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Abstract

In this paper, we propose a computational model of vi-
sual representativeness by integrating cognitive theories of
representativeness heuristics with computer vision and ma-
chine learning techniques. Unlike previous models that
build their representativeness measure based on the visible
data, our model takes the initial inputs as explicit positive
reference and extend the measure by exploring the implic-
it negatives. Given a group of images that contains obvi-
ous visual concepts, we create a customized image ontology
consisting of both positive and negative instances by mining
the most related and confusable neighbors of the positive
concept in ontological semantic knowledge bases. The rep-
resentativeness of a new item is then determined by its like-
lihoods for both the positive and negative references. To en-
sure the effectiveness of probability inference as well as the
cognitive plausibility, we discover the potential prototype-
s and treat them as an intermediate representation of se-
mantic concepts. In the experiment, we evaluate the perfor-
mance of representativeness models based on both human
judgements and user-click logs of commercial image search
engine. Experimental results on both ImageNet and image
sets of general concepts demonstrate the superior perfor-
mance of our model against the state-of-the-arts.

1. Introduction

Measuring representativeness is an important basis for

solving heuristic problems such as “How to choose five

words to describe one of your friend?” or “How to pick

out one image that best illustrates a concept?”. In the early

studies of representativeness heuristic, Kahneman and Tver-

sky [1] expressed representativeness according to which the

subjective probability of an item is determined by the degree

to which it is similar in essential characteristics to its par-

ent set. Based on this expression, the representativeness of

an item in a given data set could be quantitatively measured

∗This work was performed at Microsoft Research Asia

Figure 1. An illustration of representativeness function for b)

Bayesian measure [6], c) naive prototypes, and d) our proposed

model. Taking the prototypes as a middle-level representation, our

model characterizes visual representativeness based on not only

the visible data(*) but also the potential negatives (o) inferred from

ontological knowledge bases. The paper focuses on three issues:

1) Given a set of images as positives, how to automatically acquire

semantic reliable negatives; 2) How to discover all possible pro-

totypes without knowing the precise number; 3) How to measure

representativeness based on the customized image knowledge.

by their similarity [2, 3, 4]. In recent cognitive psycholo-

gy research, Tenenbaum and Griffiths [5] proposed a ratio-

nal model of representativeness based on Bayesian analysis

of what makes an observation a good sample of a catego-

ry or of a process, in which the most representative sample

is the one that best provides evidence for the target process

or concept relative to possible alternatives. This model can

explain why people think HHTHT more likely than HHH-

HH to be produced by flipping a fair coin, even though the

two patterns are equal likely. Abbott et al. [6] extended the

Bayesian measure which defines the representativeness of

a sample from a distribution [5] to define a measure of the

representativeness of an item to a set.

During the development of modern computer vision and

multimedia technologies, especially for intelligent image

browsing systems and search engines, people also investi-

gate computational definition of representativeness to rank

the retrieved images under keywords or example queries.

Simon et al. [7] selected representative views of city scenes,
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noted as canonical views, based on clustering techniques

and visual-textual likelihood. Kennedy and Naaman [8]

proposed a novel approach to automatically generate repre-

sentative and diverse views of landmarks by leveraging the

community-contributed collections of rich media on the we-

b. Given a set of images with the same landmark tag, they

first cluster the images into different views and then rank

the clusters according to four heuristic criteria including the

number of users, visual coherence, cluster connectivity and

variability in dates. In [9], a graph-based representation,

namely ImageKB, was proposed to efficiently organize se-

mantic categories, entities and billions of images. Given

an <Entity, Category> pair in ImageKB, the representa-

tiveness of an image is measured using semantic similarity,

category relevance and representative confidence of its K

nearest neighbors. This measurement is closely related to

the ideas of visual coherence and cluster connectivity, yet

much more general in query types and data scale. Doersch

et al. [10] proposed a novel framework which detects rep-

resentative elements for cities such as “Paris” using weak

geographic supervised information from a large amount of

Google street-view photographs. They adopted a discrimi-

native clustering approach to automatically locate local geo-

informative features which appear frequently in one locale

while rarely in others. Although the geographic supervi-

sion cannot be served as a general principle, the promising

results demonstrate the effectiveness of the discriminative

framework. Generally, most of the related works are con-

sistent with ([8]-[14]) or directly derived from ([6, 15]) the

classic Bayesian definition of representativeness [5]:

