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Abstract

In computer vision applications, features often lie on
Riemannian manifolds with known geometry. Popular
learning algorithms such as discriminant analysis, partial
least squares, support vector machines, etc., are not directly
applicable to such features due to the non-Euclidean nature
of the underlying spaces. Hence, classification is often per-
formed in an extrinsic manner by mapping the manifolds to
Euclidean spaces using kernels. However, for kernel based
approaches, poor choice of kernel often results in reduced
performance. In this paper, we address the issue of kernel-
selection for the classification of features that lie on Rie-
mannian manifolds using the kernel learning approach. We
propose two criteria for jointly learning the kernel and the
classifier using a single optimization problem. Specifically,
for the SVM classifier, we formulate the problem of learn-
ing a good kernel-classifier combination as a convex opti-
mization problem and solve it efficiently following the mul-
tiple kernel learning approach. Experimental results on im-
age set-based classification and activity recognition clearly
demonstrate the superiority of the proposed approach over
existing methods for classification of manifold features.

1. Introduction
Many applications involving images and videos require

classification of data that obey specific constraints. Such

data often lie in non-Euclidean spaces. For instance, popu-

lar features and models in computer vision like shapes [10],

histograms, covariance features [22] , linear dynamical sys-

tems (LDS) [6], etc., are known to lie on Riemannian man-

ifolds. In such cases, one needs good classification tech-

niques that make use of the underlying manifold structure.

For features that lie in Euclidean spaces, classifiers based

on discriminative approaches such as linear discriminant

analysis (LDA), partial least squares (PLS) and support vec-

tor machines (SVM) have been successfully used in var-

ious applications. However, these approaches are not di-

rectly applicable to features that lie on Riemannian mani-

folds. Hence, classification is often performed in an extrin-

sic manner by first mapping the manifold to an Euclidean

space, and then learning classifiers in the new space. One

such popularly used Euclidean space is the tangent space

at the mean sample [22, 23]. However, tangent spaces pre-

serves only the local structure of the manifold and can often

lead to sub-optimal performance. An alternative approach is

to map the manifold to a reproducing kernel Hilbert space

(RKHS) [8, 9, 5] by using kernels. Though kernel-based

methods have been successfully used in many computer vi-

sion applications, poor choice of kernel can often result in

reduced classification performance. This is illustrated in fig-

ure 1. This gives rise to an important question: How to find
good kernels for Riemannian manifolds ?.

In this paper, we answer this question using the kernel

learning approach [14, 17], in which appropriate kernels are

learned directly from the data. Since we are interested in

learning good kernels for the purpose of classification, we

learn the kernel and the classifier jointly by solving a sin-

gle optimization problem. To learn a good kernel-classifier

combination for features that lie on Riemannian manifolds,

we propose the following two criteria: (i) Risk functional

associated with the classifier in the mapped space should

be minimized for good classification performance, (ii) The

mapping should preserve the underlying manifold structure.

The second criterion acts as a regularizer in learning the

kernel. Our general framework for learning a good kernel-

classifier combination can be represented as the following

optimization problem

min
W,K

λ Γs(K) + Γc(W,K),
where Γs(K) and Γc(W,K) are respectively the manifold-

structure and the classifier costs expressed as functions of

the classifier parametersW and the kernel K. Here, λ is the

regularization parameter used to balance the two criteria.

Due to its superior generalization properties, we focus

on using the SVM classifier in this paper. In order to pre-

serve the manifold structure, we constrain the distances in

the mapped space to be close to the manifold distances.

Under this setting, we formulate the problem of learning a

good kernel-classifier combination as a convex optimization

problem. While the resulting formulation is an instance of

semidefinite programming (SDP) and can be solved using
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Figure 1: Tangent-space mapping or poorly-chosen kernel can of-

ten result in a bad classifier (right), whereas the proposed method

(left) learns a mapping that is good for classification by using the

classifier cost in the optimization.

standard solvers such as SeDuMi [19], it is transductive in

nature: both training and test data need to be present while

learning the kernel matrix. Solving SDPs is also compu-

tationally expensive for large datasets. To solve both these

issues, we follow the multiple kernel learning (MKL) ap-

proach [14, 17] and parametrize the kernel as a linear com-

bination of known base kernels. This formulation results in

a much simpler convex optimization problem, which can be

efficiently solved using gradient-based methods.

