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Abstract

Distributional word clustering merges the words having
similar probability distributions to attain reliable parame-
ter estimation, compact classification models and even bet-
ter classification performance. Agglomerative Information
Bottleneck (AIB) is one of the typical word clustering algo-
rithms and has been applied to both traditional text clas-
sification and recent image recognition. Although enjoying
theoretical elegance, AIB has one main issue on its compu-
tational efficiency, especially when clustering a large num-
ber of words. Different from existing solutions to this issue,
we analyze the characteristics of its objective function —
the loss of mutual information, and show that by merely us-
ing the ratio of word-class joint probabilities of each word,
good candidate word pairs for merging can be easily iden-
tified. Based on this finding, we propose a fast approximate
AIB algorithm and show that it can significantly improve
the computational efficiency of AIB while well maintaining
or even slightly increasing its classification performance.
Experimental study on both text and image classification
benchmark data sets shows that our algorithm can achieve
more than 100 times speedup on large real data sets over
the state-of-the-art method.

1. Introduction
Distributional word clustering originates from text clas-

sification. It was first proposed in [3, 16] for word classi-

fication and then developed by [1] for document classifica-

tion. The work in [1] summarizes the three key benefits of

distributional word clustering as discovering semantic word

groups, producing compact classification models and im-

proving classification performance. Other work on study-

ing distributional word clustering for text classification can

be found in [2, 4]. Most, if not all, of the existing distribu-

tional word clustering algorithms use an objective function

that can be explicitly or implicitly linked to the criterion of

mutual information. The Agglomerative Information Bot-

tleneck (AIB) [17] is a typical one of them and has been

widely applied. Rooted in the Information Bottleneck (IB)

framework, AIB conducts word clustering by maximally

preserving the mutual information between words and class

labels. It works in a bottom-up hard hierarchical clustering

way. Starting with each word as an individual cluster, AIB

merges two words leading to the minimum loss of mutual

information at each level. As argued in [17], compared to

the top-down methods, such as that in [16], AIB generates

fully deterministic clustering result for any desired number

of clusters in one shot. Meanwhile, it is pointed out in [17]

that the main disadvantage of AIB is the high computational

load. Its time complexity is O(n3) and space complexity is
O(n2), which prevent it from scaling well for large sets of

words.

In the past several years, the bag-of-words model has

been introduced from text analysis to generic image recog-

nition and achieved high success. Accordingly, efficiently

merging a large set of visual words to generate compact vi-

sual codebooks has attracted attention. A number of meth-

ods have recently been developed [20, 11, 7, 19, 12, 9, 14],

among which AIB has been successfully used in [11, 12, 7].

In particular, to make AIB scalable to a large number of

words, say, 10000, the work in [7] proposes a fast imple-
mentation of AIB (called Fast-AIB in this paper). It re-

duces the time and space complexity of AIB by one order

to O(n2) and O(n), respectively.

In this paper, we further improve the computational effi-

ciency of AIB by developing a fast approximate algorithm.
By analyzing the function of mutual information loss, we

find that two words having more similar ratios of word-class

joint probabilities usually incur smaller loss, and prove that

the best pair of words selected in this way is indeed opti-

mal when only the ratio information of each word is avail-

able. Inspired by this finding, we propose an approach dif-

ferent from AIB and Fast-AIB, which evaluate the good-

ness of every pair of words by explicitly computing the mu-

tual information loss. Instead, our algorithm evaluates the

goodness of a pair of words by merely matching their ratios

of word-class joint probabilities. And an explicit evalua-

tion of mutual information loss is only used to select the
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best pair from a small set of good candidate word pairs.

Also, once two words are merged, our algorithm can triv-

ially obtain the good candidate words for the next level.

By doing so, we can further reduce the time complexity of

AIB to O(n log n) while keeping the space complexity at
O(n), making it more efficient in handling a large number
of words such as tens of thousands. Moreover, our algo-

rithm can well maintain the classification performance of

AIB (and Fast-AIB) and even slightly improve it when deal-

ing with a very large set of words. By looking into this re-

sult, we think that this could be because the approximation

in our algorithm, which only requires the information loss

to be small rather than rigidly minimum as in AIB, pro-

duces a mild “regularization” effect. This seems to help

enhance the robustness of AIB with respect to less reliable

probability estimates, when the number of words is much

larger than that of training samples. To verify the advan-

tages of our algorithm, experimental study is conducted on

three benchmark data sets on image recognition and text

classification, with different number of words involved. As

demonstrated, compared with Fast-AIB, our algorithm can

further improve its speed by more than 100 times on large

real data sets, while achieving comparable or slightly higher

classification performance.