R(d, h) = log
P (h|d)
P (h)

= log
P (d|h)∑

h′∈H P (d|h′)P (h′)
, (1)

where d is an observed item, H denotes a set of alterna-

tive hypotheses that might explain d. The representativeness

R(d, h) is the ratio of posterior to prior probability, which

characterizes the extent to which the observation of d could

increase the probability of h. Although the above definition

has a very simple form, we still face multiple challenges to

generalize it to the visual world. The most important issue

for implementing Eq. 1 is to define a reasonable hypothe-

ses set H for visual signals. Abbott et al. [6] assumed an

independent Bernoulli distribution with one single param-

eter θ for each binary visual feature. As shown in Figure

1, such statistical assumption leads to very coarse middle-

level representations of the items, and will possibly fail to

provide an accurate representativeness function because the

visual world is undoubtedly much more complex.
Main Approach In this paper, we proposed a hybrid s-

tatistical model for visual representativeness by integrat-

ing the prototype theory with the classic Bayesian measure

and adopting semantic knowledge from the image ontolo-

gy datasets to avoid modeling the visual world with certain

types of statistical distributions. The formal definition of

our visual representativeness is as follows. Given x∗ as a

test image, and Dr a reference data set containing multiple

images with similar semantic concepts. The representative-

ness of x∗ for Dr is defined as:

R(x∗,Dr) =
p(x∗|Dr)

p(x∗|Dn)
=

∑
r p(x

∗|r)p(r|Dr)∑
n p(x∗|n)p(n|Dn)

, (2)

where r denotes a prototype ofDr, and n a prototype ofDn.

This definition has two advantages: 1) Instead of all possi-

ble alternatives, it only focuses on the reference data and its

negatives; 2) Probability inferences are conducted within a

small yet compact prototype space. In the implementation

phase, we focus on two main issues: 1) How to find nega-

tive references with reasonable semantic meanings; 2) How

to discover all possible prototypes without knowing the pre-

cise number. For the first issue, we apply image ontology

datasets, e.g. ImageNet [16] and ImageKB [9], to get the re-

quired semantic structure and relevant image instances and

then group them together to form a negative reference set.

For the other issue, we proposed a prototype discovery al-

gorithm which automatically determines the number of pro-

totypes based on an efficient statistical unimodality test. In

summary, this paper makes the following contributions:

• We proposed a semantic embedded visual representa-

tiveness model. As a hybrid model derived from pro-

totype theory and the Bayesian measure of representa-

tiveness, our model has a solid foundation from cog-

nitive research on representativeness and use dynamic

prototypes to get a flexible mid-level representation.

• Ontological knowledge bases are adopted to embed

visual semantics in the proposed framework which

avoids modeling the complex visual world with fixed

types of statistical distribution and limited number of

parameters. Together with the prototype theory, se-

mantic embedding ensures a more accurate and mean-

ingful measure of representativeness for general visual

concepts.

• The proposed model can be applied to many vision-

related applications such as detecting representative re-

gions of a photograph, finding a group of representa-

tive images that best describe an entity, or more prac-

tically ranking images based on the search results of

commercial image search engines.

The structure of the paper is as follows. In Section 2, we

provide some background information, including semantic

ontology databases and the prototype theory. Section 3 then

delivers the details of our semantic embedded representa-

tiveness model. We present the experimental results in Sec-

tion 4 and give a discussion in Section 5 focusing on the

relationship between the proposed representativeness and

other visual properties such as saliency. Finally, we con-

clude this paper in Section 6.
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2. Related Works
Semantic Knowledge Base Semantic knowledge bases

