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Abstract

Brain mapping transforms the brain cortical surface to
canonical planar domains, which plays a fundamental role
in morphological study. Most existing brain mapping meth-
ods are based on angle preserving maps, which may in-
troduce large area distortions. This work proposes an
area preserving brain mapping method based on Monge-
Brenier theory. The brain mapping is intrinsic to the Rie-
mannian metric, unique, and diffeomorphic. The computa-
tion is equivalent to convex energy minimization and power
Voronoi diagram construction. Comparing to the exist-
ing approaches based on Monge-Kantorovich theory, the
proposed one greatly reduces the complexity (from n2 un-
knowns to n ), and improves the simplicity and efficiency.

Experimental results on caudate nucleus surface map-
ping and cortical surface mapping demonstrate the efficacy
and efficiency of the proposed method. Conventional meth-
ods for caudate nucleus surface mapping may suffer from
numerical instability; in contrast, current method produces
diffeomorpic mappings stably. In the study of cortical sur-
face classification for recognition of Alzheimer’s Disease,
the proposed method outperforms some other morphometry
features.

1. Introduction

Nowadays surface parameterization has been used for

a wide variety of applications like pattern recognition and

medical imaging. Many prominent approaches, such as

conformal mapping [18] and Ricci Flow [20] which have

been employed to shape analysis [27, 7] and surface regis-

tration [35]. However, an accurate isometric parameteriza-

tion is impossible for general surfaces.

The conformal mapping may bring huge area distortions

in certain surfaces, e.g. a slim surface of brain caudate nu-

cleus. In turn, such distortions usually introduce much diffi-

culty for following shape analysis. As the clinical questions

of interest move towards identifying very early signs of dis-

eases, the corresponding statistical differences at the group

level invariably become weaker and increasingly harder to

identify. A stable method to compute some other mapping

with alternative invariants may be highly advantageous for

visualization and shape analysis in this research area.

In this work, we propose a novel method to compute

area preserving mapping between surfaces. The mapping

is diffeomorphic and unique under normalization. More-

over, the mapping is invariant under isometric transforma-

tions. We tested our algorithm on cortical and caudate nu-

cleus surfaces extracted from 3D anatomical brain magnetic

resonance imaging (MRI) scans. Figure 1 demonstrates the

unique power that the area preserving mapping provides

for brain cortical surface visualization when compared with

its counterpart conformal mapping result. On cortical sur-

faces, the area preserving may also provide good visual-

ization function to visualize those deeply buried sulci areas

which otherwise are usually visualized with big area dis-

tortions. In a classification study, our algorithm achieved

87.50% ± 0.55% average recognition rate with 95% confi-

dence interval in a brain image dataset consisting of images

of 50 healthy control (CTL) subjects and 50 Alzheimer’s

Disease (AD) patients. We also show that this novel and

simple method can outperform two other morphometry fea-

tures in the same dataset.

1.1. Comparison

The area preserving mapping is based on Optimal Mass
Transport (OMT) theory, which has been applied for im-

age registration and warping [19, 26] and visualization [36].

Our method has fundamental differences from these exist-

ing methods.
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Figure 1. Comparison of geometric mappings for a left brain cortical surface: (a) brain cortical surface lateral view; (b) brain cortical

surface medial view; brains are color coded according to functional area definition in [11]; (c) conformal mapping result; (d) area preserving

mapping result. The results show that conformal mapping has much more area distortions on the areas close to the boundary while the area

preserving mapping provides a map which preserves the area everywhere.

Monge considered the transportation cost for moving a

pile of dirt from one spot to the other, then formulated the

Optimal Mass Transport problem. Let Ωk ⊂ R
n be subdo-

mains in R
n, with positive density functions μk, such that∫

Ω0

μ0dx =

∫
Ω1

μ1dx.

