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Abstract

We propose a structured Hough voting method for detect-
ing objects with heavy occlusion in indoor environments.
First, we extend the Hough hypothesis space to include both
object location and its visibility pattern, and design a new
score function that accumulates votes for object detection
and occlusion prediction. In addition, we explore the cor-
relation between objects and their environment, building a
depth-encoded object-context model based on RGB-D data.
Particularly, we design a layered context representation and
allow image patches from both objects and backgrounds
voting for the object hypotheses. We demonstrate that using
a data-driven 2.1D representation we can learn visual code-
books with better quality, and more interpretable detection
results in terms of spatial relationship between objects and
viewer. We test our algorithm on two challenging RGB-D
datasets with significant occlusion and intraclass variation,
and demonstrate the superior performance of our method.

1. Introduction

Object detection and localization remains a challenging

task for cluttered/crowded scenes, such as indoor environ-

ments, where objects are frequently occluded by neighbor-

ing objects or the viewing window [7, 26]. The partial ob-

jects being observed usually provide limited information on

the object position and pose, so many previous object de-

tection approaches are prone to failure as they solely rely

on image cues from objects themselves.

It is widely acknowledged that contextual information

plays an important role in detecting and localizing objects

in such adverse conditions. Many context-aware object de-

tection methods have been proposed recently [28, 25, 12, 3].

However, most existing contextual models focus on 2D spa-

tial relationships between objects on the image plane and

fewer works have extended the modeling to 3D scenar-

ios [2, 22]. One main difficulty in modeling 3D context was

the lack of accessible 3D data. With the recent progress

(a) (b) (c)

(d) (e) (f)
Figure 1. Illustration of the proposed approach. (a) RGB frame

with object bounding box (red) and visible part bounding box

(green). (b) Object centroid voting from multiple layers. (c) Com-

bined object centroid voting results. (d) Detector output (red) with

visibility pattern prediction (green). (e) Object visibility pattern

prediction results. (f) Final segmentation results.

in consumer-level depth sensors (e.g., Kinect), however, it

becomes feasible to collect a large amount of high qual-

ity depth and registered color images for indoor environ-

ments [8, 15].

Modeling context from a 3D perspective has several ad-

vantages over its 2D counterpart conceptually. First, spatial

relationships have smaller variations and are easier to inter-

pret semantically; in addition, more spatial relationships in

physical world can be captured, instead of being limited to

relative positions on image plane. In particular, occlusion

can be viewed as a special type of contextual relationship in

3D, which would become an intrinsic component of object

and scene models. Finally, joint modeling of an object class

and its 3D context may provide effective constraints on the

object’s scope on image plane and lead to a coarse-level ob-

ject segmentation. See Fig. 1 for an example.

Our work aims to utilize RGB-D datasets to learn a

context-aware object detection model which encodes depth

cues and a coarse level of 3D relationships. We focus on

training a depth-dependent appearance model for each ob-

ject class and its context. The learned depth-encoded object

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.234

1788

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.234

1788

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.234

1790



and context model is then applied to 2D images during test

so it can be used to facilitate generic object detection [24].

Specifically, we propose a structured Hough voting

method that incorporates depth-dependent contexts into a

code-book based object detection model. Our model gen-

eralizes the traditional Hough voting detection methods in

three ways. First, we design a multi-layer representation

of image context for indoor scenes that captures the layout

structure of scenes. An image region contributes to each

object hypothesis in a different manner based on its depth

layer. Secondly, we define a new object hypothesis space in

which both the object’s center and its visibility mask will be

predicted. Each image patch will generate a weighted vote

to a joint score of the object center and its support mask in

the image. Finally, we view occlusion as special contextual

information, which could provide cues for object localiza-

tion and help with reasoning about visibility of object parts.

The overall output of our approach is a simultaneous object

detection and coarse segmentation.

Our detection and segmentation are achieved by maxi-

mizing the joint score of object center and visibility mask.

