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Abstract

Background modeling and subtraction is an essential
task in video surveillance applications. Most traditional
studies use information observed in past frames to create
and update a background model. To adapt to background
changes, the background model has been enhanced by intro-
ducing various forms of information including spatial con-
sistency and temporal tendency. In this paper, we propose
a new framework that leverages information from a future
period. Our proposed approach realizes a low-cost and
highly accurate background model. The proposed frame-
work is called bidirectional background modeling, and per-
forms background subtraction based on bidirectional anal-
ysis; i.e., analysis from past to present and analysis from fu-
ture to present. Although a result will be output with some
delay because information is taken from a future period, our
proposed approach improves the accuracy by about 30% if
only a 33-millisecond of delay is acceptable. Furthermore,
the memory cost can be reduced by about 65% relative to
typical background modeling.

1. Introduction
Background modeling and subtraction is an essential

task in video surveillance applications, as it provides fore-

ground segmentation with no prior information about the

foreground. Pixel-level background modeling is a typical

approach in which a Gaussian mixture model (GMM) or

kernel density estimation is often used to represent the fre-

quency of pixel values in an observed image sequence[14,

4]. Region-level background modeling is also often studied.

Instead of using pixel values, features extracted from rela-

tionships between a central pixel and its surrounding pixels

are used. Compared with pixel-level modeling, region-level

modeling gives richer image features and is robust in the

case of illumination changes[8, 17]. Other effective solu-

tions to enhance the performance of background subtrac-

tion are the use of temporal information[13, 18] and hybrid

modeling[16, 15].

The above approaches are common in that they use infor-
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Figure 1. Statistical, spatial and temporal information used in tra-

ditional approaches, and future information used in the proposed

approach. The solid black line and the solid gray lines represent

the pixel of interest and its peripheral pixels respectively.

mation taken from past image frames, as drawn on the left

side of Figure 1. In contrast, our approach focuses on infor-

mation that will be observed in future image frames. Gener-

ally, future information is not often used in time-series anal-

ysis that requires real-time processing since there is a delay

in the availability of a result. Practically, however, there is

an “acceptable delay” depending on the application. For in-

stance, visual surveillance applications aim to observe the

real world and detect particular events as quickly as possi-

ble. In such a case, although it is desirable to output a result

with real-time processing, a slight delay in output will not

introduce difficulties.

Our approach defines an acceptable delay as 33 millisec-

onds (the duration of just one video frame). The back-

ground model is improved in terms of its ability to han-

dle background changes and accurately subtract the back-

ground compared with a typical approach that does not use

future information. Moreover, our approach obtains the

background model using the same amount of memory as

used in the typical approach even though it uses additional

information obtained from future image frames.

2. Bidirectional Background Modeling
2.1. Concept

The proposed method is based on two concepts.

Acceptable Delay The background model is allowed to

output a result N frames after the current frame. In
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other words, information observed in the period ex-

tending to N frames after the current frame is used to

determine the background subtraction. The proposed

method improves the accuracy of background subtrac-

tion at the expense of a delay in the output. How-

ever, the proposed method requires a delay of just one

frame, which can be ignored in most visual surveil-

lance applications.

Backward Analysis Generally, time-series analysis is per-

formed in the forward direction; i.e., from the past

to present. In contrast, the proposed method includes

backward analysis using N future frames, in addition

to forward analysis. The backward analysis is per-

formed from the future to present. Figure 2 shows a

typical example of the advantage realized by including

backward analysis. The left side of Figure 2 illustrates

situations when a pixel value suddenly changes. The

upper case is the result of an illumination change, and

the lower case is the result of an object moving. These

changes are the same from the viewpoint of the change

in the pixel value, and background modeling based on

forward analysis cannot distinguish the reason for the

changes at the time of the current frame. In contrast,

backward analysis is able to investigate the change us-

ing the pixel values observed in the future period (the

right side of Figure 2). If the change is due to a mov-

ing object, both forward and backward analyses will

observe a change in the pixel value. In contrast, if the

change is due to an illumination change, only one of

the analyses will observe a change in the pixel value.