Consider a diffeomorphism f : Ω0 → Ω1, which is mass
preservation

μ0 = |Jf |μ1 ◦ f
where Jf is the Jacobian of the mapping f . The mass trans-
port cost is

C(f) :=

∫
Ω0

|x− f(x)|2μ0(x)dx.

An optimal mass transport map, when it exists, min-

imizes the mass transport cost. There are two different

approaches to prove the existence of the optimal mass

transport map, i.e. Kantorovich’s and Brenier’s. Existing

methods follow Kantorovich’s approach [24], our proposed

method follows Brenier’s [8].

Kantorovich constructed a measure μ(x, y) : Ω0×Ω1 →
R, which minimizes the cost∫

Ω0×Ω1

|x− y|2μ(x, y)dxdy, (1)

with the constraints∫
Ω1

μ(x, y)dy = μ0(x),

∫
Ω0

μ(x, y)dx = μ1(y). (2)

In contrast, Brenier showed there exists a convex function

u : Ω0 → R, such that its gradient map ∇u gives the opti-

mal mass transport map, and preserves the mass:

μ0 = det|H(u)|μ1 ◦ ∇u.

Conventional methods discretize each Ωk to n samples

with discrete measures, and model the measure μ to an

n×n matrix with linear constraints Eqn.2, such as a doubly-

stochastic matrix (sum of each row and the sum of each

column equal to one). The optimization of energy Eqn.1 is

converted to a linear programming problem with n2 vari-

ables.

In our current method, we only discretize the target do-

main Ω1 to n points, then determine n power weights for

them, so that the power Voronoi diagram induced by the

points and their power weights gives the optimal mass trans-

port map. Furthermore, the n power weights can be ob-

tained by optimizing a convex energy.

Comparing to Kantorovich’s approach, Brenier’s ap-

proach has the following merits from computational point

of view:

1. Complexity: Existing method has n2 unknowns,

whereas ours has only n variables.

2. Uniqueness: Due to the convexity of the energy, our

method has a unique solution.

3. Diffeomorphism: If the domains are convex, The opti-

mal mapping is guaranteed to be diffeomorphic.

4. Efficiency: Due to the convexity of the energy, it can

be optimized using Newton’s method.

5. Simplicity: The computational algorithm is mainly

based on (power) Voronoi diagram and Delaunay tri-

angulation.

Furthermore, the obtained area preserving mapping be-

tween two surfaces is solely determined by the surface Rie-

mannian metric, therefore it is intrinsic.

1.2. Contributions

Our major contributions in this work include: a way to

compute area preserving mapping between surfaces based

on Brenier’s approach in Optimal Mass Transport the-

ory. The current approach produces the unique diffeomor-

phic mapping. Comparing to the exiting method, the new
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method greatly reduces the complexity (from n2 to n) and

improves the simplicity and efficiency.

Thus our method offers a stable way to calculate area

preserving mapping in 2D parametric coordinates. To the

best of our knowledge, it is the first work to compute area

preserving mapping between surfaces based on Brenier’s

approach in OMT and apply it to map the profile of differ-

ences in surface morphology between healthy control sub-

jects and AD patients. Our experimental results show our

work may provide novel ways for shape analysis and im-

prove the statistical detection power for detecting abnormal-

ities in brain surface morphology.

1.3. Related Work

Conformal mapping and quasi-isometric embedding has

been applied in computer vision for modeling the 2D shape

space or 3D shape analysis [27, 9, 7]. Quasi-isometric brain

parameterization has been investigated in [13, 6, 12, 31].

Conformal brain mapping methods have been well devel-

oped in the field, such as circle packing based method in

[21], finite element method [3, 23, 32], spherical harmonic

map method [17], holomorphic differential method [33]

and Ricci flow method [34].

Area preserving mapping has been applied for visual-

izing branched vessels and intestinal tracts in [36], which

combined Kantorovich’s approach with conformal map-

ping. Optimal mass transport mapping based on Kan-

torovich’s approach has been applied for image registration

in [19]. An improved multi-grid version of OMT mapping

is presented in [26]. Comparing to the existing method, our

method is based on Monge-Brenier theory to compute the

Optimal Transport mapping and achieves the area preserv-

ing.