We performed experiments using two different mani-

fold features: linear subspaces and covariance features, and

three different applications: face recognition using image

sets, object recognition using image sets and human activ-

ity recognition. The superior performance of the proposed

approach clearly shows that it can be successfully used in

classification applications that use manifold features.

Contributions: 1) We introduce a general framework

for developing extrinsic classifiers for features that lie on

Riemannian manifolds using the kernel learning approach.

To the best of our knowledge, the proposed approach is the

first one to use kernel learning techniques for classification

of features that lie on Riemannian manifolds with known

geometry. 2) We propose to use a geodesic distance-based

regularizer for learning appropriate kernels directly from

the data. 3) Focusing on the SVM classifier, we show that

the problem of learning a good kernel-classifier combina-

tion can be formulated as a convex optimization problem.

Organization: We provide a brief review of the existing

literature in section 2 and present the proposed approach in

section 3. Section 4 briefly discusses the Riemannian ge-

ometry of two popularly used features, namely linear sub-

spaces and covariance features. We present our experimen-

tal results in section 5 and conclude the paper in section 6.

2. Previous Work
Existing classification methods for Riemannian mani-

folds (with known geometry) can be broadly grouped into

three main categories: nearest-neighbor methods, Bayesian

methods, and Euclidean-mapping methods.

Nearest neighbor: The simplest classifier on a mani-

fold is the nearest-neighbor classifier based on some ap-

propriately defined distance or similarity measure. In [3],

the trajectories of human joint positions were represented

as subspaces using LDS models, and then classified using

Martin and Finsler distances. In [23], LDS models were

used to get subspace representations for shape deforma-

tions and the Frobenius distance was used for classifica-

tion. In [27, 13, 12], image sets were modeled using linear

subspaces and then compared using the largest canonical

correlation in [27], the direct sum of canonical correlations

in [13] and a weighted sum canonical correlations in [12].

Bayesian framework: Another possible approach for

classification is to use the Bayesian framework by defining

probability density functions (pdfs) on manifolds. In [21]

parametric pdfs like Gaussian were defined on the tangent

space and then wrapped back on to the manifold to de-

fine intrinsic pdfs for the Grassmann manifold. Alterna-

tively, Parzen-window based non-parametric density esti-

mation was used in [20] for the Stiefel manifold. Both these

approaches along with Bayes classifier were used for hu-

man activity recognition and video-based face recognition.

In general, parametric approaches are sensitive to the model

order, whereas the model-free non-parametric approaches

are very sensitive to the choice of window size.

Euclidean mapping: Discriminative approaches like

LDA, PLS, SVM, Boosting, etc., can be extended to man-

ifolds by mapping the manifolds to Euclidean spaces. One

such Euclidean space is the tangent-space. In [22], a Log-

itBoost classifier was developed using weak classifiers

learned on tangent spaces, and then used for pedestrian de-

tection with covariance features. Tangent spaces only pre-

serves the local structure of the manifold and can often lead

to sub-optimal performance. Alternatively, one can map

manifolds to Euclidean spaces by defining Mercer kernels

on them. In [8, 9], discriminant analysis was used for im-

age set-based recognition tasks using Grassmann kernels.

In [24], a kernel defined for the manifold of symmetric pos-

itive definite matrices was used with PLS for image set-

based recognition tasks. In [5], the Binet-Cauchy kernels

defined on non-linear dynamical systems were used for hu-

man activity recognition. In general, the success of kernel-

based methods is often determined by the choice of kernel.

Hence, in this paper we address the issue of kernel-selection

for the classification of manifold features.

The idea of using manifold structure as a regularizer was

previously explored in the context of data manifolds [4, 18],

where the given high dimensional data samples were sim-

ply assumed to lie on a lower dimensional manifold. Since

the structure of the underlying manifold was unknown, a

graph Laplacian-based empirical estimate of the data distri-

bution was used in [4, 18]. Contrary to this, in this paper, we

are interested in analytical manifolds, like Grassmann man-

ifold and manifold of symmetric positive definite matrices,

whose underlying geometry is known. Hence, the problem

addressed in this paper is different from the one in [4, 18].
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3. Extrinsic Support Vector Machines

Notations: The standard �2 norm of a vector �w is denoted

by ‖�w‖2. We use �1 and �0 to denote the column vectors

of appropriate lengths with all ones and zeros respectively.

We use�a ≤ �b to represent a set of element wise inequalities.

AT denotes the transpose of a matrix A and A o B denotes

the Hadamard product between A and B. K � 0 (K � 0)
means K is symmetric and positive semi-definite (definite).