2. Background and related work
2.1. Agglomerative Information Bottleneck [17]

LetW = {w1, w2, · · · , wn} denote a set of n words and
let c be class labels, where c = 1, · · · , C. The mutual infor-
mation betweenW and c is denoted by I(W, c). Assuming
that two words wp and wq are merged into a new word wpq ,
the word set becomesWpq = {W \{wp, wq}}

⋃{wpq} and
the mutual information turns to be I(Wpq, c) accordingly.
This incurs the loss of mutual information as

ΔI(wp, wq) = I(W, c) − I(Wpq, c). (1)

By merging, the prior probability and the word-class joint

probability of the new word wpq are defined as

P (wpq) = P (wp) + P (wq) (2)

P (wpq, c) = P (wp, c) + P (wq, c).

A basic implementation of AIB in [17] pre-computes all

possible ΔI(wp, wq) for 1 ≤ p < q ≤ n and saves it as

a matrix D. At each level l, the minimum ΔI is sought

to find the optimal word pair (wp, wq) to generate a new
word wpq . After that, the clustering proceeds to the next
level (l − 1), where ΔI(wpq, wi) is updated for all the re-
maining words wi (corresponding to updating one row and

one column of D), and ΔI for other pairs of words is left
unaffected. Searching for the minimum ΔI and a new op-

timal pair of words is then repeated. With this implementa-

tion, completely hierarchically merging nwords incurs time

complexityO(n(n2+nC)) and space complexity ofO(n2).
This causes a lengthy merging process and significant mem-

ory cost when n is large.

2.2. Fast-AIB [7]

The work in [7] proposes a smart modification of the

above basic implementation and significantly improves the

computational efficiency. The Fast-AIB method still pre-

computesΔI(wp, wq) for all possible pairs of words. How-
ever, instead of saving the whole matrix D, it finds the
minimum ΔI along the ith row of D and records the in-

dex of the corresponding word and this minimum value as

(ki,ΔI(wi, wki)). This not only reduces the time com-

plexity of searching for the minimum ΔI over D to O(n)
at each level, but also decreases the space complexity to

O(n). When two words wp and wq are merged, Fast-AIB
will firstly update the entries (ki,ΔI(wi, wki)) for which
ki = p or q. After that, the remaining entries will be

checked whether they need to be updated due to the pres-

ence of the new word wpq . This can be quicky imple-

mented by checking whether ΔI(wi, wki) is larger than
ΔI(wi, wpq). According to [7], the total time complexity
of Fast-AIB reduces toO(n2) and the space complexity be-
comes O(n) only.

3. The proposed method
3.1. Analysis of information loss function ΔI

Given a set of training samples, the mutual information

betweenW and c can be computed by

I(W, c) =
∑
c

n∑
i=1

P (wi, c) log
P (wi, c)

P (wi)P (c)
, (3)

where P (wi, c) is the word-class joint probability of wi and
c, and P (wi) and P (c) are the prior probabilities. The loss
of mutual information can be calculated as

ΔI(wp, wq) = I(W, c) − I(Wpq, c) (4)

=
∑
c

⎛
⎝∑
i=p,q

P (wi, c) log
P (wi, c)

P (wi)P (c)

−P (wpq, c) log
P (wpq, c)

P (wpq)P (c)

)
,

where wpq is the new word generated by merging words

p and q. In this paper, we focus on binary classification

and define c = ±1. We can fully represent ΔI(wp, wq)
with four terms P (wp,+1), P (wp,−1), P (wq,+1) and
P (wq,−1). Now we give important definitions that will
be used throughout the following parts,

ai � P (wi,+1); bi � P (wi,−1); ri = bi/ai; (5)
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where i = 1, · · · , n and ai, bi > 0 is assumed 1. When

necessary, we will write word wi in full as wi(ai, bi). Note
that ri denotes the “class ratio” for each word, and it will
play a fundamental role in our algorithm.

With the above definitions, ΔI(wp, wq) is expressed as

ΔI(wp, wq) = ΔI(ap, bp, aq, bq) (6)

= ap log

[
ap

ap + aq

(
1 +

aq + bq
ap + bp

)]

+ bp log

[
bp

bp + bq

(
1 +

aq + bq
ap + bp

)]

+ aq log

[
aq

ap + aq

(
1 +

ap + bp
aq + bq

)]

+ bq log

[
bq

bp + bq

(
1 +

ap + bp
aq + bq

)]
.