2. Theoretic Foundation

Power Diagram Consider a collection of points P =
{p1, p2, · · · , pk} in R

n. Suppose each point pi ∈ P has

a power (weight) hi ∈ R. The power distance from a point

x ∈ R
n to pi is defined as

Pow(x, pi) := |x− pi|2 − hi.

The power diagram of {(pi, hi)} is a partition of the R
n

into k cells Wi, such that a point x belongs to Wi whenever

Pow(x, pi) = min
j

Pow(x, pj).

We denote the area of Wi as wi, call it the area weight.
The dual graph of the power diagram is called the power
Delaunay triangulation.

For each site (pi, hi), we define the supporting hyper-

plane

xn+1 = xT pi − pTi pi/2 + hi/2.

The power diagram function is the upper envelope of all

supporting hyper planes

u(x) := max
i
{〈pi, x〉 − 1

2
〈pi, pi〉+ 1

2
hi} (3)

Hence the power diagram on P corresponds, by vertical

projection, to the graph of u(x).

Optimal Transport Problem Suppose Ω is a domain in

R
n and μ a Borel measure with μ(Rn) being the total vol-

ume of Ω. Consider transport maps T : (Ω, dx)→ (Rn, μ)
which are measure preserving, T ∗μ = dx. The cost for the

mapping is defined as

C(T ) :=

∫
Ω

|x− T (x)|2dx.

In Brenier’s seminal work [8], he proved the following fun-

damental theorem,

Theorem 2.1 (Brenier). Let Ω be an n-dimensional com-
pact convex set in R

n and μ any Borel measure on R
n, so

that μ(Rn) is the volume of Ω. Then there exists a convex
function u on Ω, unique up to adding a constant, so that the
gradient map

∇u : (Ω, dx)→ (Rn, μ) (4)

is measure preserving and∇u minimizes the quadratic cost∫
Ω
|x− T (x)|2dx among all transport maps T .

In the following, we call the convex function u the Bre-
nier potential, and the gradient map ∇u the Brenier map.

In the discrete setting for optimal transport problem,

we take the measure μ with finite support, i.e. μ =∑k
i=1 wiδpi , where wi > 0 and δp is the Dirac measure.

Then the discrete Brenier theorem is as follows:

Corollary 2.2. Let Ω be an n-dimensional compact con-
vex set in R

n, point set P = {p1, p2, · · · , pk} ⊂ R
n,

with weights w1, w2, · · · , wk > 0, so that
∑k

i=1 wi =
vol(Ω). Then there exists a piecewise linear convex func-
tion u : Ω → R, so that Ω is decomposed to k convex sets
W1,W2, · · · ,Wk with the property that

1. u|Wi is linear with ∇u|Wi = pi,

2. Area(Wi) = wi for all i.

so that ∇u is the solution to optimal transport problem for
Ω and {(p1, w1), · · · , (pk, wk)} with quadratic cost. The
convex function u is unique up to a constant.

Variational Principle for Finite Brenier Map We have

found a finite dimensional variational principle for con-

structing the finite Brenier map. Fix a finite point set P =
{p1, p2, · · · , pk}, the powers are h = (h1, h2, · · · , hk),
the power diagram of {(pi, hi)} in R

n partitions Ω to cells

{W1,W2, · · · ,Wk}, the areas are w = (w1, w2, · · · , wk).
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Then the power diagram function u(x) Eqn.3 is the Bre-

nier potential, the gradient map is the Brenier map ∇u :
Wi → pi, which minimizes the quadratic distance cost

C(T ) =
∫
Ω
|x−T (x)|2dx for all the maps with the measure

preserving property

V ol(T−1(pi)) = V ol(Wi) = wi, i = 1, 2, · · · , k.
Furthermore, we treat the areas w as the function of the

powers h, then the mapping h → w is a diffeomorphism.

