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Abstract

This paper introduces a novel approach for reassembling
pot sherds found at archaeological excavation sites, for the
purpose of reconstructing clay pots that had been made on a
wheel. These pots and the sherds into which they have bro-
ken are axially symmetric. The reassembly process can be
viewed as 3D puzzle solving or generalized cylinder learn-
ing from broken fragments. The estimation exploits both

local and semi-global geometric structure, thus making it
a fundamental problem of geometry estimation from noisy
fragments in computer vision and pattern recognition. The
data used are densely digitized 3D laser scans of each frag-
ment’s outer surface. The proposed reassembly system is
automatic and functions when the pile of available frag-
ments is from one or multiple pots, and even when pieces
are missing from any pot. The geometric structure used are
curves on the pot along which the surface had broken and
the silhouette of a pot with respect to an axis, called axis-
profile curve (APC). For reassembling multiple pots with or
without missing pieces, our algorithm estimates the APC
from each fragment, then reassembles into configurations
the ones having distinctive APC. Further growth of config-
urations is based on adding remaining fragments such that
their APC and break curves are consistent with those of a
configuration. The method is novel, more robust and han-
dles the largest numbers of fragments to date.

1. Introduction

History can be uncovered by discovering ancient arti-

facts, such as pots and tools. Meaningful historical infor-

mation about human society is inaccessible when artifacts

are found shattered into many pieces. The shape of a single

fragment, also known as sherd, contains negligible informa-

tion when compared to the complete shape. If the pieces are

reassembled, the hidden historical records can be retrieved.

The large majority of ceramic objects at archaeological sites

(pots, bowls, plates, water jugs etc.) are axially symmetric,

Figure 1: The system configures 3 pots from mixed and

unorganized fragments.

and these objects are key to understanding how the com-

munity at the time lived. However, the fragments are com-

monly found mixed in very large numbers as a giant 3D

puzzle. Manually reconstructing artifacts from hundreds of

mixed broken pieces is a very tedious time consuming pro-

cess. The demand for an automatic reconstruction frame-

work to help archaeologists is evident and motivates the re-

search in this topic.

The problem described in this paper can be viewed as a

3D puzzle problem [16, 15, 6, 7] dealing with a most im-

portant incompletely solved problem in archeology. Puz-

zle problems have been developing for many years start-

ing from Freeman and Garder in 1964 [2] solving jigsaw

puzzles using 2D shape information. While these early ef-

forts focused more on matching shape of smaller 2D puz-

zles [2, 4], the recent advances tackle very large square-

piece jigsaw puzzles, where shape information is missing,

but piece alignment space is discrete and matching is based

exclusively on image content [1, 12, 3]. The nature of re-

assembling 3D fragments (e.g. [14, 11, 6]) is in general

more complex, since the alignment search is in a continu-

ous space of 3D rotations and translations.

Regarding general assembly procedures, solutions typi-

cally consist of two steps, local compatibility of pieces and

global strategy for puzzle assembly. Various local measures

are used, such as the ones based on curve matching [10, 17],

junctions [10], features [4] and texture information. Greedy

algorithms [4, 10, 12], iterative relaxation methods [17] and

graphical models based on belief propagation [1] have been
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studied for global configuration of a puzzle. In [11], 3D

complementary fractured surfaces are matched using simu-

lated annealing applied to depth images. Huang et al. [6]

detect break surfaces and reestablish their connections by

corresponding robust geometric descriptors and avoiding

fragment intersection.

Pot assembly is more challenging if no texture infor-

mation is given, as the problem this paper tackles. A so-

lution is presented with focus on ceramic fragments from

axially symmetric pottery (solids of revolution). The pro-

posed method is designed to completely configure multiple

pots from arbitrary fragments based on the knowledge of

their outer surface. The system pipeline is unique in its use

of axial information, which has so far not received much

attention for reassembly purposes, despite its inherently

strong cues. This paper method significantly improves the

state-of-the-art [14], which is driven primarily by matching

break curves, secondarily by using APC and is only semi-

automatic. Furthermore, it is shown that the system is effec-

tive on real fragments from archaeological excavation since

it is robust to noise and perturbations such as break curve

chipping, erosion and to 3D noise in input surfaces.