We derive an efficient alternating ascent method to search

modes of the Hough voting score maps. To learn the model

from partially labeled RGB-D data, we adopt an approxi-

mate learning procedure based on the max-margin Hough

transform [13]. We extensively evaluate our approach on

two public RGB-D datasets and demonstrate its efficiency.

The paper is organized as follows. We briefly discuss re-

lated work in Section 2. The details of our model structure

are introduced in Section 3. Section 4 describes the infer-

ence procedure in our structured Hough voting, followed by

max-margin learning for model estimation. Experimental

evaluation is detailed in Section 5 and Section 6 concludes

the paper.

2. Related work
Recently, Hough voting based methods [1] have been

widely used in object detection and recognition, and

progress has been made in areas including discrimina-

tive codebook learning [6, 30], efficient inference meth-

ods [10], joint recognition and segmentation [11, 18], and

scalable multi-class detection [17]. However, the major-

ity of Hough voting methods focus on improving the target

object model and few have studied context and occlusion

reasoning. Joint detection and segmentation with Hough

voting based methods has been investigated in [11], which

only represents the object parts with additional masks and

generates segmentation in two separate stages. Previous

work also investigated maxima search in high-dimensional

Hough spaces [20, 14, 16]. Unlike those methods, our infer-

ence iteratively optimizes a well-defined objective function

of object center and visibility mask.

Context-aware object detection in 2D scenarios has been

well studied [25]. See [28] for a recent review. Many

works have incorporated object-level context and rely on

semantic contextual information for object segmentation

(e.g., [21, 9]). In particular, [29] has shown that reasoning a

2.1D layered object representation in a scene can positively

impact object localization. Our work, however, explores

depth encoded image context for improving object detec-

tion.

Depth information has been incorporated into object fea-

ture to improve detection and segmentation performance

(e.g., [22, 15]). However, most of existing work relies on

the depth cue during test and so could not be applied to 2D

images. In terms of depth transfer, the closest related work

are [24] and [27] which also use a depth-encoded patch se-

lection process for Hough transform-based detection. How-

ever, [24] uses the depth only to prune out patches of incor-

rect scales, and to create a generative depth model. In [27],

we solely focused on object detection with a single layer

context model. Recently, [23] has explicitly considered ge-

ometric context and 3D scene layout. Our work seeks a uni-

fied model that can encode object and context information

simultaneously at the object level.

Brox et al. [4] use a part-based poselet detector and

align the corresponding part masks to image boundary cues.

However, they did not incorporate explicit occlusion and

context modeling with depth. Another work which also

reasoned about occlusion within bounding boxes for object

detectors is [7]. The bounding box representation was aug-

mented with a set of variables to generate a binary occlu-

sion pattern. Again, their method mainly targets the object

model itself and relies on object structure.

3. Our approach

3.1. Structured Hough voting

We first briefly review the original Hough voting based

object detection method and introduce notation. Hough vot-

ing methods (e.g., [11, 6]) generally use object poses as

their hypothesis, accumulate scores from each image patch

into a confidence map for the hypothesis space, and search

for the highest voting scores from the map [1].

Mathematically, suppose we have an image I and an ob-

ject class of interest o. Let the object hypothesis be x ∈ X ,

where X is the object pose space. To simplify the notation,

we assume each hypothesis is x = (ax, ay, as), where ax
and ay are the image coordinates of the object center and as
is a scale. Hough voting methods define a scoring function

S(x) for each valid location x on the image plane, which

is a summation of weighted votes from every local image

patch. To compute the voting weights, an appearance-based

codebook is usually learned from the image patches in ob-

ject class o, denoted by C = {Ci}Ki=1. Each codebook entry

Ci consists of a typical patch descriptor fci and geometric
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Figure 2. Left panel: Top-ranked clusters (presented with the patches closest to the cluster centers) for 3 contextual layers on the Berkeley

3D object dataset. Right panel: Illustration of multiple layered object centroid and mask voting. L1 corresponds to the object layer, and

L2, L3, L4 correspond to far-away context, close-up context and occluder layers, respectively. For mask voting, brighter regions indicate a

higher response, while darker regions indicate a lower response.

features Di of training patches associated with the i-th en-

try. A typical geometric feature is the relative positions d of

image patches w.r.t. the corresponding object centers.