Let M denote the Riemannian manifold on which the

features lie. Let Dtr = {(xi, yi), i = 1, . . . , Ntr} be the

set of training samples where yi ∈ {+1, -1}, xi ∈ M, and

Dte = {xi, i = Ntr+1, . . . , N} be the set of test samples.

Let Φ be the mapping to be learned from the manifold M
to some inner product spaceH. Let k(·, ·) be the associated

kernel function, and K be the associated kernel matrix.

K =

( Ktr,tr Ktr,te

Kte,tr Kte,te

)
∈ RN×N . (1)

Then, Kij = k(xi, xj) = Φ(xi)
TΦ(xj), ∀xi, xj ∈M.

Since we are interested in performing classification in

the mapped space, we jointly learn the kernel and the clas-

sifier using a single optimization problem based on the fol-

lowing two criteria:

(i) Risk minimization: For better classification perfor-

mance, the risk functional associated with the classifier in

the mapped space should be minimized .

(ii) Structure preservation: Since the features lie on a Rie-

mannian manifold with a well defined structure, the map-

ping should be structure-preserving. This criterion can be

seen as playing the role of a regularizer in kernel-learning.

Combining the above two criteria we formulate the prob-

lem of learning a good kernel-classifier combination as

min
W,K

λ Γs(K) + Γc(W,K), (2)

where Γs(K) and Γc(W,K) are the manifold-structure cost

and the classifier cost expressed as functions of classifier

parameters W and kernel matrix K. Here, λ is the regular-

ization parameter used to balance the two criteria. Since the

mapped space is an inner product space, one can use stan-

dard machine learning techniques to perform classification.

Due to its superior generalization properties, we focus on

the SVM classifier in this paper. However, it is important to

note that the framework introduced here is general and can

be applied to other classifiers as well.

SVM classifier in the mapped space: The SVM classifier

in the mapped space is given by f(x) = �w∗�Φ(x) + b∗,
where the weight vector �w∗ and the bias b∗ are given by

�w∗, b∗ = argmin
�w,b,η

1

2
‖�w‖22 + C

Ntr∑
i=1

ηi, (3)

subject to yi(�w
�Φ(xi) + b) ≥ 1 − ηi, ηi ≥ 0, i =

1, . . . , Ntr. This problem is usually solved in its dual form

max
�α∈Ω

(
�α��1− 1

2
�α�

(
�y�y�o Ktr,tr

)
�α

)
, (4)

where Ω = {�α ∈ RNtr | �0 ≤ �α ≤ C�1, �α��y = 0}, and

�y� = [y1, . . . , yNtr
].

Preserving the manifold structure: To preserve the man-

ifold structure, we constrain the distances in the mapped

space to be close to the manifold distances. The squared

Euclidean distance between two points xi and xj in the

mapped space can be expressed in terms of kernel val-

ues as ‖φ(xi) − φ(xj)‖22 = Kii + Kjj − Kij − Kji.

Hence, we wish to minimize
∑N

i=1

∑N
j=1 ζ

2
ij , where ζij =

Kii +Kjj −Kij −Kji − d2ij , 1 ≤ i < j ≤ N , and dij is

the manifold distance between the points xi and xj . Since

ζij can be positive or negative, we use ζ2ij in the cost.

Combined formulation: Combining both the classifier and

the structure costs, the joint optimization problem for learn-

ing a good kernel-classifier combination is given by

min
K�0, �ζ

max
�α∈Ω

λ‖�ζ‖22 +
(
�α��1− 1

2
�α�

(
�y�y�o Ktr,tr

)
�α

)
,

subject to

N∑
i=1

N∑
j=1

Kij = 0,

Kii +Kjj −Kij −Kji − d2ij = ζij for 1 ≤ i < j ≤ N,
(5)

where Ω = {�α ∈ RNtr | �0 ≤ �α ≤ C�1, �α��y = 0}, �ζ
is the column vector of variables ζij and �y ∈ RNtr is the

column vector of class labels. In the above optimization

problem, the centering constraint
∑

ij Kij = 0 is added

simply to remove the ambiguity associated with the origin

in the mapped space [25]. Note that in (5) we are learn-

ing the entire kernel matrix K directly in a non-parametric

fashion, and the classifier term has only Ktr,tr. Therefore,

to ensure meaningful values for Ktr,te and Kte,te, we need

additional constraints between the training and test sam-

ples [14]. Hence, we use both the training and test samples

in structure-preserving constraints.