The main technical contributions of this paper are:

• Reassembly of larger numbers of pieces per pot than

previously possible,

• Fully automated and simultaneous reassembly of more

than one pot,

• Use of the global constraint that all fragments share

the same axis significantly reduces computations and

increases robustness to noise,

• The noise present in scanned pottery data used in this

work was previously unmanageable.

1.1. Problem statement

Ceramic pots of interest have been made on a wheel and

are thus axially symmetric. These are thin wall pots and

their geometry is specified by their silhouettes with respect

to an axis. Hence, the intersection of a plane perpendicular

to the axis with the outer pot surface is a circle. The sil-

houette as a function of height along the axis can be single-

valued or multi-valued. Denote the axis-silhouette combi-

nation as the axis/profile curve (APC). The pot breaks into

sherds (fragments) along curves on the outer surface. De-

note these curves as break curves. Hence, for each fragment

we refer to the outer-surface curve that specifies the frag-

ment shape as its break curve. Typically, a pot at an archae-

ological excavation site is broken into anywhere from a few

fragments to 100-200 fragments. 20-30 is a representative

number. The goal is to work with a pile of sherds and re-

construct the one or more pots that gave rise to these sherds.

The sherds present for any one pot may not be complete. We

do not use surface albedo patterns in the reconstruction, nor

do we use pot wall thickness. We use only x,y,z measure-

Figure 2: System overview

ments of the fragment outer surface and the fragment break

curve, where the break curve estimates are computed from

the outer surface measurements. Typically, 2,000 - 10,000

3D points are measured per fragment. These measurements

are noisy, especially those of the break curve. The break

curve measurements are noisy for two reasons. First, two

fragments may not have broken in a way where the break

surface is perpendicular to the pot outer surface. Thus, the

break curve location is not well defined. Second, if great

care is not exercised in estimating a break curve from the

laser-measured surface points, the break curve estimate will

be highly variable, and this is the case with the data used

in this paper. The reason we do not use surface albedo or
surface thickness information is because our interest is see-
ing what can be done by measurements of just surface and
break curve geometries. The other information of course
could be very useful, and can be used in a more complete
treatment of pot sherds reassembly. Useable reassembly of

fragments for a pot does not require reassembling all of the

original pieces from the broken pot. Of major use is esti-

mating the APC for the original pot. This conveys all of the

geometry for the original pot, and that is the goal reported

on in this paper.

1.2. System overview

First, the system estimates the axis of symmetry for

each fragment using circle templates [9], i.e., cutting the

fragments with planes normal to this axis the intersections

are circles (Section 2). The fragments are classified as to

whether the fragment data contains enough and distinctive

information for estimating the axis of symmetry (Section 3).

If fragments’ estimated axes are reliable, fragment reassem-

bly is based on their symmetry property and break curve,

otherwise is based solely on break curves. This procedure

is essential, because if the axis estimation is unreliable the

system fails when using it.

Second, for fragments with reliable axis estimation, the

system refines their axis by matching fragments in pairs and

re-estimating the common axis for each pair. Given pair

matching candidates, the pots configuration cost is formu-

lated as a quadratic form, which penalizes deviations from

global symmetry, constrained with geometrical consisten-

cies, and can be approximately minimized by a spectral

technique [8] (Section 4).
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(a) (b)

Figure 3: (a) Axis of symmetry estimation method and

axis/profile curve (APC); (b) Notation.

Finally, for the fragments whose axis estimation is un-

reliable, the system uses a crude feature matching method

based on only break curve features. The system represents

a small patch of break curve with a weighted histogram of

curvature orientations. The break curve matching results are

verified with previously obtained axis information (Section

5).

2. Axis of symmetry estimation

Configuring the relative position between two broken ob-

jects in 3D is a challenging problem. Many papers present

methods to solve this problem by registering break surfaces

[6, 11]. In order to optimally align 3D break curves from

noisy and possibly incomplete 3D measurement data of an-

cient artifacts outer surface, strong cues are taken into con-

sideration. This paper tackles the problem with a symmetry

property, by first estimating an axis of symmetry. Axis esti-

mation needs to be very accurate since it is used throughout

the entire framework. This section describes how to esti-

mate the relative position and direction of the axis.