As seen, ΔI(wp, wq) is a symmetrical function with re-

spect to (ap, bp) and (aq, bq). Swapping them does not

change this function. This can be intuitively understood

because merging operation is symmetrical with respect to

two words. We can therefore fix (ap, bp) and scrutinize the
characteristics of this function with respect to (aq, bq).
Now we show the connection between the minimization

of ΔI and the relationship of (ap, bp) to (aq, bq).
Theorem 1. For given ap, bp, the function of mutual in-
formation loss in Eq. (6) reduces to ΔI(aq, bq). It can be
proved that {

∂ΔI(aq,bq)
∂aq

= 0
∂ΔI(aq,bq)

∂bq
= 0

⇐⇒ bq
aq

=
bp
ap

(7)

Proof: From Eq. (6), it can be obtained that

∂ΔI(aq, bq)

∂aq
= log

aq(ap + bp + aq + bq)

(ap + aq)(aq + bq)
. (8)

It is not difficult to verify that

aq(ap + bp + aq + bq)

(ap + aq)(aq + bq)
= 1 ⇐⇒ bq

aq
=

bp
ap

. (9)

This proves

∂ΔI(aq, bq)

∂aq
= 0 ⇐⇒ bq

aq
=

bp
ap

. (10)

Similarly, it can be obtained that

∂ΔI(aq, bq)

∂bq
= 0 ⇐⇒ bq

aq
=

bp
ap

. (11)

1This can easily be satisfied because in practice a small positive number

is usually appended to each data entry in order to obtain reliable estimates

of the probabilities.

Combing Eq. (10) and Eq. (11) completes the proof. �
This result indicates that for a given (ap, bp), any (aq, bq)

satisfying bq/aq = bp/ap must be a stationary point, at
which ΔI(aq, bq) takes an extreme value. And for any sta-
tionary point of ΔI(aq, bq), it must satisfy bq/aq = bp/ap.
Moreover, it is easy to see that

ΔI(aq, bq)
∣∣
bq
aq

=
bp
ap

= 0. (12)

This indicates that at all stationary points, the function ΔI
indeed achieves its minimum value of zero, that is, no loss

of mutual information. Geometrically, all stationary points

(aq, bq) reside on a straight line bq − rpaq = 0, where
rp = bp/ap is the class ratio of word wp. Figure 1 illus-
trates this case. Therefore, the pair of words that leads to

exact zero loss can be easily identified by simply comparing
the class ratios of the two words, that is, whether rp = rq or
not. However, this result is not as helpful as its first glance,

because each word usually does not have an identical class

ratio in practice. So, the goodness of a word pair may have

to be evaluated by explicitly computing the incurred infor-

mation loss ΔI , as done in AIB and Fast-AIB.
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Figure 1. The graph ofΔI(aq, bq) for a given (ap, bp). The top is
side view and the bottom is top view. The dashed red line, bq −
rpaq = 0, indicates the points where the minimum value of zero

is achieved.

Nevertheless, the above result motivates us to consider

the following question: in addition to identifying the word
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pair incurring exact zero information loss, whether a sim-
ple comparison of class ratios can be used to suggest good
candidate word pairs to merge? If yes, this would bring

significant computational advantage over the existing meth-

ods, where the incurred loss has to be explicitly evaluated

for every possible pair of words to identify the optimal pair.

To answer this question, we examine the relationship be-

tween |ri − rj | and ΔI(wi, wj). In specific, will a smaller
|ri − rj | lead to less ΔI(wi, wj)? In the following, we use
Theorem 2 and Corollary 1 to show: when only using the
class ratio information of each word, for any given wordwi,
merging it with the word wj having the smallest |ri − rj | is
indeed optimal. The optimality is in the sense of minimiz-

ing the “maximum” information loss over all possible word

wj(aj , bj) for which bj/aj = rj .

Theorem 2. Let wi be a given word with class ratio ri. wj
is another word with class ratio rj , where ri ≤ rj ≤ r0
and r0 is a constant. No other information on the two words
is accessible except ri and rj . Let ΔImax(wi, wj) be the
maximum information loss caused by merging wi to wj ,

ΔImax(wi, wj) � max
wj∈S

ΔI(wi, wj), (13)

where the set S = {wj(aj , bj)|ri≤rj≤r0; aj + bj ≤ 1}.
Then ΔImax(wi, wj) is achieved only when rj = r0. In
addition, this conclusion is also true when ri ≥ rj ≥ r0.