Theorem 1: The optimal K for problem (5) can be found

by solving a semidefinite programming problem.

Proof: This can be easily proved by following [14]. Due to

space limitation, we omit the proof here.

SDPs are convex in nature and can be solved using stan-

dard solvers such as SeDuMi [19]. Once the kernel matrix

K is obtained, the SVM classifier in the mapped space can

be obtained by solving the SVM dual (4). Note that the

above formulation is transductive in nature: both training

and test data need to be present while learning the kernel

matrix. Also in general, solving SDPs can be computation-

ally expensive for large datasets. Both these issues can be

addressed by using the MKL approach.
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3.1. Extrinsic SVM Using MKL Framework

Instead of learning a non-parametric kernel matrix K,

following [14, 17], we parametrize the kernel as a lin-

ear combination of fixed base kernels K1,K2, ....,KM :

K =
∑M

m=1 μmKm, where �μ� = [μ1, . . . , μm] are pos-

itive weights to be learned. Since we use the same linear

model for both training and test data, the weights �μ can be

learned using only the training data, and the kernel values

for test data can be computed using the known base kernels

and the learned weights. Hence, the formulation becomes

inductive. Under the linear combination, the optimization

problem (5) now becomes

min
�ζ, �μ

max
�α∈Ω

λ‖�ζ‖22 +
(
�α��1− 1

2
�α�(�y�y�o

M∑
m=1

μmKm
tr,tr)�α

)
,

subject to

M∑
m=1

μm(Km
ii +Km

jj −Km
ij −Km

ji )− d2ij = ζij ,

for 1 ≤ i < j ≤ Ntr and �μ ≥ �0,
(6)

where Ω = {�α ∈ RNtr | �0 ≤ �α ≤ C�1, �α��y = 0}. Note

that the centering constraint
∑

i,j Kij = 0 in (5) is not re-

quired for the MKL approach as the origin is automatically

decided based on the base kernels and their weights.

Let pmij denote the squared distance between samples

xi and xj induced by the base kernel Km, i.e., pmij =
Km

ii +Km
jj −Km

ij −Km
ji . Let J1(�μ) and J2(�μ) represent the

manifold-structure cost and the classifier cost respectively

in (6). Then,

J1(�μ) =

Ntr∑
i=1

Ntr∑
j=i+1

ζ2ij =

Ntr∑
i=1

Ntr∑
j=i+1

(
M∑

m=1

μmpmij − d2ij

)2

,

J2(�μ) = max
�α∈Ω

(
�α��1− 1

2
�α�(�y�y�o

M∑
m=1

μmKm
tr,tr)�α

)
.

(7)

LetΦm be the mapping corresponding to the kernelKm and

�h(f) be the hinge loss function: �h(f) = max(0, 1− f).

Theorem 2: J2(�μ) = J3(�μ), where

J3(�μ) = min
�Vm, b

1

2

M∑
m=1

‖�Vm‖22
μm

+ C

Ntr∑
i=1

�h

(
yi

(
M∑

m=1

�V �mΦm(xi) + b

))
.

(8)

Proof: The proof is based on Lagrangian duality. Please

refer to [17] for details.

Let h(�μ) = λJ1(�μ) + J3(�μ). Using Theorem 2, the

optimization problem (6) can be written as

min
�μ

h(�μ) subject to �μ ≥ �0. (9)

Theorem 3: h(�μ) is a differentiable convex function of �μ if

Km � 0 for m = 1, 2, ...M .

Proof: J1(�μ) is a convex quadratic term and hence differ-

entiable with respect to �μ. As shown in [17], J3(�μ) is also

convex and differentiable if all the base kernel matrices Km

are strictly positive definite. Hence h(�μ) is a differentiable

convex function of �μ.

Using Theorem 3, the optimization problem (9) can

be efficiently solved using the reduced gradient descent

method [17] or any other standard algorithm used for solv-

ing constrained convex optimization problems. For any

given �μ, J1(�μ) can be evaluated directly using (7) and its

gradient can be computed using

∂J1
∂μm

=

Ntr∑
i=1

Ntr∑
j=i+1

(
2pmij

(
M∑
k=1

μkp
k
ij − d2ij

))
. (10)

Since J3(�μ) = J2(�μ), it can be computed by solving a stan-

dard SVM dual problem with K =
∑M

m=1 μmKm. The

gradient of J3 can be computed using [17]

∂J3
∂μm

= −1
2

Ntr∑
i=1

Ntr∑
j=1

α∗iα
∗
jyiyjKm

ij , (11)

where �α∗ is the optimal solution for the SVM dual problem

used for computing J3(�μ). Once the optimal �μ∗ is com-

puted, the classifier in the mapped space can be obtained by

solving the SVM dual (4) with K =
∑M

m=1 μ
∗
mKm. Note

that Theorem 3 requires the Gram matrices Km to be posi-

tive definite. To enforce this property a small ridge may be

added to their diagonals.