Previous solutions can be roughly classified into two

categories, either exploiting surface normal vectors which

point toward the axis [13] or making use of circle tem-

plates [9, 5]. Willis [13] uses bootstrap algorithm to en-

hance robustness to noise caused by geometric distortions

and measurement errors. Based on experiments, Mara and

Sablatnig [9] proposed a circle template method claiming

that the normal vectors are sensitive to noise and fragment

shapes. It is assumed that surface points intersecting a thick

plane perpendicular to the true axis should be in circular

shape. Both algorithms have different benefits. Willis’ al-

gorithm provide accurate axis estimation, in spite of pertur-

bations, when the broken pieces are large enough, otherwise

it fails, while Mara’s approach can also handle relatively

small pieces at lower accuracy. The proposed archaeolog-

ical application requires assembly of even smaller pieces.

Hence, a method based on circle template is proposed for

estimating axis of symmetry.

A given fragment F is represented as a collection of

points P = {pij ∈ F} where pij is j-th point in the i-th
layer. Given an arbitrary 3D direction, the 3D points are

divided into multiple planar layers of thickness δ = 0.5,

which is 1.1 times the scanner resolution, and several cir-

cles are fit to the data using a least squares method. Then a

3D line is fit to the estimated circles centers with RANSAC.

The 3D line must be the fragment axis of symmetry by def-

inition of SOR. This constrains the axis location for the

given orientation. Among every possible hypothetical axis

direction D = {φ, θ} with steps of 5◦, consisting of two

angles, the optimal axis is estimated by inexpensive brute-

force search based on the cost function

Ea(D|P ) =

∑l
i=1 ni

∑ni

j=1 |‖pij − c∗i ‖ − μi|β∑l
i=1 ni

− α log l∗,

(1)

where c∗i is crossing point between the i-th layer and the

estimated axis, ni is number of 3D points within the i-th
layer, μi = 1

ni

∑ni

j=1 ‖pij − c∗i ‖ is the i-th layer average

estimated radius, l∗ is number of consensus circle centers

with the estimated 3D axis, and l is total number of layers

generated by an axis hypothesis (see Fig. 3).

The first term in equation (1) represents the symmetry

cost of axis D. The parameter β should be smaller, if the

noise on pij is significant. The second term applies mini-

mum description length (MDL) principle. One of the im-

portant properties of the MDL method is that a safeguard

is provided against overfitting by a trade-off between the

complexities of the hypothesis and of the data given the hy-

pothesis. The rationale is that the estimated axis can be sup-

ported by a small number of circle centers, therefore the es-

timation may be overfitted. α is a weight between the cost

function terms. The parameters are empirically determined

as α = 1, β = 2. The optimal direction estimation, D∗ of

the axis of symmetry is

D∗ = {φ∗, θ∗} = argmin
θ,φ

Ea(φ, θ|P ). (2)

The optimal axis position is estimated by fitting a line to the

circle centers associated with the optimal direction D∗.

3. Fragment types
This paper propose a reasonable way for estimating axis

of symmetry by minimizing the cost function Ea(D|P ).
However, this method does not always return the true axis.

For example, for a flat or sphere-shaped fragment, the min-

imum of Ea(D|P ) is achieved for infinitely many direc-

tions. If the axis estimation is inaccurate or ambiguous, the

pipeline reliability may be compromised. To avoid this risk,

the system classifies the fragments as four types and adopts

an approach based on the type. The fragment classification

criteria are: sufficiency and distinctiveness for axis estima-

tion. Sufficiency can be measured by the cost of Ea(D
∗|P )

where D∗ is given in equation (2). Smaller values corre-

spond to axis reliably estimated with support from many

thick layers. Analogously, higher values means little sup-

port and less fidelity.
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To measure distinctiveness of the data, the variation

O(φ∗, θ∗|P ) of Ea in the neighborhood of global minimum

D∗ is analyzed. If the axis estimation is reliable, the cost

value increases fast as the axis direction is slightly changed

and vice versa. The variation is given by

O(φ∗, θ∗|P ) = (Ea(φ
∗, θ∗|P )− Ea(φ

∗ +Δφ, θ∗ +Δθ|P ))2.