Given the codebook C, we can write the Hough score

function as follows. Denote each image patch Iy by its lo-

cation y and feature descriptor fy,

S(x) ∝
K∑
i=1

∑
y

ωip(Ci|y)
∑
d∈Di

e

(
− ‖(y−x)−d‖2

2σ2
d

)
(1)

where ωi = p(o|Ci) is the entry-to-class probability,

p(Ci|y) is the patch-to-entry matching probability, and σd

is the standard deviation of a Gaussian filter for the object

center. Notice that the object hypothesis x essentially speci-

fies a bounding box. However, the bounding box hypothesis

space is limited in its representation power as it is incapable

of describing partial objects or its visibility pattern.

We propose to extend the object hypothesis space from

a single centroid x to a joint space (x,v) and define a new

score function S(x,v). Here x specifies the object center

(or equivalently its bounding box), and v is a visibility mask

indicating which part of object is visible, as shown in Fig. 2.

The mask v has the same size as the image I , and v(y) =
1 if the image patch at y belongs to the object o, and 0
otherwise. For notation simplicity, we reshape v as 1-D

vector and denote its element at image location y as vy.

Our key step is, instead of using Gaussian kernels in

Eqn. 1, we introduce a class of voting masks that are ca-

pable of representing the relative positions as well as the

object visibility pattern. As illustrated in the rightmost fig-

ure in Fig. 2, we include a local mask and a global mask

for each codebook entry. The local mask predicts if a local

patch itself is part of the object, and the global mask casts a

vote for the spatial extent of the whole object on the image

plane based on the relative geometric feature d.

Formally, each codebook entry Ci includes a new set of

geometric features D̃i = {d̃ = (d,mL
d ,m

G
d )}, where mL

d

is the local mask feature and mG
d is the global mask feature.

The local mask features describe local visibility of object

regions, which is similar to the ISM [11]. The global mask

features limit the scope of each object in the image plane.

A natural choice is an object bounding box-shaped mask.

See Fig. 2. Note that by choosing a different family of mask

features, our model allows for finer description of the object

shape and/or visibility pattern.

For an image patch at Iy and object center hypothesis

x, we can compute two average voting masks from the i-th
codebook entry as follows:

mG
i (x,y) ∝

∑

d̃∈D̃i

mG
d (x− y + d) ∗G(0, σ2

d) (2)

mL
i (x,y) ∝

∑

d̃∈D̃i

mL
d (x− y) ∗G(0, σ2

d) (3)

where mG and mL are the average global and local vot-

ing mask, respectively; m(x) represents the mask with its

center shifted to x, G(·) is the Gaussian kernel, and ∗ is the

convolution operator. See Fig. 2 for an illustration.

We define the new score function as a matching score

between the visibility mask hypothesis v and a weighted

sum of the voting mask values,

S(x,v) =
K∑
i=1

ωiv
T
[∑

y

γ(v(y))
(
mG

i (x,y)

+ μmL
i (x,y)

)
p(Ci|y)− wb

]
(4)

where wb is a global bias to the mask voting score, and μ is

the relative weight of the local mask. γ(u) is a weighting
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function with γ(1) = 1 and γ(0) = δ, δ < 1. Intuitively,

we give a smaller weight to the votes not from the object

itself. ωi gives a relative weight for each codebook entry. It

can be shown that when v = 1, μ = 0 and the global voting

mask has the shape of object bounding box, the new score

function is equivalent to the Hough voting score in Eqn. 1.