Here, we recall the characteristics of the proposed

method. The proposed bidirectional background model uses

pixel values observed in the future period to improve the

accuracy of background subtraction at the expense of some

delay in the output. However, we do not require a long de-

lay. We are able to acquire a result for background sub-

traction with a reasonable delay. Therefore, the proposed

method is a practical framework for surveillance applica-

tions.

2.2. Formulation

This section presents a formulation strategy to clarify

the proposed method. For simplicity, the explanation fo-

cuses on a certain pixel. Let Xt be a pixel value in frame t
that represents an observed sequence {X0, . . . , Xt−1}. In

the case of forward analysis, a background model M t−1

is estimated from this sequence, and whether an observed

pixel value Xt is part of the background is determined by

P (Xt|M t−1). (In fact, a GMM-based background model

is often used for the calculation of background probabil-

ity.) Meanwhile, backward analysis provides a background

model M t+1 using {Xt+N , . . . , Xt+1} to calculate the
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Figure 2. The advantage of including backward analysis. The up-

per part shows an example of a change in pixel value due to illu-

mination change. The lower part is the case of a moving object.

background probability P (Xt|M t+1). In the remainder of

this paper, we refer to the background model M t+1 as the

“backward background model”.

The proposed bidirectional background modeling can

be said to calculate the background probability of Xt as

P (Xt|M t−1,M t+1), where M t−1 and M t+1 are acquired

by forward analysis and backward analysis respectively.

The probability is given by

P (Xt|M t−1,M t+1) =

(1− α)P (Xt|M t−1) + αP (Xt|M t+1), (1)

where α, (0 ≤ α ≤ 1) is a parameter that adjusts the con-

tribution of the backward background model. Note that if

we set α to zero, the model is a typical background model

based on forward analysis alone.

2.3. Backward Background Model

Ideally, the acceptable delay N should be a large value

to acquire a good backward background model. Meanwhile,

N should be as small as possible for practical use. To solve

this trade-off, a new concept of “piecewise time-reversal

symmetry” is introduced, where we can set N to a small

value yet realize a reasonable backward background model.

Piecewise time-reversal symmetry is an assumption that

background change has a symmetric property in a short pe-

riod if the order of observation from past to present is in-

versed to observation from future to present. For instance,

phenomena of “a pixel getting darker” and “a pixel getting

brighter” are symmetric. A phenomenon of “a pixel getting

brighter then getting darker repeatedly” also has a symmet-

ric property if we consider a short time period of the repeti-

tion. Figure 3 shows an example of piecewise time-reversal

symmetry. If we inverse the piecewise change within period

B, the inversed sequence appears similar to the sequence
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Figure 3. An illustration of piecewise time-reversal symmetry
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Figure 4. Examples of piecewise time-reversal symmetry. The hor-

izontal axis is the frame number and the vertical axis is the pixel

value.

within period A. If we can assume this kind of time-reversal

symmetry, an observed sequence of pixel values in the past

period might include a time-reversal pattern that will be ob-

served in the future period. A background model created

for the piecewise past period could then be used on behalf

of a background model that is estimated by pixel values in

the future period. In other words, we do not have to ex-

plicitly create a backward background model since we can

substitute an “inversed forward” background model for a

backward background model.

The implementation is described in more detail in sec-

tion 3. Here, we illustrate the relevancy of piecewise time-

reversal symmetry with an actual observation of pixel val-

ues in Figure 4. The sequence of pixel values is taken from

an outdoor scene. The piecewise change within the blue

rectangle is time-reversal symmetric for the one within the

red rectangle. These types of symmetric changes were often

observed in other scenes used in our experiments.

3. Implementation

This section explains the detailed implementation strat-

egy to apply the proposed bidirectional background model-

ing using a GMM-based statistical background model.
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Figure 5. Flow chart of the proposed method

3.1. Process Flow

Figure 5 depicts the process flow of the proposed

method. To explain the process, we focus on a certain pixel

i in an image. The same process is performed for each pixel.

For simplicity, the notation i is ignored in the following ex-

planation. In addition, the notation with regard to time t is

also ignored since the process from Step 1 through Step 5 is

performed for the same frame.

Step 1: Background model retrieval A background

model M q or M r that satisfies a search query q
for forward analysis or r for backward analysis is

retrieved from the background database (which is

described in detail in section 3.2). Each query q or r
is constructed from a pixel feature in the past period

or future period respectively. The actual design of the

query is described in section 3.2.