provide the relationships between words (WordNet[17]) or

meaningful semantic concepts (NeedleSeek [18]) which es-

tablish the foundation of automatic semantic analysis for

natural language processing and information retrieval. With

respect to vision research, Deng et al.[16] proposed a large-

scale hierarchical image database named ImageNet based

on the structure of WordNet which serves as an image on-

tology base containing 21,841 WordNet synsets and over 14

million highly selected images (2011 Fall release). Com-

pared to previous image datasets, ImageNet inherits the se-

mantic hierarchy of WordNet and meanwhile provides high

resolution images that are manually verified to contain the

relevant concepts. Based on ImageNet, Deselaers and Fer-

rari [19] built a novel distance function between images

by not only estimating the visual similarity as in traction-

al works but also assessing whether they are from the same

basic-level category. The ImageNet distance exploits se-

mantic similarity measured through the ImageNet semantic

hierarchy, which outperforms and goes beyond direct visu-

al distances in traditional vision research. The promising

results [16, 19, 20] inspired us to embed semantic ontologi-

cal knowledge into visual representativeness computation to

make our model more reasonable and consistent with both

semantic and appearance aspects of the visual world.

Prototype Theory In cognitive science, the prototype

theory [21, 22] states that categories tends to be defined in

terms of prototypes or prototypical instances that contain

the attributes most representative of items inside and least

representative of items outside a category. Sufficiently spe-

cific categories can be defined as a single prototype repre-

sented by typical shapes and attributes [2, 19]. As shown in

Figure 1, using prototypes as an intermediate representation

has two advantages: 1) consistent with the cognitive under-

standing of semantic categories and 2) leads to a continuous

and well-bounded measure function.

3. The Model
The framework of our proposed model is shown in Fig-

ure 2. Our model takes three kinds of input: 1) keywords

that represent a concept, 2) keywords + the related images,

and 3) unlabeled images. For case 3), we use Google anno-

tation service to label the input images and select the most

related keywords to represent the underlying concept. Tak-

ing the keyword as a seed, we build a customized image

ontology based on large-scale semantic ontology databas-

es and image search engines. The customized image on-

tology contains images for both the input concept as well

as the confusable semantic neighbors (negative references).

Potential prototypes are mined by a dynamic prototype dis-

covery algorithm which is designed for arbitrary data dis-

Figure 2. The proposed visual representativeness model.

tributions and can effectively guarantee the unimodality of

each prototype. Finally we estimate the representativeness

of related images by Eq. 2.

3.1. Embedding Ontological Visual Semantics

We embed visual semantics in the proposed model by

customizing a small image ontology from semantic knowl-

edge bases such as WordNet [17] and NeedleSeek [18]. The

customized image ontology is built and organized like Im-

ageNet containing both the semantic entities and relevant

images. However, the attached images are left unverified s-

ince we don’t want to involve any human interactions. Note

that ImageNet has covered over twenty thousand synsets of

WordNet and most of its attached images have been man-

ually verified, we can directly build our customized image

ontology from ImageNet as long as the query entity is avail-

able. Given an image set, the construction of the customized

image ontology can be done by the following steps:

Step 1: Locating the Semantic Concept If the concept

(represented as keyword) of the image set is given, we di-

rectly go to Step 2. If the concept is not specified, we obtain

the keyword by simply applying the on-line annotation ser-

vice from Google Image Search.

Step 2: Finding the Negative References Given the key-

word, we search for the most related and confusable con-

cepts on either WordNet or NeedleSeek. Empirically, we

use the sibling nodes of the given concept on NeedleSeek

as the negative references for implementation simplicity.

Step 3: Building Customized Image Ontology For those

concepts that are available on ImageNet, we directly attach

the corresponding images as a part of our customized im-

age ontology. Instances for other concepts are obtained by

crawling images through Google Image Search.
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3.2. Dynamic Prototype Discovery

In the above section, we have constructed a customized

image ontology which consists of two groups of images in-

cluding Dr (the original input image set) and Dn (the neg-

ative reference image set). The goal of this section is to

discover the prototypes from Dr and Dn as a middle-level

representation for our representativeness model. Since we

do not know the exact number of prototypes, this task can

be regarded as an incremental clustering problem which re-

quires a careful estimation of the number of clusters. A

common solution is to begin with a small k, and iteratively

increase it by splitting the intermediate clusters rejected by

a specific statistical test [23, 24].