(3)

This is approximated by a first order Taylor expansion

Ea(φ
∗ +Δφ, θ∗ +Δθ) =

Ea(φ
∗, θ∗) +

[
∂Ea(φ

∗, θ∗)
∂φ

∂Ea(φ
∗, θ∗)

∂θ

] [
Δφ
Δθ

]
. (4)

P is omitted for notation simplicity. By substituting equa-

tion (4) on equation (3),

O(φ∗, θ∗|P ) =

([
∂Ea(φ

∗, θ∗)
∂φ

∂Ea(φ
∗, θ∗)

∂θ

] [
Δφ
Δθ

])2

=

[ΔφΔθ]

[
(Ea(φ

∗,θ∗)
∂φ )2 Ea(φ

∗,θ∗)
∂φ

Ea(φ
∗,θ∗)

∂θ
Ea(φ

∗,θ∗)
∂θ

Ea(φ
∗,θ∗)

∂φ (Ea(φ
∗,θ∗)

∂θ )2

] [
Δφ
Δθ

]
=

[ΔφΔθ]Λ(φ∗, θ∗)
[
Δφ
Δθ

]
. (5)

The metric captures the variability of the cost function ac-

cording to the variables φ and θ. Moreover, the amount of

variability of each direction can be analyzed by calculating

the eigenvalues λ1, λ2 of Λ(φ∗, θ∗) and their corresponding

eigenvectors ϕ1, ϕ2. A measure, inspired by corner detec-

tion, is defined for the axis estimation confidence as

Of (P ) = λ1λ2 + γ(λ1 + λ2)
2, (6)

where Δθ = Δφ = 10 degrees and γ is set to 0.4 empirically.

4. Matching based on axis estimation
In this section, a reconstruction approach for fragments

carrying a distinctive symmetry property is described. The

problem bears many difficulties due to noise on 3D mea-

surements and large search space. In 3D, each fragment has

6 degrees of freedom (DOF) for rigid body motion.

The system makes use of the symmetry property to

mitigate these difficulties in two steps: local matching

and global configuration, as many previous puzzle solvers.

First, the system defines a cost function for matching two

fragments which represent how well the axis/profile curve

(APC) and the break curve matched. Relative position be-

tween two fragments is estimated by minimizing the cost

function. The search space is reduced by aligning two axes

of symmetry, D∗j and D∗� , which are accurately re-estimated

as matching the two pieces simultaneously. This procedure

reduces search space from 6 DOF (for a pair of fragments)

Figure 4: Left: two perfectly aligned sherds and an illus-

tration of the constant angle sum constraint: the intersec-

tion of the sherds with planes perpendicular to their axis

of symmetry defines circle arcs layers on each sherd, with

angles aj(k) for the j-th sherd at the k-th layer. Clearly

aj(k) + ai(k) is constant. Right: sherds respective APCs.

to 1 DOF (relative position of 2 pieces along the axis of

symmetry). Second, the system formulates the problem as

minimizing a constrained quadratic cost function for semi-

global configuration. The cost function captures symme-

try constraints between candidate pairs and is minimized by

a spectral method [8]. The symmetry constraint not only

strongly improves pairwise matching cost, but also models

global consistency between fragments not necessarily adja-

cent to each other, as far as they share an APC. The system

can afford to use this extremely useful axis of symmetry

property because its estimation is accurate enough.

4.1. Local Pair Matching

For matching 2 fragments, the proposed system basically

uses an energy minimization scheme. The energy cost in-

cludes symmetry property and break curve information of

the fragments. If two fragments are correctly aligned, the

pair should satisfy two constraints: constant angle sum and

APC alignment:

Constant angle sum (C1): this conception is introduced

by [4] for solving 2D jigsaw puzzles by shape. When pieces

fit perfectly, the distance between certain points must be

constant. This constraint is simple but powerful. Figure 4

proposes a 3D extension over the pot surface.