Let W := {w|∑i wi = vol(Ω), wi > 0} be the space of

all possible area vectors, and H := {h|∑i hi = 0, ∀wi >
0} be the space of all possible power vectors, then

Theorem 2.3 (Main Theorem). Let Ω be a convex domain
in R

n. Fix the point set P , given a power vector h ∈ H , let
w be the area vector associated to the convex cell decom-
position of Ω induced by the power diagram for {(pi, hi)},
then the mapping w = φ(h) : H → W is a diffeomor-
phism.

Proof. We prove the theorem for dimension 2, which can

be generalized to arbitrary dimension straightforwardly.

Let the power diagram for h be Dh, the dual Power De-

launay triangulation be Th. Any edge ē ∈ Dh has a unique

dual edge e ∈ Th. Suppose two Voronoi cells Wi and Wj

shares an edge ēij , the direct computation shows

∂wi

∂hj
=

∂wj

∂hi
=
|ēij |
|eij | > 0. (5)

and
∂wi

∂hi
= −

∑
j �=i

∂wi

∂hj
. (6)

We construct a differential 1-form

ω =
k∑

i=1

widhi,

From Eqn.5, ω is closed, dω = 0. From Brunn-Minkowski

theorem [2], we know H is a convex domain. Therefore, ω
is an exact form. We then define an energy function

E(h) :=

∫ (h1,h2,··· ,hk) k∑
i=1

wihi. (7)

The Hessian matrix of E is given by

∂2E

∂hi∂hj
=

∂wj

∂hi
, (8)

From Eqn.5 and Eqn.6, we know the negative of the Hessian

is diagonal dominant, so the Hessian is negative definite,

the energy E is concave. From the convexity of H and the

concavity of E, we conclude the gradient mapping

h→ ∇E(h) = w

is a diffeomorphism.

In practice, the target area vector is given by w̄ =
(w̄1, w̄2, · · · , w̄k), then Brenier map T can be computed as

follows. Construct the energy

Ē(h) =

k∑
i=1

w̄ihi −
∫ (h1,h2,··· ,hk) k∑

j=1

wjdhj , (9)

which is convex and can be minimized using Newton’s

method. From the minimizer h, we construct the power

Voronoi diagram Dh, which partitions Ω to convex polyg-

onal cells {W1,W2, · · · ,Wk}, and the power Voronoi dia-

gram function u(x) using Eqn.3. Then u(x) is the Brenier

potential, and T = ∇u(x) is the Brenier map, T (Wi) = pi.

3. Algorithm for Area Preserving Mapping

Given a simply connected surface (S,g) with total area

π, fix an interior point p0 and a boundary point p1, then

according to Riemann mapping theorem, there is a unique

conformal mapping φ : S → D, where D is unit disk, such

that φ(p0) = 0 and φ(p1) = 1. The mapping φ parameter-

izes the surface, such that the Riemannian metric g can be

represented by g = e2λ(dx2 + dy2). The conformal factor

defines a measure on the unit disk μ = e2λdxdy. Then there

exists a unique Brenier mapping τ : (D, dxdy) → (D, μ).
The composition mapping τ−1 ◦ φ : S → D is an area

preserving mapping.

In practice, the surface is approximated by a triangle

mesh M , normalized by a scaling such that the total area

is π. The conformal mapping φ : M → D can be achieved

using discrete Ricci flow method [34]. Then the measure μ
can be defined on each vertex vi ∈M , as

μ(vi) :=
1

3

∑
jk

Area([vi, vj , vk]),

where [vi, vj , vk] is a triangle face adjacent to vi. Then the

sites are P = {φ(v1), φ(v2), · · · , φ(vn)}. The target area

vector is w̄ = {μ(v1), μ(v2), · · · , μ(vn)}, the power vector

h = (h1, h2, · · · ) can be obtained by optimizing the convex

energy Eqn.9 using Newton’s method.