4. Riemannian Manifolds in Computer Vision
In this section we briefly discuss the Riemannian geome-

try of two popularly used features, namely linear subspaces

and covariance features, and show how these features are

used in various computer vision applications.

4.1. Linear Subspaces - Grassmann Manifold

Grassmann manifold, denoted by Gn,d, is the set of all

d-dimensional linear subspaces of Rn. An element S of

Gn,d can be represented by any n × d orthonormal ma-

trix YS such that span(YS) = S. The geodesic distance be-

tween two subspaces S1 and S2 on the Grassmann man-

ifold is given by ‖�θ‖2, where �θ = [θ1, . . . , θd] are the

principal angles between S1 and S2. �θ can be computed

using θi = cos−1(αi) ∈ [0, π
2 ], where αi are the singu-

lar values of Y �S1YS2. Other popularly used distances for

the Grassmann manifold are the Procrustes metric given by

2(
∑d

i=1 sin2(θi/2))
1/2, and the Projection metric given by

(
∑d

i=1 sin
2θi)

1/2. We refer the interested readers to [7, 1]

for further discussions on the Grassmann manifold.

Grassmann kernels: Grassmann manifold can be mapped

to Euclidean spaces by using Mercer kernels [8]. One popu-

larly used kernel [8, 9, 24] is the Projection kernel given by
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KP (Y1, Y2) = ‖Y �1 Y2‖2F . The mapping corresponding to

the Projection kernel is given by ΦP (Y ) = Y Y �. Various

kernels can be generated from KP and ΦP using

Krbf
P (Y1, Y2) = exp

(−γ‖ΦP (Y1)− ΦP (Y2)‖2F
)
,

Kpoly
P (Y1, Y2) = (γKP (Y1, Y2))

d
.

(12)

We refer to the family of kernels Krbf
P as projection-RBF

kernels and the family of kernels Kpoly
P as projection-

polynomial kernels.

4.2. Covariance Features

The d × d symmetric positive definite (SPD) matri-

ces, i.e., non-singular covariance matrices, can be for-

mulated as a Riemannian manifold [16], and the result-

ing affine-invariant geodesic distance (AID) is given by

(
∑d

i=1 ln2λi(C1, C2))
1/2 , where λi(C1, C2) are the gen-

eralized Eigenvalues of SPD matrices C1 and C2. An-

other popularly used distance for SPD matrices is the log-

Euclidean distance (LED) given by ‖log(C1)− log(c2)‖F ,

where log is the ordinary matrix logarithm and ‖ • ‖F de-

notes the matrix Frobenius norm. We refer the interested

readers to [2, 16] for further details.

Kernels for SPD matrices: Similar to the Grassmann man-

ifold, we can define kernels for the set of SPD matrices.

One such kernel based on the log-Euclidean distance was

derived in [24]: Klog(C1, C2) = trace[log(C1)
�log(C2)].

The mapping corresponding to Klog is given by Φlog(C) =
log(C). Various kernels can be generated from Klog and

Φlog using

Krbf
log(C1, C2) = exp

(−γ‖Φlog(C1)− Φlog(C2)‖2F
)
,

Kpoly
log (C1, C2) = (γKlog(C1, C2))

d
.

(13)

We refer to the family of kernels Krbf
log as LED-RBF ker-

nels and the family of kernels Kpoly
log as LED-polynomial

kernels.

4.3. Applications

Recognition using image sets: Given multiple images of

the same face or object, they can be collectively repre-

sented [8, 9, 12, 13, 27] using a lower dimensional sub-

space obtained by applying the principal component anal-

ysis (PCA) on the feature vectors representing individual

images. Let S = [s1, s2, . . . , sN ] be the mean-subtracted

data matrix of an image set, where si ∈ Rn is an n-

dimensional feature descriptor of i-th image. Let V ΛV T

be the Eigen-decomposition of the data covariance matrix

C = SS�/N − 1. Then the linear subspace spanned by the

top d Eigenvectors can be used to represent the image set by

a d-dimensional linear subspace. This d-dimensional lin-

ear subspace of the original n-dimensional space lies on the

Grassmann manifold. Alternatively, the image set can also

be represented using its natural second-order statistic [24],

i.e., the covariance matrix C. Since covariance matrices

are positive semi-definite in general, a small ridge may be

added to their diagonals to make them positive definite.