Figure 2. Illustration of the set S in Theorem 2.

Proof: Let us consider ri ≤ rj ≤ r0 first. This problem
is illustrated in a 2D coordinate system ajObj in Figure 2.
The set S corresponds to the triangle ΔAOB, which is the
intersection of three half-spaces in the first quadrant:

bj − riaj ≥ 0; bj − r0aj ≤ 0; aj + bj ≤ 1. (14)

Note that no tighter upper bound can be set for the last in-

equality because only the class ratio of each word is acces-

sible. To prove this theorem is equivalent to proving that

ΔImax(wi, wj) is achieved only on the line segment OA.

Let g =
(
∂ΔI
∂aj

, ∂ΔI∂bj

)�
be the gradient of ΔI(wi, wj) with

respect to aj and bj . Recalling the proof of Theorem 1, it is

known that for any stationary point of ΔI(wi, wj), there is

g = 0⇐⇒ bj
aj

=
bi
ai

⇐⇒ rj = ri (15)

and at this time ΔI(wi, wj) achieves its minimum value of

zero. This indicates that except on OB, there is no station-
ary point in the region S . Hence, ΔImax(wi, wj) can only
be achieved on the boundary, that is OA or AB.
Now we rule out the possibility of AB by showing that

ΔI(wi, wj)monotonically increases along the line segment−−→
BA. Noting that the direction of

−−→
BA is v = (−1, 1)�, the

directional derivative of ΔI(wi, wj) along
−−→
BA is

g�v = log
aj(bi + bj)

bj(ai + aj)
≥ 0, (16)

where “≥” is achieved because rj ≥ ri is given. Hence, the
maximum value ofΔI(wi, wj) on AB must be achieved at

point A. This concludes that ΔImax(wi, wj) can only be
achieved on OA, which corresponds to wj with rj = r0.
When the condition becomes ri ≥ rj ≥ r0, the above

proof can still be applied except that in this case

g�v = log
aj(bi + bj)

bj(ai + aj)
≤ 0, (17)

where “≤” is achieved because rj ≤ ri is given. Hence, the
maximum value ofΔI(wi, wj) onBA′ must be achieved at
point A′. This concludes that ΔImax(wi, wj) can only be
achieved onOA′, which corresponds towj with rj = r0. �
Corollary 1. Let L1 = {w1, w2, · · · , wn} be a list of n
words, which have been sorted such that their class ratios

satisfy r1≤r2≤ · · · ≤rn. For any given word wi, in order
to minimize ΔImax(wi, wj) the optimal word wj must be
either wi+1 or wi−1, one of the two neighbors of wi in L1.

Proof: It is proved by contradiction. Assuming that the

optimal word is wi+k with k > 1, it can be known from
Theorem 2 that

max
wi+k∈S1

ΔI(wi, wi+k) = max
wj∈S2

ΔI(wi, wj) (18)

≥ max
wi+1∈S3

ΔI(wi, wi+1),

where S1 = {w(a, b)|r = ri+k, a + b ≤ 1} contains all
words having the class ratio of ri+k; S2 = {w(a, b)|ri ≤
r ≤ ri+k, a + b ≤ 1} contains all words having the class
ratio between ri and ri+k; and S3 = {w(a, b)|r = ri+1, a+
b ≤ 1} contains all words having the class ratio of ri+1.

Note that the “≥” is obtained because S3 ⊂ S2. This result
means that

ΔImax(wi, wi+k) ≥ ΔImax(wi, wi+1). (19)

This contradicts with the assumption at the beginning of

proof and therefore wi+1 shall be a better choice. In a sim-

ilar way, it can be proved that wi−1 shall be a better choice

than wi−k when k > 1. �
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Through the above analysis, it can be seen that for any

given word wi, we can find an “optimal” word wj to merge
by simply comparing the class ratios of the n words. At the
same time, note that the “optimal” is in the sense of min-

imizing ΔImax(wi, wj). It measures the worst case (i.e.,
the maximum information loss over all possible wj with
class ratio equal to rj) rather than the loss actually incurred
by merging the two words. This is the price that we pay

for only using the class ratios to gain computational advan-

tage. In addition, it becomes difficult to determine in further

which one of wi−1 and wi+1 in Corollary 1 really mini-

mizes ΔImax(wi, wj) by merely based on the class ratio
information. In this work we do not pursue this further be-

cause it is not in the spirit of our motivation. Instead, after

wi−1 and wi+1 are identified, we will simply compare the

loss actually incurred by them and pick the smaller one.