Initially, we set all powers to be zeros and translate and

scale P , such that P is contained in the unit disk. Com-

pute the power diagram, calculate the areas for each cell

wi. Then compute the dual power Delaunay triangulation,

compute the lengths of edges in the diagram and triangula-

tion, form the Hessian matrix H using Eqn.8, then update

the power h ← h + H−1(w̄ − w). Repeat this procedure

until the cell areas are close to the target areas.

Then the power diagram for {(φ(vi), hi} partitions D to

convex polygonal cells {Wi}, the Brenier map is given by

τ : Wi → φ(vi). Compute the centroid of Wi, denoted as

ci. The area preserving mapping is given by τ−1 ◦ φ(vi) =
ci. The algorithm details are illustrated in Alg.1.
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Algorithm 1 Area Preserving Mapping

Input: Input triangle mesh M , total area π and area dif-

ference threshold δw.

Output: A unique diffeomorphic area preserving map-

ping f : M → D, where D is a unit disk. The area wi of

each cell Wi ∈ D is close to the target area wi.

1. Run conformal mapping by discrete Ricci flow

method [34], φ : M → D, where D is a unit disk. Assign

each site φ(vi) ∈ D with power hi = 0 and target area

wi = μ(vi) defined above. Translate and scale all sites

so that they are in the unit disk.

2. Compute the power diagram and calculate the area wi

of each cell Wi.

3. Compute the dual power Delaunay triangulation, and

compute the lengths of edges in the diagram and triangu-

lation to form the Hessian matrix H using Eqn.8.

4. Update the power h← h+H−1(w̄ −w).
5. Repeat step 2 through step 4, until ‖wi − wi‖ of each

cell is less than δw.

6. Compute the centroid of cell Wi, denoted as ci. Then

the area preserving mapping is given by τ−1◦φ(vi) = ci,
where τ is the Brenier map τ : Wi → φ(vi).

4. Experimental Results

We applied our area preserving mapping method to var-

ious anatomical surfaces extracted from 3D MRI scans of

the brain. The baseline T1 images are acquired as part of

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[22]. In the paper, the segmentations are done with publicly

available software FreeSurfer [13] or FIRST [29]. All sur-

faces are represented as triangular meshes. All experiments

are implemented on laptop computer of Intel Core i7 CPU,

M620 2.67GHz with 4GB memory.

4.1. Application of Caudate Surface Parameteriza-
tion

We tested our algorithm on the left caudate nucleus sur-

face. The caudate nucleus is a nucleus located within the

basal ganglia of human brain. It is an important part of the

brain’s learning and memory system, for which parametric

shape models were developed for tracking shape differences

or longitudinal atrophy in diseases, such as Alzheimers Dis-

ease [25] and Parkinsons disease [4], etc.

Figure 2 (a) shows the triangular mesh of a reconstructed

left caudate surface segmented by FIRST. The long and slim

surface is challenging to compute its parametric surface.

For example, a conformal mapping on slim surface usu-

ally introduces area distortions at the exponential level and

may cause big numerical problems. In contrast, our method

evenly embeds the caudate surface to the parametric domain

and keeps the area element unchanged. For implementa-

tion, we cut a small hole at the bottom of (a) to get an open

boundary to make its topology consistent with a disk’s. Fig-

ure 2 (b) shows that most parts of conformal mapping result

shrink towards the center, while the area preserving method

shown in Figure 2 (c) gives a good mapping, keeping the

same area element, without much numerical error. Figure 3

are the histograms of area distortion of result surface trian-

gles to original surface triangles for conformal mapping and

area preserving mapping, respectively. It shows that con-

formal mapping cause up to 220 times shrinkage, while area

preserving mapping almost keep the same area. In Figure

4, we put circle textures on both conformal mapping result

and area preserving result, it gives a direct visualization of

our method’s correctness. Although multi-subject studies

are clearly necessary, this demonstrates our area preserving

method may potentially be useful to study some morphom-

etry change to classify and compare different subcortical

structure surfaces.