3.2. Depth-encoded context

The structured Hough voting model can easily incorpo-

rate image contextual information by extending the code-

book and including votes from both object and context

patches. In this work, we design a multi-layer scene rep-

resentation that captures different types of image cues for

detection and integrates them into the model.

Concretely, we group image patches into four layers ac-

cording to their relationship with the target object: 1) An

object layer includes all the image patches from the object

itself; 2) An occluder layer indicates patches occluding the

object; 3) A nearby context layer consists of context patches

within 1 meter of the average object depth; 4) A far-away
context layer has the rest of the context image patches.

We associate each layer with its own specific parameters

as they contribute to object detection and occlusion reason-

ing in different ways. We first learn a separate codebook-

based appearance model for each layer using object labels

and depth cues. Denote the i-th codebook entry of layer l
as Cl

i , we define a context-aware structured Hough voting

model by including the votes from all the layers:

Sc(x,v) =
4∑

l=1

Kl∑
i=1

ωl
iv

T
[∑

y

γ(v(y))
(
mG

l,i(x,y)

+ μlmL
l,i(x,y)

)
p(Cl

i |y)− wl
b

]
(5)

where Kl is the size of the codebook in layer l. Note

that each layer has its own Gaussian kernel width σl
d in the

voting masks. The details of each layer are as follows.

A. Depth-encoded codebooks. We use HOG features [5]

for image patches on the target object and Texton like [21]

features for patches from context layers. The initial code-

books are generated by K-means clustering of randomly

sampled patches. To capture discriminative patches, we also

use an interest point detector to sub-sample the patch pool.

The Texton feature, which is a coarser level descriptor, is

better for capturing context in a scene. Some examples of

image patches in our codebooks are shown in Fig. 2. We

can see that different types of scene structure are captured.

We further refine the initial codebooks by utilizing depth

information available during training. Specifically, we rank

each cluster in each layer by its 3D offset variance, and

prune out those ranked in the last 25%.

B. Layer-dependent voting masks. We design the global

mask feature mG
d and local mask feature mL

d according to

(a) (b) (c) (d) (e)

Figure 3. Illustration of the impact of patch pair terms on hy-

pothesis scoring. Upper panel: A specific example, with (a) RGB

frame with an example of a patch pair (in blue rectangles). (b)
Object centroid voting results without patch pair terms. (c) Ob-

ject centroid voting results with patch pair terms added. (d) Shape

voting results without patch pair terms. (e) Shape voting results

with patch pair terms added. Lower panel: The highest ranked

patch pairs on the Berkeley 3D object dataset. The first row shows

on-object patches, and the second row shows off-object patches.

Each column corresponds to a patch pair.

the property of each layer. In this work, all the global masks

have the same shape as the object bounding box. Thus all

active patches contribute to limiting the scope of the ob-

ject. For the local masks, the object layer has a positive

2D stump with 1/10th of the object size, while other layers

have a negative 2D stump with the same size. Intuitively,

the active image patches from context layers help localize

the object center but also indicate the local patches that do

not belong to the object. In addition, we set the Gaussian

blur parameter σl
d such that the far away context layer has

larger variances in terms of center prediction (3 times).

3.2.1 Second-order features

In addition to layered codebooks, which are built on sin-

gle patches, we utilize patch feature pairs to improve the

discriminative power of the model [31]. In particular, we

focus on co-occurring objects and contextual feature pairs.

These pair feature can refine the context relationship and

better predict the object boundary.

We incorporate the object-context pair features into our

structured Hough voting model by adding a second-order

term to the score function: S(x,v) = Sc(x,v)+αSp(x,v),
where α is the relative weight, and Sp is the object-context

feature pair term. Assume the first layer l = 1 is the object

layer, Sp can be written as

Sp(x,v) =

K1∑
i=1

4∑
l=2

Kl∑
j=1

ωl
ijv

T
[∑
y,y′

γ(v(y))

(
mG

1,i �mG
l,j + μlmL

1,i ⊕mL
l,j

)
· ϕ− w1,l

b

]
(6)
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Algorithm 1: Alternating Inference for S(x,v).