Profile curve alignment (C2): a solid of revolution can be

virtually reconstructed from its APC, which naturally con-

strain the position of pot sherds (see Figure 4). This addi-

tional constraint greatly improves matching performance by

reducing search from 6 DOF to 1 (relative translation of two

fragments along an axis).

Let Ai = {ai(1), ai(2), . . ., ai(k), . . . ai(li)} be arc an-

gle ranges of the i-th fragment in k-th layer as described in

Figure 4. These arcs are denoted parallel arcs (they never

intersect). ρi(k) is the distance between axis of symmetry

and profile curve along the k-th layer in i-th fragments, as

illustrated in Figure 4. ρi(k) is denoted layer radius. The

matching cost is formulated as a function between the i-th
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and j-th pieces with the above two constraints:

Em(ζij , Di, Dj |Pi, Pj) = 1(no ≥ κ)Ec(ζij , Di, Dj |Pi, Pj)

+w1(Ep(ζij , Di, Dj |Pi, Pj) + Ea(Di|Pi) + Ea(Dj |Pj)),
(7)

where 1() is an indicator function and

no =
∑
k∈Ω

1(|ai(k) + aj(k − ζij)− τ | < η),

τ = max
s

(ai(s) + aj(s− ζi,j)),

where ζij is relative translation between two i, j pieces

along the common axis. The matching cost function in-

cludes two terms, Ec and Ep, which represent constraints

C1 and C2 respectively. Ω has all common layers of two

fragments. no represents the number of layers which agree

with constraints C1 with tolerance η.

Ec(ζij , Di, Dj |Pi, Pj) = −ew2(η−μg) − ew3(no−κ) + 1,
(8)

where,

μg =

∑
k∈Ω 1(Υk

ij < η)Υk
ij∑

k∈Ω 1(Υk
ij < η)

,

Υk
ij = τ − (ai(k) + aj(k − ζij)),

Ep(ζi,j , Di, Dj |Pi, Pj) =

1

To

∑
k∈Ω

|ρi(k)− ρj(k−ζ)|+ γ

∣∣∣∣Δρi(k)

Δk
− Δρj(k − ζ)

Δk

∣∣∣∣ ,
(9)

where To is total number of common layers of two frag-

ments. w1 = 1, w2 = 1, w3 = 2
To

, η = 2/3, γ = 1/2
and κ is 0.6To. The Em cost function has 5 DOF, 4

for Di, Dj and 1 for relative position between fragments

along the shared axis. Em search space is reduced to 1

DOF by initializing the axis of symmetry as described in

Section 2. The system re-estimates the axis of symmetry

of both fragments by minimizing Em to match two frag-

ments robustly with a particle filter. The Gaussian distri-

bution is applied to generate 10 axises samples for each

fragment 3 times iteratively. Initial means and variances

are respectively estimated by argminφ,θ Ea(φ, θ) and from

Λ(φ, θ) in previous steps. The variance are the same for

all iterations. ζi,j is learned by a brute-force method. A

match of i-th and j-th pieces are considered as a candi-

date of a true match if 1(no(ζ
∗
ij , D

∗
i , D

∗
j ) ≥ κ) is 1 where

{ζ∗ij , D∗i , D∗j } = argminζij ,Di,Dj
Em(ζij , Di, Dj |Pi, Pj).

It means that once a pair match satisfies C1 loosely, the al-

gorithm considers it as a candidate pair match.

4.2. Semi-Global Configuration

This section will describe a semi-global configuration

given candidate matches. Although the previous step uses

two constraints for matching, the results have some false

alarms since the matching criterion is not strict. One of

the strong points of axis of symmetry property is that al-

though the fragments are not adjacent, they interact with

each other. That is, if they are from single artifact and

overlap at part of the profile curve, the their profile curve

is the same at the overlapped region. This constraint is used

to make a cost function for semi-global configuration. Let

X = {x1, x2, . . . , xL} ∈ {0, 1}L be a binary vector, where

L is total number of pair candidates and xk = 1 indicates

that the k-th pair candidate is a true pair, otherwise it is not.