(a) (b) (c)
Figure 2. Comparison of geometric mappings for caudate surface:

(a) original caudate surface represented by a triangular mesh; (b)

conformal mapping result; (c) area preserving mapping result. The

area preserving mapping method evenly maps the surface to the

unit disk and eliminates the big distortions close to the upper tip

area in (a).

Figure 3. Histogram of area distortion: (a) area distortion of con-

formal mapping; (b) area distortion of area preserving mapping.

The area preserving mapping result shows a much smaller area

distortion.

4.2. Application of Alzheimer’s Disease Diagnosis

For Alzheimer’s disease, structural MRI measurements

of brain shrinkage are one of the best established biomark-

ers of AD progression and pathology. And early re-

searches [30, 13] have demonstrated that surface-based
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(a) (b)
Figure 4. Circle packing of different geometric mappings: (a) cir-

cle packing of conformal mapping. (b) circle packing of area pre-

serving mapping. The parameterizations are illustrated by the tex-

ture map of a uniformly distributed circle patterns on the caudate

surface, the circle texture is shown in the upper left corner. In (a),

the circles stay the circle but the circle areas change dramatically

on the upper tip area. In (b), the circles become ellipses but the

areas stay unchanged.

brain mapping may offer advantages over volume-based

brain mapping [5] to study structural features of brain, such

as cortical gray matter thickness, complexity, and patterns

of brain change over time due to disease or developmen-

tal process. According to prior AD researches [15, 14], the

brain atrophy is an important biomarker of AD. The atrophy

may not only be area shrinkage, but also have anisotropic

directions. Therefore, a good shape signature contains both

area and angle deformation information may have a good

potential to be a practical biomarker.

In this work, we proposed to use Beltrami coeffi-

cients [16] computed from area preserving mapping result

to conformal mapping result, as a shape signature to analyze

the human brain cortical surfaces among AD patients and

CTL subjects. This kind of signature combines both area

and angle information so that it may provide more powerful

statistical ability in the AD diagnosis in the early stage.

Data Source: Our data included baseline MRI images

from 50 AD patients and 50 healthy control (CTL) sub-

jects (Age: AD: 75.86± 7.65; CTL: 74.56± 4.16; MMSE

score: AD: 22.96 ± 2.15; CTL: 29.02 ± 1.04). We used

Freesurfer’s automated processing pipeline [13] for auto-

matic skull stripping, tissue classification, cortical surface

extraction, vertex correspondences across brain surfaces

and cortical parcellations. According to work [11], we la-

beled the functional areas of a left brain cortical surface

shown in Figure 5 (a) and (b).

4.2.1 Cortical Surface Parameterization Results

Figure 5 (c)-(f) are the conformal mapping results and area

preserving mapping results of the left brain cortical surfaces

of a healthy control subject and an AD patient. On both

surfaces, we cut a hole around the unlabeled subcortical

region [11]. After the cutting, the remaining cortical sur-

face becomes a genus zero surface with one open boundary.

Both algorithms compute a diffeomorphism map between

the cortical surface and a unit disk. The results show that the

conformal mapping results have much more area distortion

on the areas close to the boundary while the area preserving

mapping provides a map which preserves the area of each

individual functional area. The area preserving mapping has

a potential to better visualize certain sulci areas which are

deeply buried under gyri, and hence to provide a tool for a

more accurate manual landmark delineation operation.

(a) (b)

(c) (d)

(e) (f)
Figure 5. (a) and (b) illustrate the functional areas on the left brain

cortex [11]. (a) Lateral view. (b) Medial view. (c) and (e) are

conformal mapping results of a CTL subject and an AD patient,

respectively; (d) and (f) are area preserving mapping results of a

CTL subject and an AD patient, respectively. The area preserving

mapping may provide a better visualization tool for tracking sulci

landmark curves on cortical surfaces.