Activity recognition using dynamical models: The au-

toregressive and moving average (ARMA) model is a dy-

namical model widely used in computer vision for model-

ing various kinds of time-series data [6, 3] and has been

successfully used for activity recognition [21, 23, 5]. For an

action video sequence φ, the ARMA model equations are

given by

zφ(t+ 1) = A(φ)zφ(t) + vφ(t), vφ(t) ∼ N (�0,Ξ),
yφ(t) = C(φ)zφ(t) + wφ(t), wφ(t) ∼ N (�0,Ψ),

(14)

where, zφ(t) ∈ Rd is the hidden state vector, yφ(t) ∈
Rp is the observed feature vector, A(φ) ∈ Rd×d and

C(φ) ∈ Rp×d are the transition and measurement ma-

trices. vφ(t) and wφ(t) are the noise components mod-

eled as normal with zero mean and covariances Ξ ∈
Rd×d and Ψ ∈ Rp×p respectively. A closed form so-

lution for parameters (A(φ), C(φ)) of the above model

is available [6]. The expected observation sequence gen-

erated by a time-invariant model (A(φ), C(φ)), lies in

the column space of the observability matrix O∞(φ) =
[C(φ), (C(φ)A(φ))�, (C(φ)A(φ)2)�, . . .] [21]. Follow-

ing [21], instead of O∞(φ), we use a finite length approx-

imation Om(φ) ∈ Rmp×d given by O�m(φ) = [C(φ),
(C(φ)A(φ))�, . . . , (C(φ)A(φ)m−1)�] to represent the ac-

tion sequence φ. The column space of Om(φ) is a d-

dimensional subspace of Rmp and hence is a point on the

Grassmann manifold Gmp,d. The orthonormal basis com-

puted by Gram-Schmidt orthonormalization of Om(φ) can

be used to represent the action sequence φ as a point on the

Grassmann manifold.

5. Experimental Evaluation
In this section, we evaluate the proposed approach us-

ing three applications where manifold features are used: (i)

Face recognition using image sets, (ii) Object recognition

using image sets and (iii) Human activity recognition from

videos. We use two different manifold features, namely lin-

ear subspaces and covariance features.

5.1. Datasets and Feature Extraction

Face recognition – YouTube Celebrities [11]: This dataset

has 1910 video clips of 47 subjects collected from the

YouTube. Most of them are low resolution and highly com-

pressed videos, making it a challenging dataset for face

recognition. The face region in each image was extracted

using a cascaded face detector, resized into 30 × 30 inten-

sity image, and histogram equalized to eliminate lighting

effects. Each video generated an image set of faces. Fig-

ure 2 shows some of the variations in an image set from this

dataset.
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Figure 2: Variations in an image set from YouTube dataset.

Object recognition – ETH80 [15]: This benchmark

dataset for object recognition task has images of 8 object

categories with each category including 10 different object

instances. Each object instance has 41 images captured un-

der different views, which form an image set. All the im-

ages were resized into 20 × 20 intensity images. Figure 3

shows typical variations in an image set from this dataset.

For both of these datasets, we performed experiments

with two different manifold features: covariance matrices

and linear subspaces. As mentioned in section 4.3, to avoid

matrix singularity, we added a small ridge δI to each covari-

ance matrix C, where δ = 10−3 × trace(C) and I is the

identity matrix. For subspace representation, we used 20

dimensional linear subspaces spanned by the top 20 Eigen-

vectors of C.

Activity recognition – INRIA IXMAS [26]: This dataset

consists of 10 actors performing 11 different actions, each

action executed 3 times at varying rates while freely chang-

ing the orientation. We followed the same feature extraction

procedure used in [21]. Specifically, for each segment of

activity, we built a time series of motion history volumes

using the segmentation results from [26]. Then each action

was modeled as an ARMA process using the 16× 16× 16
circular FFT features proposed by [26]. Following [21],

the circular FFT features were reduced to 286 dimensions

using PCA before building the dynamical model. The state

space dimension d was chosen to be 5, and the observability

matrix was truncated at m = 5.