Step 2: Background subtraction If a background model

is retrieved in Step 1 (i.e., M q and/or M r is found in

the database), a label candidate (foreground or back-

ground) for the current pixel value X is estimated as

P (X |M q) and/or P (X |M r). According to GMM-

based background modeling, if the pixel value X is

within a predefined standard deviation s of the distri-

bution, the background label is tentatively given to the

pixel. Otherwise, it is labeled as foreground.

Step 3: Adding a new example and exception processing
If a background model is not retrieved, the process is

a little different between the foreground analysis and
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backward analysis. In the case of forward analysis

in Step 1, a new GMM-based background model

is added to the database with initial mean value X
and predefined variance and weight. In this case, the

foreground label is tentatively given to the pixel since

there is no example that guarantees the pixel to be

background. In the case of backward analysis, we

only give a tentative label of foreground to the pixel,

and do not add any background model to the database.

Step 4: Integration After processing the above three steps

for all pixels, final labels are assigned using tentative

labels given in Steps 2 and 3. Section 3.3 gives a de-

tailed explanation.

Step 5: Update of background models The parameters

of the background models are updated. The update

process is applied for retrieved backgrounds only (i.e.,

background models used in Step 2). Note that when

a background model is used by more than one pixel,

one of the pixels is randomly selected for the update.

3.2. Case-based Background Model Retrieval

This section gives a detailed explanation of Step 1 in Fig-

ure 5. “Case-based background model retrieval” is a frame-

work with which to realize “case-by-case model sharing”.

Unlike the clustering-based approach or traditional pixel-

based approaches, the same background model is not con-

tinuously used for an individual pixel. Instead, according

to a condition of the observed pixel value (e.g., the location

of the pixel or the trend of the value), an appropriate back-

ground model is selected from the database for an individ-

ual pixel frame by frame, meaning that a given background

model is not always selected for the same pixel. Moreover,

a background model is sometimes shared by several pixels.

The important point is that we do not create separate

background databases for forward analysis and backward

analysis. Forward and backward analyses share the same

background database through the use of piecewise time-

reversal symmetry. In practice, the query to retrieve a back-

ground model is set as follows.

q = (Xt−1, Xt, u, v) (2)

r = (Xt+1, Xt, u, v) (3)

where Xt is a pixel value in frame t, and (u, v) are the two-

dimensional coordinates of the pixel.

In forward analysis, a background model M q is retrieved

where a similar pixel change was observed around (u, v)
in the past period. The retrieved M q is regarded as M t−1

in Eq. (1). On the other hand, the query of the backward

analysis changes the time ordering of pixel values. Xt+1

is followed by Xt (from future to present) in the case of

query r. Therefore, a background model that corresponds to

piecewise time-reversal symmetric change will be retrieved

as M r from the database. M r is also regarded as M t+1 in

Eq. (1).

3.3. Foreground/Background Label Assignment

Each pixel has two tentative labels from the forward

analysis and backward analysis. The final label is assigned

by integrating the tentative results with consideration of

consistency with adjacent pixels.

An energy function is defined according to a Markov ran-

dom field and each pixel is given a proper label (foreground

or background) by minimizing the energy function. The en-

ergy function is defined as

E(L|X) = λ
∑
i∈V

G(li|Xi) +
∑

(i,j)∈E
H(li, lj |Xi, Xj), (4)

where L = (l1, . . . , lM ) is a binary label vector, and M is

the number of pixels. VandE represent a set of all pixels

and a set of four adjacent pixels respectively. G(li|Xi) and

H(li, lj |Xi, Xj) represent the penalty term and smoothing

term respectively and are calculated as

G(li|Xi) = (1 − α)P (Xi|M q) + αP (Xi|M r) (5)

H(li, lj |Xi, Xj) =
1

ln(|Xi −Xj |+ 1 + ε)
. (6)

The energy is minimized using a graph-cut algorithm[2].