The final goal is to find the minimizer X such that

X = argmin
X∈{0,1}L

L∑
i=1

xiEl(ci) +
L∑

i=1

L∑
j=1,j �=i

xixjEg(ci, cj),

where C = {c1, c2, . . . , cL} is a set of candidate pairs and

ck = {Pi, Pj}. The semi-global cost function is

X = argmin
X∈{0,1}L

XtMX, (10)

where,

M =

⎡
⎢⎢⎢⎣

El(c1) Eg(c1, c2) · · · Eg(c1, cL)
Eg(c2, c1) El(c2) · · · Eg(c2, cL)

...
...

. . .
...

Eg(cL, c1) Eg(cL, c2) · · · El(cL)

⎤
⎥⎥⎥⎦ ,

El(ck) = El(PiPj) = minζi,jDiDj
Em(ζi,jDiDj |PiPj)

and Eg(ci, cj) = minζi,j Ep(ζ|ci, cj).
The vector X is constrained so that relative positions

of all fragments satisfy geometrical consistence such as a

non-overlap between fragments and non-duplication of the

shards. True pairs are found by estimating X which mini-

mize the semi-global cost function with a spectral technique

[8]. The configurations are determined by the estimated X .

5. Break Curve Matching
Certain fragments lack distinctive symmetry property

since they are relatively small, planar or spherical. In this

section, a method is introduced to deal with these sherds

that cannot be treated with previous approach. A reasonable

alternative cue for matching fragments is found at salient

features on their break curves. However, after chipping

and erosion, local features such as curvature and torsion be-

tween corresponding points on matching curves can be very

noisy, so direct comparison is prohibitive.

To solve this problem, a robust matching approach based

mainly on break curves is designed to involve feature points.

First, the break curves are smoothed and uniformly sam-

pled. Second, multiple scale Horoscope (Histogram Of Rel-

ative OSculating Circle and Outer surface tangent Planes

orientations Estimates) are computed at each break curve
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(a) (b) (c)

Figure 5: (a) Oscallating circle and surface normal vec-

tor; (b) weighted orientation histogram for each cluster; (c)

break curves and their cluster labels.

point. The histograms are used to detect salient corners and

cluster them based on similarity. Finally, distinctive corner

clusters are matched and the APC is used for sherd align-

ment refinement and to discard false matches.This proce-

dure drastically reduces curve matching complexity from a

huge combinatorial search among all possible pairs of curve

segments to a few candidates. Detected corners identify rea-

sonable break curve endpoints which are clustered and help

to pinpoint the candidates segments for matching.

5.1. Break Curve Smoothing

Next section describes how to construct a multiscale

Horoscope along break curve points. Prior to comput-

ing Horoscope features, some pre-processing is required to

smooth all break curves and sample them at fixed spatial

resolution. Thus, the three coordinates of 3D curve are in-

dependently convolved with a [1 2 3 5 3 2 1]/17 kernel and

then linearly interpolated at uniform distances. The uniform

distance interpolation is perform by starting from a given

curve point Pi, intersect the curve with a small sphere Sg

of fixed radius Rg centered at Pi to obtain the next point

Pi+1, then repeat. Rg is chosen such that roughly 3 near-

est neighbors of Pi are enclosed by Sg . Therefore, distance

in this context is not arc length, but Euclidean distance, a

more appropriate choice to deal with bumps on the break

curve. This sequence of points in a curve is denoted as

Pn
1 = {P1, . . . , Pn} and their spatial resolution is constant

regardless of how the sherds were scanned.

5.2. Horoscope features

A descriptor Θ at points Pi ∈ Pn
1 , invariant to proper

rigid transformation, is given in equations (11) and (12).

Θ(Pi) depends on the orientation between the osculating

circle plane and the tangent plane at Pi.