To ensure the robustness of the discovery algorithm, we

follow the proposal of [25, 26] and use a general statisti-

cal test named Dip-dist to estimate the number of proto-

types. Note that, we select Dip-dist because it is efficient

(O(bnlogn+n2)) and robust to various kinds of data distri-

butions. Algorithm 1 shows the dynamic prototype discov-

ery algorithm in details. We set kinit = 1,m = 2, the dip-

test[25] parameters α = 0, b = 1, 000 and the unimodality

threshold vthd = 0.01 in all the experiments. Practically, if

the input dataset for dis-test is too large(> 400), we replace

the input by its subset, which contains 400 randomly select-

ed items, to boost the processing speed. The test result on a

small group of images is shown in Figure 3.

Algorithm 1: Dynamic prototype discovery

Input: Dataset X = {xi}Ni=1, the initial number of

prototypes kinit, a splitting number m, a statistic

significance level α for the unimodality test,

threshold vthd for spliting the candidate prototype.

Output: Prototypes P = {pj}kj=1 and the conditional

probability p(p|X)
1 k ← kinit;

2 Run k-means on X to obtain cluster centers C = {cj}kj=1;

3 Initialize the prototype set by: P ← C;

4 repeat
5 k′ ← k
6 for j = 1, ..., k do
7 scorej ← unimodality test (pj , α, vthd)[26];

8 end
9 if maxj(scorej) > 0 then

10 k ← k + 1, d← argmaxj(scorej);

11 Xsub = {xi|xi ∈ X, |xi−pd|2 = minj |xi−pj |2};
12 Run k-means on Xsub to get m prototypes D;

13 P = P
⋃

D − {pd};
14 end
15 until k′ = k;

16 for j = 1, ..., k do
17 p(pj |X) =

|{xi|xi∈X,|xi−pj |2=minpn∈P |xi−pn|2,}|
|X| ;

18 end
19 return P, p(p|X);

Figure 3. Typical results of dynamic prototype discovery. Top:

image set of the Golden Gate Bridge; Bottom: the discovered pro-

totypes with conditional probability. Our algorithm is able to in-

crementally discover semantically meaningful prototypes without

knowing the exact number of potential topics. In this case, the

prototypes summarize the image set by environmental conditions.

3.3. Computing Representativeness

We obtain the customized image ontology in Section 3.1,

and the prototypes with conditional probabilities in Section

3.2. The last step is to define the relationship between the

items and prototypes. For simplicity, the conditional prob-

ability p(x∗|r) is defined as the similarity between item x∗

and the underlying prototype r:

p(x∗|r) = exp{−λ|x∗ − r|2}, (3)

where λ is a scaling constant to keep p(x∗|r) in a reasonable

interval. Based on all pre-computed terms, the final score

for representativeness is computed according to Eq. 2.

4. Experiments
In this section, we show how our model performed in

two applications including 1) improving the quality of Ima-

geNet and 2) mining representative images for general con-

cepts. Images used in our experiment are downloaded from

ImageNet and Google Image Search. For each image, we

construct a 5096-D compact BoW feature by combining a

1,000-D SIFT BoW vector [27] with a 4096-D RGB color

histogram. Besides subjective evaluations [5, 6], we pro-

pose to use the number of user-clicks as another ground-

truth for image representativeness. Note that, the user-click

data are acquired from a different image search engine,

specifically the Bing Image Search, in order to eliminate

the potential ranking bias caused by the usage of query as-

sociation data.
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Evaluation Metrics Given a list of images ranked by an

image search engine, web-users usually click on those im-

ages which they believe to be attractive/representative to

their queries. By taking user-clicks as votes for the repre-

sentativeness of tested images, we define another evaluation

metric based on the choices made by Web-users:

SW (R) =

N∑

i=1

UCi/Ri, (4)

where i is the image index, Ri denotes the ranking position

of image i, and UCi is the number of user clicks for test im-

age i recorded in the query association log of Bing Search1.

