - -
Plenoptic 2 [20] 91.0 6.6 96.1 8.5 - -

Figure 7. Comparison of local labeling accuracy (acc) and bound-
ary recall (br) for all datasets. The table shows percentages of cor-

rectly labeled pixels and boundary pixels, respectively, for point-

wise optimal results of the three classifiers trained on the features

detailed in figure 5. Disparity for IMG-D is estimated using [23].

Ground truth disparity is used for IMG-GT to determine the max-

imum possible quality of the proposed method. It is obvious that

in scenes like Buddha, Papillon 2, Horses 2 or StillLife 2, where

the user tries to separate objects with similiar or even identical ap-

pearance, the rayspace based feature leads to a large benefit in the

segmentation results.

Global Optimization

In the second set of experiments, we employ our ray space

optimization framework on the results from the local classi-

fier. The unary potentials in (5) are initialized with the log-

probabilities (6) from the local class probabilities, while the

spatial regularization weight g is set to

g = max
{
0, 1− (|∇I|2 −H(I)

) |∇ρ|2
}
, (7)

where I denotes the respective single view image, H the

Harris corner detector [14], and ρ the disparity field. This

way, we combine the response from three different types

of edge detectors. Experiments showed that the sum of the

two different edge signals for the gray value image I leads

to more robust boundary weights.

For all of the data sets, training classifiers with light field

features and optimizing over ray space leads to significantly

improved results compared to single view multi-labeling,

see figures 8 and 9. The effectiveness of light field seg-

mentation is revealed in particular on data sets which have

highly ambiguous texture and color between classes.

In the light field Buddha, for example, it becomes pos-

sible to segment a column from a background wall having

the same texture. In the scene Papillon 2, we demonstrate

that it is possible to separate foreground from background

leafs. Similarly, in StillLife 2 we are able to correctly seg-

ment foreground from background raspberries. The data set

Horses 2 also represents a typical case for a problems only

solvable using the proposed approach. Here, we perform a

labeling of identical objects in the scene with different label

classes.

6. Conclusion
If objects belonging to different classes do not vary much

in appearance or if, even worse, identical objects appear in

a scene, the corresponding segmentation problem usually

cannot be solved with algorithms based on classical image

features. In these cases, the fact that common images are

only two-dimensional projections of the world leads to a

loss of information which makes it impossible to distinguish

between the classes.

In contrast, the light field of a scene densely samples rays

from different view points, and thus not only implicitly en-

codes scene geometry, but also makes it possible to solve

inverse problems consistently across all views by means of

a relatively simple local prior. A light field thus allows to

use the true geometric distance between pixels as an addi-

tional feature for a classifier, which increases the predictive

power of a classifier enormously in many problematic cases.

The consistent variational optimization for the label assign-

ment is the first of its kind which is designed to work on ray

space, and leads to significantly better results than a com-

parable single view multi-label framework.

As an additional contribution, we offer the data sets

shown in this paper as the first light field benchmark with

complete ground truth depth and label information avail-

able, to encourage competitive development of future algo-

rithms.
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Horses 1 94.7 22.3 95.7 23.7 99.2 52.6 94.8 23.0 97.7 59.4 99.2 55.6 56.2 85.6
Horses 2 96.1 28.4 96.3 21.4 99.0 31.3 96.2 29.5 98.3 64.1 99.1 36.7 56.7 76.2

StillLife 1 99.1 38.2 99.3 50 99.4 45.6 99.2 43.8 99.4 54.5 99.6 64.0 31.5 53.4
StillLife 2 98.8 47.1 98.8 31.0 99.1 41.1 99.0 55.6 98.9 38.5 99.2 45.9 10.1 33.6

real-world data sets

UCSD 97.6 44.3 99.1 70 – – 97.8 48.6 99.3 76.3 – – 69.9 –

Plenoptic 1 96.4 43.5 97.0 43.6 – – 96.8 49.5 96.9 43.6 – – 12.9 –
Plenoptic 2 94.1 34.4 96.1 33.2 – – 94.5 39.4 96.1 33.9 – – 34.6 –

Average 96.8 32.2 97.9 36.3 99.2 38.7 96.9 37.1 98.7 55.9 99.4 52.0 41.2 67.1

Figure 8. Relative improvements by global optimization. All numbers are in percent. The quantities in the columns acc indicate the

percentage of correctly labeled pixels. The columns imp denote the relative improvement of the optimized compared to the respective raw

result from the local classifier in figure 7. To be more specific, if accp is the previous and accn the new accuracy, then the column imp
contains the number (accn − accp)/(1− accp), i.e. the percentage of previously erroneous pixels which were corrected by optimization.

Optimal smoothing parameters λ, μ were determined using a grid search over the parameter space. We also compare our ray space

optimization framework (RS) to single view optimization (SV), which can be achieved by setting the amount of EPI regularization μ to

zero. Note that for every single classifier and data set, RS optimization achieves a better result than SV optimization. The last two columns

indicate the relative accuracy of ray space optimization and the indicated ray space classifier versus single view optimization and single

view features, computed the same way as the imp columns. In particular, they demonstrate the overall improvement which is realized with

the proposed method.
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Figure 9. Segmentation results for a number of ray-traced and real-world light fields. The first two columns on the left show the center

view with user scribbles and ground truth labels. The two middle columns compare classifier results for the local single view and light field

features denoted on top. Since the focus of this paper is segmentation rather than depth reconstruction, here we show results for ground

truth depth where available to compare to the optimal possible results from light field data. Finally, the two rightmost columns compare the

final results after single view and ray space optimization, respectively. In particular for difficult cases, the proposed method is significantly

superior.
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