Cs(Pi) =
(P̂ s

i+1 − Pi)− (Pi − P̂ s
i−1)

R2
s

(11)

Θs(Pi) = cos−1

∣∣∣∣ Ci ·Ni

‖Ci‖‖Ni‖
∣∣∣∣ (12)

The index s refers to scale. Cs(Pi) is the estimated 3D

curve normal vector at Pi, pointing at the center of its oscu-

lating circle. P̂ s
i+1 and P̂ s

i−1 are intersections between the

break curve and a sphere of radius Rs > Rg centered at Pi.

Rs is the scale parameter. The norm of Cs(Pi) represents

curvature. Ni is the normal of the sherd tangent plane at Pi.

Θs(Pi) ∈ [0, π
2 ] is the Horoscope angle between Cs(Pi)

and Ni. Dependencies in Pi on equation (12) are omitted

for simplicity of notation. The use of P̂ s
i±1 instead of Pi±1

in eq. (11) is for robust curvature estimation with respect to

noise still present on the sequence Pn
1 .

A weighted orientation histogram Γs(Pi) of Θs is

defined as follows: 11 data points of a small arc

{Θs(Pi−5), . . . ,Θ
s(Pi+5)} are distributed on the interval

[0, π
2 ], quantized into 9 bins. For each data point ξ, its

count is weighted by ‖Cs(ξ)‖. The histogram Γs(Pi)
has 9 curvature-weighted counts. After selecting 3 scales,

{s1, s2, s3}, the counts are concatenated into a 27-d vector

Γ̂(Pi), the multiscale Horoscope feature at a point Pi.

This rather unusual feature is inspired by insights in

scene classification, object recognition, and image and text

retrieval, where visual words are introduced. The main

idea of visual vocabulary is that they quantize features by

clustering local robust descriptors. The Horoscope is a ro-

bust multiscale measure of local oriented curvatures which

loosely describe noisy corner points.

5.3. Clustering and Matching

This section describes sherd matching and alignment

based on break curve feature. For all available sherds, the

Horoscope feature Γ̂ is computed in all of their points. The

features from all sherds are then clustered using k-means

(k = 5). The outcome has essentially 4 distinct clusters cor-

responding to high curvature regions. An enormous cluster

of nearly straight lines (Figure 5c: black curves) is disre-

garded. Matching is based solely on the high curvature

regions clusters (see Figure 5c color-coded corners). In

general, break curves corners are piece-wise constant se-

quences of the distinctive 4 clusters. A connected group of

such sequences, in between the disregarded low curvature

points, is denoted a horoscope corner, or simply h-corner.

In order to reduce matching complexity, candidate frag-

ments are selected based on the h-corners. It is assumed

that h-corners on two matching sherds share at least one

common type of cluster. For a pair of candidates, the sherds

can be connected at the h-corners endpoints. This process is

very robust to noisy data. Iterative closest point (ICP) algo-

rithm is used to compute a rigid transformation required for

alignment. If candidates are genuine matches, the (noisy)

estimated surface normals will also align and the sherds are

considered true matches. The surface normal alignment is

only used to validate the ICP result. To obtain a better ini-

tialization for ICP, each arc is temporarily approximated by

262262262



a straight line connecting its endpoints and such lines are

aligned prior to ICP minimization. This whole process is

very fast and reduces the complexity of break curve match-

ing drastically by selecting corner candidates and their as-

sociated appropriate arcs for ICP alignment.

Since data from an excavation site has noise on a bound-

ary, matching with Horoscope returns false alarms. True

matches are founded among them if the match is coherent

with the APC estimated by the previous step (Section 4).

6. Experiments
Three types of data are collected and experiments are

performed for evaluating the system. First, synthetic data

which have available ground truth is generated. Axially

symmetric 3D point sets are generated by rotating 6 polyno-

mial plane curves about an axis. Points are sampled at av-

erage distance 0.2mm and zero-mean Gaussian noise with

variance 0.02 is added. The height of the synthetic data is

between 200mm and 300mm along the axis, similar to a

real pot. Then, each 3D data set is randomly broken into N
fragments (data1). Second, to generate data from a real pot,

a real pot is broken into 13 pieces and the outer surface of

10 fragments are densely scanned (data2). Third, 38 frag-

ments are obtained from the archaeological site Tell es-Safi
without any prior knowledge of the fragments. Outer sur-

faces are scanned by dense data laser scanner (data3). Mesh

information is reconstructed by ball pivoting algorithm.