Since SW has a potential bias problem (see Sec. 5), we pro-

pose a subjective metric SS as a complement for Section

4.2. Similar as [6], we asked human subjects to label the

representativeness score ranging from 1 to 10 (10 for the

best) for each image used in the experiment. The subjects

are asked to carefully study the test concepts before start-

ing their labeling work. Based on the labels, the subjective

ranking score SS can be defined as:

SS(R) =

N∑

i=1

URi/Ri, (5)

where URi is the average subjective score of image i.

Baseline Models To demonstrate the effectiveness of our

method, we compare our results with two baseline ap-

proaches: Bayesian Model and Naive Prototype Model.

Bayesian Model - The Bayesian Model [6] is a natural gen-

eralization of the cognitive theory of representativeness [5]

and implemented based on Bayesian Sets [11] which is a

statistical technique initially proposed for measuring how

appropriately a new sample can fit into a given set of da-

ta. Formally, given a data set D and a subset of samples

Ds = {x1, ...,xN} ⊂ D representing a conceptual group,

Bayesian Sets measures the representativeness of a given

sample x∗ ∈ {D\Ds} by the following equation:

Bscore(x∗,Ds) =
p(x∗,Ds)

p(x∗)p(Ds)
. (6)

In the original work [6], xi ∈ D is represented as a bina-

ry feature vector (xi1, ..., xiJ) where xij ∈ {0, 1}. It as-

sumes that each element of xi has an independent Bernoulli

distribution parameterized by θ : p(x|θ) = ΠJ
j=1θ

xij

j (1 −
θj)

xij . By combining the Beta distribution p(θ|α, β) =

Πj
Γ(αj+βj)
Γ(αj)Γ(βj)

θ
αj−1
j (1 − θj)

βj−1 as the conjugate prior for

θ, Eq. 6 could be reformulated as:

Bscore(x∗) =
∏
j

αj + βj

αj + βj +N

(
α̃j

αj

)x∗j
(
β̃j

βj

)1−x∗j

,

(7)

1http://www.bing.com

where α̃j = αj+
∑N

n=1 xnj and β̃j = βj+N−∑N
n=1 xnj .

As suggested by Abbott et al [6], we compute the logarithm

of Eq. 7 as the final score for representativeness:

BM(x∗,Ds) = logBscore(x∗) = c+
∑
j

sjx∗j , (8)

where c =
∑

j log(αj +βj)− log(αj +βj +N)+log β̃j−
log βj , and sj = log α̃j − logαj − log β̃j + log βj . In the

experiment, the hyperparameters α and β are empirically

set as α = km, β = k(1−m), where m is the mean value

of the binary features over all samples in the test dataset and

k is a scaling factor which controls the effect of m in model

initialization. In the experiment, we set k = 1, and fol-

lowed the procedure of [6] to generate binary features from

the compact BoWs. For each element of the BoW vector,

if it is positively skewed, we assign the value 1 to the sam-

ples for which the value of that element is above 80%, then

assign the value 0 for the rest. If the feature is negatively

skewed, we assign the value 1 to the samples for which the

value of that element is below 80%, then assign the value 0
for the rest.

Naive Prototype Model -[2] We implemented the naive pro-

totype model of representativeness following the procedure

of [6]. Given a datasetD, we select its prototype sample by:

xproto = argminx

N∑
i=1

|xi − x|2,x,xi ∈ D, (9)

which aims to minimize the mean square error within the

dataset. The representativeness score is then defined as the

similarity between the input and the prototype:

NPT(x∗,Ds) = exp{−λ|x∗ − xproto|2}, (10)

where xproto, represented as a BoW vector, is the prototype

of Ds, and λ is a scaling constant which actually does not

affect the ranking results.

4.1. Ranking Images on ImageNet

ImageNet [16] is a large-scale image ontology dataset

which provides us the essential knowledge of the visual

world including not only semantic hierarchies but also the

relevant image instances. Although all images in ImageNet

are manually verified to contain the relevant concepts, their

quality and representativeness are still left un-labeled. In

this section, we apply our model to rank the images of Ima-

geNet in order to give representative images higher priority

in potential applications.