3.4. Gaussian Mixture Background Model

This section briefly explains Gaussian mixture back-

ground models. The probability of observing the current

pixel value Xt is

P (Xt) =

K∑
k=1

wt
kη(X

t|μt
k,Σ

t
k), (7)

where K is the number of distributions. The variables wt
k,

μt
k and Σt

k are an estimate of the weight, mean value and

covariance matrix of the k-th Gaussian in the mixture for

frame t, respectively, while η is the Gaussian probability

density function. Each parameter is updated to adapt to

an observed pixel value frame by frame. According to the

change in pixel value, the number of distributions changes

dynamically. For further details, refer to [12].

4. Experimental Results

4.1. Preparation

The evaluation items in our experiments are the accuracy

of background subtraction, memory cost and computational

time. The accuracy was evaluated using the precision ratio,
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Scene 1 Scene 2 Scene 3 SABS

(a) Real environments (b) Artificial data

Figure 6. Evaluated scenes

recall ratio and F-measure given by

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (8)

F = 2/

(
1

Precision
+

1

Recall

)
. (9)

The F-measure quantifies the balance between precision and

recall, and a larger value reflects a better result. TP, FP and

FN denote the number of pixels detected correctly, detected

incorrectly, and undetected incorrectly, respectively.

Open datasets were used for evaluation; three real scenes

and six artificial scenes (Stuttgart Artificial Background

Subtraction Dataset: SABS[3]). The real scenes (see Fig-

ure 6(a)1) include two outdoor scenes and one indoor scene

where illumination changes often occur. The artificial

datasets (see Figure 6(b)) separately include the following

background changes.

Basic The scene includes basic background changes (e.g.,

waving trees)

Dynamic Background Some parts of the scenery may

contain movement, but should be regarded as back-

ground, according to their relevance. Such movement

can be periodic or irregular (e.g., traffic lights and wav-

ing trees).

Bootstrap If initialization data free from foreground ob-

jects are not available, the background model is initial-

ized using a bootstrapping strategy.

Darkening It is desirable that the background model

adapts to gradual changes in the appearance of the en-

vironment. In outdoor settings, for example, the light

intensity typically varies during the day.

Light Switch Sudden one-off changes are not covered by

the background model. They occur, for example, with

a sudden switch of light, and they strongly affect the

appearance of the background and result in false posi-

tive detections.

Noisy Night A video signal is generally superimposed

with noise. Background subtraction approaches for

video surveillance have to cope with such degraded

signals affected by different types of noise, such as

sensor noise and compression artifacts.

1The ground truth is available at http://limu.ait.kyushu-u.ac.jp/dataset/

Table 1. Background subtraction accuracy for outdoor scenes

Scene 1 Scene 2 Scene 3

GMM[14]

Precision 0.26 0.23 0.07

Recall 0.74 0.68 0.90
F-Measure 0.39 0.34 0.13

Case-based

Precision 0.60 0.43 0.16

Recall 0.69 0.69 0.82

F-Measure 0.64 0.52 0.27

Proposed

Precision 0.72 0.58 0.49
Recall 0.71 0.70 0.51

F-Measure 0.72 0.64 0.50

With regards to parameter settings, we set the contribu-

tion parameter α to 0.5, which was determined from pre-

liminary experiments. Other parameter settings except for

the standard deviation s were taken from the literature[12].

The standard deviation s was changed within the range of

[0.5, 250] to draw precision and recall charts.

4.2. Accuracy of Background Subtraction in Real
Scenes

Three methods, namely the GMM-based method[14],

case-based method (i.e., the parameter α = 0) and the

proposed method, were compared in terms of background

subtraction accuracy. Figure 7 shows foreground masks for

each scene and Table 1 gives the evaluation results for the

maximal F-measure2. A value given in bold type is the best

score among the three methods.

The result of the GMM-based method[14] is a typ-

ical baseline with much lower precision and higher re-

call because of the method’s low flexibility to background

changes. The case-based method (which did not employ

backward analysis) provides better results than the GMM-

based method. The proposed method further improved ac-

curacy, especially for the indoor scene (Scene 3). The in-

door scene includes sudden illumination changes caused by

the switching of a light on/off. In such scenes, the advan-

tage of backward analysis in the proposed method is demon-

strated as illustrated in Figure 2.