5.2. Comparative Methods and Evaluation Settings

We compare our approach with the following methods:

(i) Nearest neighbor baseline (NN): We used three dif-

ferent distances for the Grassmann manifold, namely the

geodesic distance, the Procrustes distance and the Projec-

tion metric. We report the best results among the three. For

covariance features, we used two distances, namely the AID

and the LED and report the best results among the two.

(ii) Standard MKL baseline (S-MKL) [17]: In the stan-

dard MKL approach, the kernel is learned as a convex com-

bination of fixed base kernels (K =
∑M

m=1 μmKm, �μ ≥
�0, �μ��1 = 1) , by minimizing the SVM cost (equation (4))

without manifold-based regularization.

iii) Statistical modeling (SM) [21]: This approach uses

parametric (SM-P) and non-parametric (SM-NP) probabil-

ity density estimation on the manifold followed by Bayes

Figure 3: Variations in an image set from ETH80 dataset

classification. For the parametric case, the Gaussian den-

sity was used in [21].

(iv) Grassmann discriminant analysis (GDA) [8]: Per-

forms discriminant analysis followed by NN classification

for the Grassmann manifold using the Projection kernel.

(v) PLS with the Projection kernel (Proj+PLS) [24]:
Uses PLS combined with the Projection kernel for the

Grassmann manifold.

(vi) Covariance discriminative learning (CDL) [24]:
Uses discriminant analysis and PLS for covariance features

using a kernel derived from the LED metric. Recently, state-

of-the-art results were reported in [24] for image set-based

face and object recognition tasks using this approach.

For the activity recognition experiment using the IN-

RIA IXMAS dataset, we follow the round-robin (leave-one-

person-out) experimental protocol used in [21]. For the

object and face recognition experiments, we follow the set-

tings used in [24]. For the YouTube dataset, for each person,

we use 3 randomly chosen image sets for training and 6 for

testing. For the ETH80 dataset, for each category, we use 5

randomly chosen image sets for training and 5 for testing.

We report the results averaged over 10 random trials. The

recognition rates reported for SM-P and SM-NP methods

are taken from the original paper [21]. For GDA, Proj+PLS

and CDL approaches, we use the recognition rates recently

reported in [24].

5.3. Base Kernels and Parameters

For both the S-MKL and the proposed approach, we used

several base kernels. For the experiments with linear sub-

spaces, we used multiple projection-RBF and projection-

polynomial kernels defined in (12). For each dataset, the

values for the RBF parameter γ and the polynomial de-

gree d were chosen based on their individual crossvalida-

tion accuracy on the training data. Specifically, for the

INRIA IXMAS dataset, we used 6 projection-polynomial

kernels and 13 projection-RBF kernels. For the YouTube

dataset, we used 10 projection-polynomial kernels and 15

projection-RBF kernels. For the ETH80 dataset, we used 10

projection-polynomial kernels and 13 projection-RBF ker-

nels. The values for RBF kernel parameter γ were taken

as 1
n2

δ , where n is the number of dimensions of ΦP de-

fined in section 4.1, and δ = {−3,−1, . . . , 19, 21} for the

INRIA IXMAS dataset, δ = {−14,−12, . . . , 12, 14} for

the YouTube dataset, δ = {−5,−3, . . . , 17, 19} for the
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Figure 4: Normalized kernel weights for the S-MKL(blue) and

the proposed method(red) on the INRIA IXMAS dataset

ETH80 dataset . Polynomial kernels were generated by tak-

ing γ = 1
n and varying the degree from 1 to 6 for the INRIA

IXMAS dataset, and from 1 to 10 for the other two datasets.

For the experiments with covariance features, we used

multiple LED-RBF and LED-polynomial kernels defined

in (13), whose parameters were chosen based on their in-

dividual crossvalidation performance. Specifically, for the

YouTube dataset, we used 10 LED-polynomial kernels and

15 LED-RBF kernels. For the ETH80 dataset, we used 10

LED-polynomial kernels and 20 LED-RBF kernels. The

values for the RBF parameter γ were taken as 1
n2

δ , where

n is the number of dimensions of Φlog defined in sec-

tion 4.2, and δ = {−7,−6, . . . , 6, 7} for the YouTube

dataset, δ = {−10,−9, . . . , 8, 9} for the ETH80 dataset.

For both datasets, polynomial kernels were generated by

taking γ = 1
n and varying the degree from 1 to 10.