We show quantitative evaluation results for two groups

of data from ImageNet: big cat and pome. Three models

including Bayesian Model(BM[6]), Naive Prototype (NPT)

and our model are adopted to re-rank the images of the 11
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Figure 4. Re-ranking images on ImageNet. Compared to the un-

organized data, the top-ranked images always contain conspicuous

instances for the underlying synset and have much less occlusions

and distracters, e.g. human bodies and man-made objects.

children synsets1. Table 1 shows the web-click score Sw of

the ranking results for the tested models as well as the o-

riginal rank. Relatively, our model achieved the largest im-

provement compared with the other two approaches. Figure

4 shows some typical ranking results of our method.

Table 1. Quantitative Evaluation SW on ImageNet.

ID Origin BM NPT Ours

1 6.6822E-1 1.5054E+0 7.2690E-1 6.4989E+0
2 4.5906E+0 1.0599E+1 1.9066E+1 4.0684E+1
3 5.7921E+0 3.8826E+0 6.1455E+0 8.0257E+0
4 1.1633E-1 2.9740E-1 9.0174E-2 9.1124E-2

5 5.0671E+1 5.7508E+1 1.2151E+2 2.9409E+1

6 1.1764E+0 8.1034E-1 1.6402E+0 2.7653E+0
7 4.3777E+1 1.7893E+0 2.0931E+0 1.9262E+0

8 1.0728E+1 1.0211E+0 7.2240E-1 1.8984E+0

9 3.0949E-2 1.9927E-1 6.6682E-2 2.6842E-2

10 8.1893E-3 1.4129E-2 9.0000E-3 2.4793E-2
11 1.1230E+0 4.7773E-1 1.5035E+0 1.4657E+1

1ID 1-11 in Table 1 denote WordNet synsets: n02129991, n02128925,

n02128757, n02130086, n02128385, n02129604, n02130308, n07739125,

n07767847, n07769584

4.2. General Representative Image Mining

In this section we consider a more general case: given a

concept, how to automatically select the most representative

images without human interaction. Practically, given a key-

word, we search for the k most related words using a public

available semantic ontology named NeedleSeek [18]. Then,

we crawl images by querying Google with all the related

keywords to build a customized image ontology. Based on

the auto-built image ontology, we set up the representative-

ness model following the procedure in Section 3. Represen-

tative Images can then be obtained by ranking the concept-

related images with our model. Note that this procedure can

be applied to refine the results of commercial image search

engines since it is fully automatic, semantic-aware, and psy-

chological plausible. We test the representativeness model-

s with three concepts: Wolf (animal), Paris(city) and Rose
(flower). The related keywords obtained from NeedleSeek2

are shown in Table 2. For each keyword, we crawled 200

images from Google Image Search3 to build the customized

image ontology. We use SW and SS as quantitative evalu-

ation metrics for the mining performance. The results are

shown and discussed in Figure 5.

Table 2. Related keywords of the tested concepts

concept related keywords at NeedleSeek [18]

Wolf wolf, moose, elk, deer, coyote, bear, beaver, black

bear, bobcat, lynx

Paris Paris, Berlin, London, Tokyo, Beijing, Moscow,

Rome, Sydney, Washington, New Delhi

Rose rose, lily, chrysanthemum, daisy, carnation, or-

chid, tulip, daffodil, violet, gladiolus

5. Discussion
Relation to Saliency People might be confused when be-

ing asked to point out both the “representative” and the

“salient” parts of an image. By taking the logarithm of Eq

2, we could explicitly show the connection between these

two concepts, which might lead to a reasonable explanation

for the cause of such confusions.

log(R(x∗,Ds)) = log(p(x∗|Ds))︸ ︷︷ ︸
Log likelihood

− log(p(x∗|Dn))︸ ︷︷ ︸
Self Information

(11)