Now we show the last result needed for developing our

fast approximate algorithm. It indicates that once two words

are merged, the good candidate word pairs for the next level

can be trivially obtained.

Theorem 3. Recall that L1 = {w1, w2, · · · , wn} is a

sorted list satisfying r1≤r2≤ · · · ≤rn. Merging wi(ai, bi)
and wi+1(ai+1, bi+1) produces a new word w′

i. This opera-

tion does not alter the order of words in the list L1.

Proof: It is known from Eq. (2) that the newword isw′
i(ai+

ai+1, bi+bi+1). It suffices to show that forw′
i, its class ratio

r′i satisfies ri ≤ r′i ≤ ri+1. This is indeed true because it is

trivial to verify that ∀ai, bi, ai+1, bi+1 > 0,

ai
bi

≤ r′i =
ai + ai+1

bi + bi+1
≤ ai+1

bi+1
. (20)

This completes the proof. �
The above result shows that we only need to sort the n
words once at the beginning, and the two neighbors of any

newly generated word can be trivially identified.

3.2. The proposed algorithm FA-AIB

Now our algorithm, called FA-AIB, is listed as follows.

Recall thatΔI(wi, wj) denotes the loss of mutual informa-
tion actually incurred by merging words wi and wj .

1. Given a set of n words {wi(ai, bi)}ni=1, sort them

based on their class ratios ri to obtain the ordered list
L1 = {w1, w2, · · · , wn}. According to Corollary 1,
(n−1) good candidate word pairs are identified, which
are (wi, wi+1) with i = 1, 2, · · · , (n− 1).

2. Evaluate the value ofΔI for each of the (n− 1) pairs,
respectively. Sort the (n− 1) values of ΔI to obtain a
list L2.

3. Identify the optimal pair (w∗
i , w

∗
i+1) that corresponds

to the minimum ΔI value in L2. Merge wi+1 into

wi and remove wi+1 from L1. Now the length of L1

decreases from n to n− 1.

Table 1. Complexity comparison to relevant algorithms

Algorithm Time Space

AIB O(n(n2 + 2n)) O(n2)
F-AIB O(n2) O(n)
FA-AIB (proposed) O(n log n) O(n)
FA-AIB-s (simplified) O(n log n) O(n)

4. Decrease n by setting n := n− 1.

5. The new word iswi(ai+ai+1, bi+bi+1). As shown by
Theorem 3, the order of words in L1 does not change,

and therefore the two neighbors of the new word wi
can be trivially identified. For the convenience of

presentation, all the words in L1 are re-numbered as

w1, w2, · · · , wn by following their order in L1.

6. Evaluate ΔI for merging the new word with its two

neighbors in the list L1, respectively. Insert the two

ΔI values intoL2. When the current number of words,

n, is larger than a predefined threshold n0, go to step 3
and terminate otherwise.

The following analyzes the computational complexity of

the proposed algorithm with respect to each step.

1. It sorts n words, which can be done at O(n log n) in
the average case by quick sort.

2. It evaluatesΔI by (n−1) times, which can be done at
O(n). Sorting the (n− 1) values incurs O(n log n).

(3,5). The operation can be done at O(1) in both steps.

6. Evaluating twoΔI values can be done atO(1). Insert-
ing them into L2 is at O(log n) by binary search.

Considering the loop of steps 3, 4, 5 and 6, the total time

complexity of the proposed algorithm will be at the order of

O(n log n). Also, since this algorithm only needs to store

{(ai, bi)}ni=1 and maintains two lists L1 and L2, its space

complexity is at O(n). The comparison to the existing al-
gorithms AIB and Fast-AIB is listed in Table 1.