Input: Input Image I; Layered Codebooks

C = {Ci}, i = 1 · · ·NL; Offsets Di; Mask

templates md(y),m
′
d(y), ∀d ∈ Di; Entry

weights {ωl
i, μ

l
j , ω

l
ij , μ

l
ij}; Model parameters

τ, α, δ, κ; Local maxima seeds Nseed;

termination threshold ε > 0; Maximum

iterations Tmax.

Initialization: Let v = 1, search for Nseed local

maxima for S(x,1): xi, i = 1 · · ·Nseed.

for each local maxima xi do
for iteration = 1 : Tmax do

1. Obtain a new v∗
i by solving Eqn. 7;

2. Check for optimal solution:

if S(xi,vi)− S(xi,v
∗
i ) < ε,

then break and the problem is solved;

3. v ← v∗
i , vote again for x∗i with vi, xi ← x∗i .

end
Mask Recalculation: Obtain a new v∗

i by solving

Eqn. 7, v ← v∗.
end
Output: argmax(xi,vi)S(xi,vi)

where � and ⊕ are the element-wise product and addi-

tion operators, respectively. We omit the variable (x,y)
in m for clarity of the notation. ωl

ij is the weight for the

object-context codebook entry pairs. The patch pair to en-

try matching probability ϕ = p(Cl
j |C1

i )p(C
1
i |y)p(Cl

j |y′)
and p(Cl

j |C1
i ) is estimated by the feature co-occurence fre-

quency matrix during training. We also use depth infor-

mation to prune out geometrically unstable or inconsistent

codebook pairs as in the previous subsection.

4. Model learning and inference
4.1. Joint inference for object localization

Once the structured Hough voting model is trained with

depth-augmented image data, we can apply it to 2D images

for object detection and occlusion prediction. Our method

infers the object center hypothesis and its visibility mask by

maximizing the Hough score function S(x,v). However,

due to the large hypothesis space of (x,v), it is difficult to

use the original Hough voting approach, or conduct brute-

force search. In this section, we propose a coordinate-ascent

method which finds the local maxima of the score function.

Specifically, we alternatively maximize the score func-

tion with respect to one variable, while keeping the other

fixed. When v is fixed, the optimization is the same as

the original Hough voting. We only need to carry out a

RGB frame

iteration #1 iteration #5 iteration #10

Figure 4. An illustration of how iterative inference updates the ob-

ject centroid and supporting mask hypotheses. The first row on the

right shows object centroid voting, with the corresponding sup-

porting mask estimation in the second row.

weighted Hough voting step and the local maxima x∗i can

be retrieved from the Hough map. When the object center

is fixed, our Hough score is a quadratic function of the bi-

nary vector v. To convert S(x,v) into its quadratic form,

we notice that γ(v(y)) = (1 − δ)v(y) + δ. Plugging this

into Eqn 5, 6, we can write the score function as

S(x,v) = vTA(x)v + vTB(x) (7)

where A and B are matrix functions. We refer readers to

the supplementary material for its detailed derivation. We

choose to solve a relaxed version of this problem by allow-

ing v(y) ∈ [0,+1], which is a constrained quadratic pro-

gramming problem. We find an approximate binary solu-

tion by searching for an optimal threshold to binarize the

solution vector. Note that the constraint for the relaxed

quadratic programming problem will enforce invisibility

for any image location y outside the bounding box x, i.e.,

v(y) = 0, ∀y /∈ x. This greatly reduces the search space.

The inference algorithm is overviewed in Algorithm 1.

It initializes the object center hypothesis with the original

Hough voting method, and search object hypotheses at mul-

tiple scales. Figure 4 shows the iterative inference process.