For both linear subspaces and covariance features,

geodesic distances were used in the distance preserving

constraints. In all the experiments, the parameters for the

S-MKL method (SVM parameter C) and the proposed ap-

proach (SVM parameter C and the regularization parameter

λ) were chosen using crossvalidation.

5.4. Results

Table 1 shows the recognition rates for human activ-

ity recognition using dynamical models. Tables 2 and 3

show the recognition rates for image set-based object and

face recognition tasks using linear subspaces and covari-

ance features respectively. We can see that the proposed

approach clearly outperforms the nearest neighbor base-

line method. On an average, the classification accuracy in-

creases by 11.7%. This is expected as the simple nearest

neighbor based classifier may not be powerful enough to

handle the complex visual tasks considered. When com-

pared to the S-MKL approach, the proposed approach per-

forms better in four out of five experiments, with an average

increase of 4.2% in the classification accuracy. This shows

that the proposed manifold-based regularization is indeed

helping in finding a better kernel for classification. On the

INRIA IXMAS dataset, both the S-MKL and the proposed

method gave same recognition rates. Figure 4 shows the

normalized kernel weights for the S-MKL approach (blue)

and the proposed approach (red) on the INRIA IXMAS

dataset. The horizontal axis corresponds to the kernel index

Table 1: Recognition rates for human activity recognition

on the INRIA IXMAS dataset using dynamical models

dataset NN
S-MKL

[17]

SM-P

[21]

SM-NP

[21]

Proposed

approach

INRIA

IXMAS
80.0 90.0 82.4 87.87 90.0

Table 2: Recognition rates for image set-based face and ob-

ject recognition tasks using linear subspaces

dataset NN
S-MKL

[17]

GDA

[8]

Proj +

PLS

[24]

Proposed

approach

YouTube 62.8 64.3 65.7 67.7 70.8

ETH80 93.2 93.7 92.8 95.3 96.0

Table 3: Recognition rates for image set-based face and ob-

ject recognition tasks using covariance features

dataset NN
S-MKL

[17]

CDL-

LDA

[24]

CDL-

PLS

[24]

Proposed

approach

YouTube 40.7 69.7 67.5 70.1 73.2

ETH80 92.7 93.7 94.5 96.5 98.2

varying from 1 to 19 (13 RBF followed by 6 polynomial

kernels). We can see that the kernel weights roughly follow

the same pattern for both the approaches. This explains their

similar performance on the INRIA IXMAS dataset. In the

case of other datasets, the S-MKL approach mostly picked

few base kernels (usually RBF kernels with high γ value or

polynomial kernels of high degree d), whereas the weights

for the proposed approach were distributed over many ker-

nels.

We can also see that the proposed approach clearly per-

forms better than statistical and other kernel-based methods.

The poor performance of SM-P method can be attributed to

the Gaussian assumption. In the case of parametric den-

sity estimation, the mismatch between the assumed distri-

bution and the actual underlying distribution often results

in reduced performance. In the case of SM-NP, the poor

performance could be due to the sub-optimal choice of the

kernel width used in [21]. In general, non-parametric den-

sity estimation methods are sensitive to the choice of kernel

width and a sub-optimal choice often results in poor perfor-

mance [21]. The relatively lower performance of the other

kernel-based methods suggests that, it is effective to jointly

learn the kernel and the classifier directly from the data us-

ing the proposed framework.

Recently, covariance feature combined with PLS has

been shown [24] to perform better than various other re-

cent methods for image set-based recognition tasks. Our
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results show that the classification performance can be fur-

ther improved by combining the covariance feature with the

proposed approach.

6. Conclusion and Future Work
In this paper, we introduced a general framework for

developing extrinsic classifiers for features that lie on Rie-

mannian manifolds using the kernel learning approach. We

proposed two criteria for learning a good kernel-classifier

combination for manifold features. In the case of SVM

classifier, based on the proposed criteria, we showed that

the problem of learning a good kernel-classifier combina-

tion can be formulated as a convex optimization problem

and efficiently solved following the multiple kernel learning

approach. We performed experiments using two popularly

used manifold features and obtained superior performance

compared to other relevant approaches.

Though we focused on the SVM classifier in this paper,

the proposed approach is general and we plan to extend it

to other classifiers in the future. In this paper, the mani-

fold structure has been used as a regularizer using simple

distance-preserving constraints. Another possible direction

of future work is to explore more sophisticated regularizers

that can make use of the underlying manifold structure.
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