Discussion. To gain computational advantage, our algo-

rithm identifies good candidate word pairs based on the

worst-case loss instead of the loss actually incurred. How-

ever, it is observed that this does not necessarily hurt classi-

fication performance. Surprisingly, sometimes it could even

slightly improve the performance, especially when a large

number of words are to be merged. Our explanation is that

the approximation in our algorithm may implicitly intro-

duce a mild “regularization” effect, which only requires the

loss to be small rather than strictly minimum as in AIB and

Fast-AIB. Specifically, when the number of words is large,

the occurrence of each word in a set of training samples will

become sparse. This could lead to two issues:
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1. The joint probabilities estimated via the frequency counts

become less reliable. This will in turn affect the reliability

of evaluating ΔI on these probabilities;
2. In the case of small sample size, minimizingΔI based on
the limited training data to determine the optimal word pair

is prone to overfitting the samples, and the generated new

words may not generalize well on test data. These could

bring adverse effect to classification.

3.3. FA-AIB-s: A simplified variant of FA-AIB

In addition, we try a simplified variant of FA-AIB and

call it FA-AIB-s. Our motivation for FA-AIB-s lies in that

we want to test how far a simple comparison of the class
ratios can go in appropriately clustering words. Instead

of selecting the optimal pair (wi, wi+1) as the one having
the minimumΔI , FA-AIB-s simply selects the optimal pair
as the one having the minimum Δr = |ri − ri+1|. Ev-

idently, FA-AIB-s uses a much coarser approximation to

strictly minimizing ΔI , because as seen from Theorem 1,

such a selection only ensures the mergence to be “optimal”

in very specific cases. For FA-AIB-s, the order of its com-

putational complexity is the same as FA-AIB. However, its

speed in practice will be faster due to completely avoiding

calculatingΔI in the whole course. Also, we are interested
in checking if FA-AIB-s can still maintain good classifica-

tion performance and when it will fail.

4. Experimental result
Our proposed FA-AIB and FA-AIB-s are compared with

the state-of-the-art Fast-AIB in [7] in terms of computa-

tional load and classification performance. We use the im-

plementation of Fast-AIB in [18]. The computational load

includes the time and memory spent in hierarchically merg-

ing n words to two word clusters only. The classification

performance is evaluated by both classification error rate

and the mean Average Precision (mAP), obtained by clas-

sifying the data with the words clustered at each level of

the hierarchy. Also, the mutual information loss incurred

by each algorithm in the clustering process is compared on

both training and test data sets. A linear Support Vector Ma-

chines classifier is used, and its regularization parameter is

equally optimized for all the three algorithms. The platform

for timing is a desktop computer with 3.3GHz CoreTM 2
Duo CPU and 3.2GB memory.

4.1. Data sets

One synthetic and three real data sets are used, where dif-

ferent number (from 1000 to 60, 000) of words (or features)
are clustered. They are briefly introduced as follows.

Synthetic data set. It is created to give a systematic com-
parison of computational load. We fix the number of train-

ing samples at 100, with 50 positive and 50 negative sam-
ples. Each sample is represented by a histogram whose di-

mensions gradually increase from 1000 to 100, 000, simu-
lating the use of different number of words. Each bin of the

histogram is filled with a value randomly selected from 0 to
99. Each histogram is normalized to have a sum of one.

Caltech-101[6]. It consists 101 object categories and

one Background category. For each image, local patches

are densely sampled at size of 16 × 16 with a step size of
8, and SIFT [15] is used to describe each patch. A visual

vocabulary of 1000 words is created by applying k-means
clustering to the extracted SIFT features. An image is then

represented as a 1000-D histogram of the number of oc-

currences of each visual word. The ten largest-sized object

categories are selected. Each of them is used as the positive

class respectively, while the Background category is used as
the negative class. In each classification task, the images of

the two involved classes are randomly partitioned into ten

training and test groups. The results averaged over all the

groups of the ten classification tasks are compared.

PASCAL-VOC07 [5]. It consists of 20 object categories
and 9963 images in total. The released predefined training
and test sets are used. A visual vocabulary of 4000 words is
generated in the same way as described in Caltech101. Each

SIFT feature in an image is coded by the localized soft-

assignment coding [13]. All the coding coefficients are then

max-pooled to form a 4000-D feature vector to represent

this image. Also, we apply Spatial Pyramid [10] to divide

an image into 1×1, 3×1 (three horizontal stripes) and 2×2
(four quadrants) grids, for a total of 8 regions. One 4000-
D feature vector is constructed for each region respectively,

and this generates for each image a representation of higher

dimension of 4000 × 8 = 32, 000. Each of the 20 object
categories is used as the positive class and the remaining 19
ones are used as the negative class. The results averaged

over all the 20 tasks are computed for comparison.
20Newsgroups [8]. It consists around 20, 000 docu-

ments, nearly evenly distributed over 20 news groups. It is a
benchmark data set used for evaluating learning algorithms

for text analysis. The version in this experiment includes

15, 935 training documents and 3993 test documents2. Each
document is represented by a 62, 061-D histogram. Again,

each group is discriminated from the remaining groups re-

spectively, leading to 20 binary classification tasks. The re-
sults are averaged over the 20 tasks for comparison.