The reason why the system is reliable is the reasonably

high accuracy of fragment axis of symmetry estimation.

The axis estimation algorithm is evaluated with data 1, 2

and 3. Figure 7 shows an axis estimation result of data 2 and

3 and its sufficiency and distinctiveness. Figure 6 shows

the axis estimation accuracy based on the fragments from 4

synthetic pots (data1). If the direction of axis estimation for

a fragment is within 5 degrees of the ground truth, the algo-

rithm scored as having made a successful estimate. As the

number of fragments for a pot increases, the fragment size

decreases and the axis estimation accuracy decreases. Fig-

ure 6 also shows that the axis estimation is more accurate

after pairwise re-estimation.

The overall system is tested with data1 and its ground

truth by increasing the number of broken fragments from

a single pot (see table 1). As the number of fragments in-

creases, each piece becomes smaller and hence the number

of correct configurations estimated decreases.

One of the most notable benefits of the system is the

capability of simultaneously configuring a priori unknown

number of pots from fragments which are mixed together

in an unorganized pile. Each pot may have missing an un-

known number of its fragments. In addition, the system is

designed to configure pots using only noisy outer surface

measurement of real fragments. To measure algorithm per-

formance, the system is tested with data2 and data3 ran-

Figure 6: Axis estimation accuracy.

# of frag. from a pot 10 17 23 30

Correct conf.# 10/10 17/17 22/23 25/30

Table 1: Number of correct configurations as the number of

fragments from a pot increases(data1).

Break curve based Axis based Combin.

Conf.# 4/48 24/48 31/48

Table 2: Number of configurations for each steps alone and

their combination(data2 and 3).

domly piled up together. The total number of fragments is

48. 26 pieces are classified as having distinctive APC prop-

erty. Others are non-informative (Figure 7). 24 pieces are

configured based on axis of symmetry, and 7 with break

curve matching. The system automatically configures 3

pots out of the the 48 fragments. The three pots consist of

10, 16, 5 pieces respectively (see table 2). Figure 8a shows

pairwise matching results based on axis of symmetry, while

Figure 8b displays break curve matches. The straight lines

are the common axes of symmetry. Figure 9 shows the fi-

nal estimated results of 3 configurations. The system spends

634 minutes for the final configuration with Intel Core i7. 1

7. Conclusion
Axially symmetric pots are automatically configured

from their fragments by using two strong cues, surface sym-

metry about an axis and break curve information. A novel

approach is presented to automatically match for the first

time more challenging types of fragments. These fragment

types include not only those with significant surface curva-

ture but also those which are almost flat, and include those

which are chipped and are represented by very noisy data.

Our algorithm is also considerably faster than previous ap-

proaches in handling all types of fragments. It makes opti-

mal use of geometric constraints to reduce fragment align-

ment complexity and introduces new insights to reduce the

number of fragment candidate matches based on a new mea-

sure of break curve geometry. The estimation of multiple

pots given a pile of all the fragments and the reasoning pro-

vided about their joint and pairwise geometries proved to

be a powerful tool to deal with this puzzle problem. Exper-

iments show that the system is robust to noise, bumps and

erosion and estimates all pots axis/profile curves for which

there is extractable information in the set of fragments.

1All configurations from data 1, 2 and 3 can be found at http://
www.lems.brown.edu/˜sonkilho/Index_files/sup.pdf
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Figure 7: Blue (left) and red (right) numbers are respec-

tively sufficiency and distinctiveness for the axis estimation.

Small blue values mean high sufficiency and high red values

mean high distinctiveness. If the distinctiveness is bigger

than 3.0, the system assume that the fragment has enough

information for axis estimation. Blue points are center of

circles fit to points within thick planar layers which are per-

pendicular to axis. Red points are inliers for estimating axis.

The black line is the estimated axis.

(a)

(b)

Figure 8: (a) Final pairs with axis based matching method ,

(b) Final pairs with break curve based matching method.
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