4.2. Learning with depth-augmented data

Our model in Eqns. 5 and 6 is linear in terms of its

weight vector w = {ωl
i, μ

l
j , ω

l
ij , l = 1, · · · , 4, i, j =

1, · · · ,Kl}. We utilize the max-margin Hough transform

[13] framework to train the weight parameters w.

We assume only a coarse labeling of the visibility is

available for positive training data. To speed up training,

we generate a negative example set that consists of incor-

rect labeling from applying a simple version of our model

with uniform weights, i.e., w = 1. For all the other model

parameters, we use cross-validation to find their values us-

ing a held-out validation set. We refer readers to the supple-

mentary material for details.

5. Experimental evaluation
5.1. Dataset and setup

We evaluate the proposed structured Hough voting

method on two challenging RGB-D object datasets: the
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Berkeley 3D Object (B3DO) Dataset (Version 1) [8] and

a subset of object classes on the NYU Depth Dataset (Ver-

sion 2) [15]. B3DO contains 849 images taken in 75 differ-

ent scenes, and 8 object categories. We follow the experi-

mental settings in [8]. The NYU Depth dataset has a total

of 1449 labelled images and we randomly split the images

into 3 subsets for training, validation and testing, taking ap-

proximately 40%, 20% and 40% of all labelled images. As

the dataset was originally designed for pixelwise scene seg-

mentation, it contains many background classes (e.g., wall,

ceiling) which are not suitable for our object representation.

Therefore, we run experiments with only 5 categories: ta-

ble, chair, door, bed and sofa.

As labeling of visibility masks is expensive to obtain, we

assume only coarse-level labels for our masks. Two bound-

ing boxes are used: one for whole object and the other for

visible parts. Some examples of the ground truth labelling is

shown in Fig. 7 (and more in supplementary material). For

evaluation of segmentation accuracy we also manually la-

bel the visibility ground-truth using polygons on the B3DO

dataset. We modified some problematic labeling on both

datasets but they only take up a small fraction 1.

5.2. Model details

For codebook generation, we randomly sample 200
patches per image from the visible part bounding box

and generate 400 clusters for non-object patches using K-

means, then rank them according to the patches’ offset vari-

ance. We then prune these clusters by discarding clusters

with 20 or less members, and discard again remaining clus-

ters with ranking in the last 25%. For other layers (i.e., con-

text and occluder), we sample 400 patches per image and

generate 800 clusters as the appearance variability is larger

with context and occluders. For these layers we follow a

similar pruning process after a second round of clustering is

performed as discussed in Section 3.

During test, our detector first searches for up to 50 lo-

cal peaks in the Hough image with v = 1, and then runs

a full version of inference and computes scoring functions

for each of these peaks. Our alternate inference algorithm

is likely to converge in a few iterations in most cases so we

limit the maximum number of iterations to 20. The infer-

ence is efficient and complete detection takes around 5 sec-

onds per image with a quad-core desktop computer, using

our parallel MATLAB implementation.

After object location and the corresponding visibility

mask is inferred, we run GrabCut [19] in the bounding box

specified by x to generate a final segmentation mask to uti-

lize bottom-up image cues and examine segmentation per-

formance. Based on the shape voting results, we set regions

with highest responses as foreground seeds and regions with

1The modified labeling can be downloaded from http://users.
cecs.anu.edu.au/˜taowang.
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Figure 5. Detection precision-recall curves on the Berkeley 3D

Object dataset (left) and the NYU Depth dataset (right). The solid

curves correspond to our full model (Full) and two baseline meth-

ods: Deformable Parts Model (DPM) [5] and Max-margin Hough

transform (M2HT) [13]. The dashed curves correspond to diag-

nostic results with various components in our full model turned

off, i.e., single layer context (Single), 2D geometric context (2D),

patch pair term off (P Off), and segmentation off (S Off). See

details in text.
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Figure 6. Precision-recall curves on the Berkeley 3D Object

dataset (left) and the NYU Depth dataset (right) for segmentation

at 50% recall rate in Fig. 5. Simultaneously voting for local fea-

ture position and whole object hypothesis for v yields best seg-

mentation results.

lowest responses as background seeds, then run GrabCut for

10 iterations to get the final segmentation mask.