4.2. Comparison of computational efficiency

This experiment verifies on both synthetic and real data

sets that our algorithms achieve higher computational effi-

ciency. The result on the synthetic data set is in Figure 3.

The x-axis is the number of words to be clustered and the

y-axis is the time spent by each algorithm. Also, some de-

tailed timing result is provided in Table 2. As shown, our

algorithms consistently improve the speed over Fast-AIB,

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html.
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Figure 3. Comparison of running time of three algorithms.

Table 2. Time cost on synthetic dataset (in second)

# of words Fast-AIB [7] FA-AIB FA-AIB-s

1000 0.37 0.016 0.016

5000 8.21 0.093 0.062

10000 32.59 0.36 0.23

20000 130.4 1.41 0.91

50000 817.7 8.79 5.65

100000 3223.8 37.9 23.49

Table 3. Time cost on three real datasets (in second)

Dataset # of Fast- FA- FA-

words AIB [7] AIB AIB-s

Caltech101 1000 0.501 0.015 0.01

VOC07 4000 5.13 0.062 0.049

VOC07 32000 337.41 3.76 2.43

20News- 62061 9050.5 7.67 5.03

and the improvement becomes more pronounced with the

increasing number of words. For example, when merg-

ing 100, 000 words, our algorithms need no more than one
minute while Fast-AIB costs almost one hour. By average,
FA-AIB can be faster than Fast-AIB by 86 times, and FA-
AIB-s can be faster by 140 times. Table 3 compares the

time cost on three real data sets. The result again verifies the

computational efficiency of the proposed algorithms, espe-

cially on the large VOC07 and 20Newsgroups data sets. The

above comparison indicates the remarkable benefit when

clustering a large number of words.

4.3. Comparison of classification performance

We investigate if our algorithms can well maintain classi-

fication performance. Figure 4 shows the average result for

each real data set. The left column plots the classification

error rate. As seen, FA-AIB attains very similar classifi-

cation performance as Fast-AIB. Moreover, it even shows

slightly better performance on Caltech101 and 20News-

groups when the words are merged into a smaller number

of word clusters. The simplified variant, FA-AIB-s, works

fairly well considering the coarser approximation used by

it and its computational superiority. On most data sets, it

does not incur significant performance degradation until the

words are clustered to a small number of clusters. These re-

sults are confirmed by the mean Average Precision (mAP)

in the right column. To gain insight into the clustering pro-

cess, we also plot (in the logarithm of 10) the accumulative
mutual information loss at each level of the hierarchy on

both training and test sets in Figure 5. As expected, the

loss monotonically increases with the progress of cluster-

ing. On Caltech101 and PASCAL-VOC07 (rows 1−3), the
loss incurred by Fast-AIB and the proposed FA-AIB over-

laps with each other, indicating the almost identical loss of

information. Comparatively, FA-AIB-s incurs a bit more

loss as expected. This is consistent with the classification

error rate and mAP obtained. On 20Newsgroups, Fast-AIB

and FA-AIB also produce similar information loss on the

training set, and FA-AIB-s incurs slightly more loss. It

is worth mentioning that on 20Newsgroups, FA-AIB con-

sistently produces lower information loss on the test set,

which agrees well with its slightly better classification per-

formance shown in Figure 4. Observing that the training

sample size in 20Newsgroups is much smaller than its num-

ber of words, we attribute this improvement to the mild

“regularization” effect introduced by the approximation in

the proposed FA-AIB.

5. Conclusion and future work

We propose a fast algorithm for agglomerative informa-

tion bottleneck to do distributional word clustering. Instead

of explicitly computing the mutual information loss in-

curred by merging each pair of words, our algorithm simply

utilizes the class ratio of each word to find good candidate

word pairs. Theoretical analysis and experimental study

show its computational advantage and the well-maintained

classification performance. The future work will system-

atically extend this idea to multi-class classification and to

other information-theoretic methods where finding the min-

imum mutual information loss is intensively needed.
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