4.2.2 Numerical Analysis of Signatures among Healthy
Control Subjects and AD Patients

The Beltrami coefficient is a complex-valued function de-

fined on surfaces with supreme norm strictly less than 1. It

measures the local conformality distortion of surface maps.

We tested the discrimination ability of our shape signature
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on a set of left and right brain surfaces of 50 CTL subjects

and 50 AD patients. Previous work [28] indicated ten func-

tional areas having significant atrophy in AD group, such

as Middle Temporal, Superior Temporal, etc. Among the

35 functional areas, we chose 3 regions for study, which

are Middle Temporal, Superior Temporal and Fusiform as

shown in Figure 5 (a) and (b). Figure 6 shows the average

histograms of the norm of Beltrami coefficients of 50 AD

patients and 50 CTL subjects on these three functional ar-

eas. The histograms show the norm of Beltrami coefficients

of cortical surfaces of AD patients are obviously larger than

those of healthy control subjects. It means that AD patients

may have larger conformality distortion in both area and

shrinkage directions because AD patients may suffer a more

serious atrophy of brain structures which result from a com-

bination of neuronal atrophy, cell loss and impairments in

myelin turnover and maintenance [14].

Figure 6. Histograms of Norm of Beltrami Coefficients: (a) result

of healthy control subjects. (b) result of AD patients. The AD

result demonstrated a stronger and more anisotropic deformation

due to a more serious atrophy of brain structures.

4.2.3 Classification among Healthy Control Subjects
and AD Patients

We further hypothesize that the our computed Beltrami co-

efficients may help early AD detection. We performed the

classification between AD and CTL groups in the current

ADNI dataset. For the classification experiment, 80% of

each category of both left and right brain cortical surfaces

are set to be training samples and the remaining 20% as test-

ing samples. To obtain fair results, we randomly selected

the training set each time and computed the average recog-

nition rate over 1000 times. We used Support Vector Ma-

chine (SVM) [1] as a classifier, where the linear kernel func-

tion was employed, and we used C-SVM and chose C = 5
by running cross validation. Table 1 shows 95 percent confi-

dence interval for average recognition rate of our method is

87.50%± 0.55%. For comparisons, we also computed area

based method and volume based method. For area based

method, we computed the surface areas for the base domain

and 3 regions mentioned above on each hemisphere as a sig-

Method Rate %

Area 70.00%± 0.73%
Volume 62.50%± 0.57%
Our method 87.50%± 0.55%

Table 1. Average recognition rate(%) for applying different signa-

tures among 50 healthy control subjects and 50 AD patients. In

the experiments, 80% data are used for training and the remaining

for testing. The experiments were repeated over 1000 times and

95% confidence intervals are reported here.

nature (Area) = (A0, A1, A2, A3); 95 percent confidence

interval for the average recognition rate is 70.00%±0.73%.

We also calculated the volume of each hemisphere as a sig-

nature (Vol), 95 percent confidence interval for the average

recognition rate is 62.50% ± 0.57%. Although the above

two methods are not popular signatures for AD study in the

literature and a more careful study such as [10] is neces-

sary, the results helped illustrate the various nature of our

testing data and showed the potential of our proposed shape

signature.

5. Conclusions and Future Work
In this paper, we presented a method to compute area

preserving mapping between surfaces based on Brenier’s

approach in Optimal Mass Transport theory. Our approach

produces the unique diffeomorphic mapping. Comparing

to the existing method, our method improves the simplic-

ity and efficiency by significantly reducing the complex-

ity (from n2 unknowns to n). Therefore, our method of-

fers a stable and effective way to compute area preserving

mapping in 2D parametric coordinates. Our experimental

results show our work may provide novel ways for shape

analysis and improve the statistical power for detecting ab-

normalities in brain surface morphology. In the future, we

will explore and validate other broad shape analysis appli-

cations in medical imaging research.
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