5.3. Result comparison and analysis

In this section, we present quantitative evaluation re-

sults on the B3DO and NYU Depth datasets as well as

some examples for diagnostics. Fig. 5 shows overall pre-

cision recall curves using different variants of our method

versus state-of-the-art baselines. Per-class performance

statistics are shown in Table 1. Specifically, we compare

with Deformable Parts Model (DPM) [5], Class-specific

Hough Forest (CHF) [6], and max-margin Hough transform

(M2HT) [13]. Note that all these methods use 2D image

cues only, without encoding contextual cues. [8] also re-

ported results on B3DO with DPM, which is similar to ours.

In addition, we include a comparison with Hough voting

using additional 2D geometric context, which uses 2D off-

set only in generating a single-layered contextual codebook.

For modelling the object itself with a depth-encoded code-

book, we also tried M2HT with a codebook learned with 3D

offset, which did not work well due to noisy labels of object
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Figure 7. More illustration of the proposed approach. See Fig. 1

for caption details.

centers.

We can see that 2D geometric context contributes to de-

tection performance slightly. With the depth-encoded con-

textual cues, the performance of our structured Hough vot-

ing model is improved significantly. All variants of our

model which utilize depth supervision and contextual infor-

mation achieved a minimum of 10% to 15% average pre-

cision increase, with further improvement by refining the

contextual model.

We would like to more closely examine the effectiveness

and contribution to our object hypothesis of various com-

ponents in our model. We present the following variants

of our model: (a) with single layered context (with patch

pair terms and alternate inference); (b) with multiple layers

and alternate inference of the visibility pattern, but turning

off the patch pair terms in our full model; and (c) with a

multiple layered context and patch pair terms, but without

running alternate inference (enforcing v = 1).

Performance is decreased by around 15% without multi-

ple layers, suggesting that it is essential for the performance

improvement. Patch pair terms have a smaller contribution

to detection, but are more important for segmentation per-

formance as illustrated in Fig. 3. Finally, alternate infer-

ence is important for detection accuracy although the aver-

age precision difference is only around 6%.

5.4. Segmentation performance analysis

Finally, we present a segmentation performance anal-

ysis with different mask terms enabled. We present the

precision-recall of visibility mask at the point of 50% re-

call in object detection. For each object hypothesis, we ob-

tain a soft segmentation score, which is used to compute

the segmentation precision-recall curve in Fig. 6. We can

B3DO

NYU

Figure 8. Examples of detection results on the Berkeley 3D object

and the NYU Depth datasets. Red boxes indicate correct detec-

tions, with segmentation mask overlaid. Yellow boxes indicates

false alarms and cyan boxes are missing detections.

see that both local and global mask features help improve

the segmentation performance. It is also clear that simul-

taneously voting for the local mask position and the whole

object mask yields best segmentation performance.

6. Conclusion

In this paper, we have presented a novel structured

Hough voting model for indoor object detection and occlu-

sion reasoning. We extend the original Hough voting based

detection model by introducing a joint Hough space of ob-

ject location and visibility pattern. The structured Hough

model can naturally incorporate both the object and its con-

text information, which is especially important for cluttered

indoor scenes. In addition, we utilize depth information at

the training stage to build a multilayer contextual model

so that a better visual codebook is learned and more de-

tailed object-context relationships can be captured. The ef-

ficiency of our approach has been demonstrated on two pub-

licly available RGB-D datasets, and our experiments show

we achieve significant improvement over the state-of-the-art

2D object detection approaches.
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