The first term in Eq 11 is simply the log likelihood which

has also been used as a measure of representativeness in pre-

vious works [28]. The second term is the Self-Information

of x∗ conditioned on the observation ofDn. Note that, Self-

Information is a well accepted measure of bottom-up salien-

cy in early vision modeling research [29, 30, 31]. Thus,

our representativeness can be explained as “Likelihood +

2http://www.needleseek.msra.cn/
3http://images.google.com
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Figure 5. Representative image mining for “Wolf”, “Paris” and “Rose”. For each concept, we show both intuitive (images) and quantitative

(SW &SS) comparisons between Google, Bayesian Model [6] (BM), Naive Prototype Model (NPT), and our method. Intuitively, our model

is less sensitive to outliers compared to Google and BM, and it also generates comprehensive results that have better diversity than NPT.

Figure 6. Comparisons between bottom-up saliency and the pro-

posed representativeness. For each row, we show the input image,

the AIM saliency map [31], and the visualized response map of

our representativeness. Unlike the saliency method, our model lo-

cates those regions which contain both salient and discriminative

contents such as the golden roof of the Chinese Palace Museum

and the huge pillars of the German Berlin Museum.

Saliency”, which favors the items that are not only well fit-

ted into the observed concept but also remarkably salien-

t to other related, confusable concepts. Figure 6 shows

some comparisons between our representativeness model

and AIM saliency (Attention by Information Maximization

[31]) on natural images. We run the AIM code package4

with its default parameter settings. To show the real differ-

ences, we use the same features to compute the response

map of our representativeness model. The input image is

first decomposed by 25 21 × 21 × 3 color bases. The co-

efficient vector of each location is treated as a single item

whereas all items compose the reference dataset (Dr). In

each test, we use the input image in the other test to gen-

erate the negative reference (Dn). The two input images

4http://www-sop.inria.fr/members/Neil.Bruce/

are collected from the Internet, which capture the classic

view of the Palace Museum of China and the Berlin Muse-

um in Germany. As shown in the results, AIM saliency map

highlights the unique objects, e.g. the building corners and

human bodies, whereas our model favors the representative

components such as the golden roof and huge pillars which

are indeed the most recognizable elements for eastern and

western architectural styles.

Evaluation Bias In the experiment, our second evaluation

metric SW explicitly characterizes the representativeness of

a given image by the number of user-clicks the image has re-

ceived. This measure benefits from the large number of web

users, and mostly it is more reliable and objective compared

to human evaluation because it is not restricted by subject

numbers and variety. The potential problem with this metric

is that users might click an image according to their person-

al interests instead of the real semantic relevance. Such kind

of clicks will bias the evaluation to favor attractive images

rather than the representative ones. However, such imper-

fection does not affect the validity of this evaluation metric

for comparing the relative performance of different repre-

sentativeness models.

Disambiguation Polysemy is a practical problem for

large scale implementation of our framework. Intuitively,

we could rely on the strength of NeedleSeek [18] to tack-

le this problem. For example, in NeedleSeek, the concept

“apple” corresponds to three categories including “fruit”,

“brand” and “tree”. Based on such knowledge, images can

be collected and organized into different semantic branch-

es by which we can effectively eliminate the polysemous

problem for the subsequent processing.

520520522



6. Conclusion
In this paper, we have introduced a novel computation-

al model for visual representativeness based on ontological

semantic embedding and dynamic prototype discovery. Un-

like previous works that focus on the visible data, we exploit

the possibility of integrating implicit information to support

semantic-aware visual analysis. The embedded image on-

tology provides additional image statistics helping the mod-

el to identify true outliers. Meanwhile, the intermediate

prototype representation enhances the cognitive plausibil-

ity of our model and ensures the accuracy and effectiveness

of the probabilistic inference. Experimental results demon-

strate the superior performance of the proposed approach a-

gainst the state-of-the-art representativeness models as well

as commercial image search engines. The computational

cost of our method is approximately O(n2), where n is the

number of the retrieved/indexed images of a concept. S-

ince n has an expectable upper bound (e.g.<1000 for on-

line retrieval), the cost can be regarded as constant, so that

our approach is highly scalable and thus can be applied in

billion-level applications.
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