The GMM was likely to detect false positive pixels, re-

sulting in low precision. The proposed method could reduce

such false positives by bidirectional analysis, i.e. using two

GMMs (forward and backward). Therefore, the backward

analysis hypothesis contributed to gain the accuracy.

4.3. Memory and Computational Costs

The memory usage and computational time were also in-

vestigated. With regard to memory usage, the amount of

memory used by the program code was also monitored. The

computational time was recorded frame by frame, and the

average time was evaluated. Table 1 gives the results. The

2MRF smoothing was used for GMM[14] as well as other methods.
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Figure 7. Foreground masks

Table 2. Memory cost and computational time

Memory Time

GMM[14] 1 1

Case-based 0.30 0.32
Proposed 0.33 0.35

values in the table indicate the ratio to the baseline; i.e., the

GMM-based method.

The case-based method had both lower memory cost and

lower computational time than the GMM-based method.

These good results were a consequence of the “case-by-

case model sharing” strategy employed, where several pix-

els shared the same model. This reduced the total number

of background models. As a result, the computational time

was also reduced. The ratios of the proposed method are

almost the same as those of the case-based method because

the same background database was used even though the

proposed method employed analyses in two directions.

4.4. Adequacy of Piecewise Time-reversal Symme-
try

The proposed method assumed piecewise time-reversal

symmetry. We investigated the validity of the assump-

tion by comparing the proposed method with full-backward

analysis. The backward background model was completely

estimated using all the frames from the end of the im-

age sequence to the initial frame. The same integration

strategy (i.e., graph-cut-based label assignment as men-

tioned in section 3.3) was then applied to estimate the

foreground/background label. Therefore, the full-backward

analysis was performed in off-line processing. Almost the

same results were acquired by the full-backward analysis as

Table 3. Background subtraction accuracy when using all the

frames for backward analysis
Scene 1 Scene 2 Scene 3

full-

backward

analysis

Precision 0.71 0.67 0.42

Recall 0.70 0.64 0.57

F-Measure 0.70 0.65 0.48

shown in Table 3 compared with the results of the proposed

method in Table 1. Therefore, the assumption is basically

justified.

We furthermore conducted an additional experiment

with short-term future sequences. The result was almost the

same with the full backward analysis. We suppose that the

background model update is strongly affected by the suc-

cessive frames from the current frame even using all of the

future sequences.

4.5. Evaluation with an SABS dataset

This section reports evaluation results obtained using

an SABS dataset. In the literature [3], nine approaches

including recent methods and more conventional methods

have been evaluated for several scenes. Figure 8 shows the

recall–precision curves when changing the parameter s as

mentioned in section 4.1. Additionally, Table 4 gives the

results for the maximal F-measure for each scene.

Overall, the accuracy of the proposed method was higher

than that of other methods. According to the maximal F-

measure in Table 4, the proposed method achieved the top

score for three out of six scenes. The average score for all

scenes was also higher than the average scores for the other

methods. Therefore, we can argue that the proposed method

has broad utility.

Considering each scene in turn, all methods achieved

high scores for the scenes “Basic” and “Dynamic Back-

ground” since these scenes did not include severe back-

ground changes. Although the proposed method did not

achieve the highest scores for these scenes, the results com-

pared favorably with the results obtained with other meth-

ods. The proposed method did not provide high accuracy

for the “Darkening” scene, achieving a result less than 60%.

The reason for this is that the scene included the background

getting darker only. The inverse change of the background

getting brighter was not included, and therefore, the as-

sumption of piecewise time-reversal symmetry did not work

well. This is a limitation of the proposed method; how-

ever, considering the practical use, background subtraction

is usually applied to scenes that not only become darker but

also become brighter. Indeed, the proposed method per-

formed well for the real scene (Scene 1, captured outdoors),

which included the background becoming darker.

The proposed method outperformed other methods for

the scenes of “Bootstrapping”, “Light Switch” and “Noisy

Night”. With regard to “Bootstrapping”, we suppose that

the model-sharing strategy rather than the bidirectional
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analysis contributed to the high accuracy. As the train-

ing frames are not available in “Bootstrapping”, typical ap-

proaches suffer from background initialization and updating

of the model. Meanwhile, the case-based sharing strategy

used in the proposed method can tackle such an initializa-

tion problem by creating a new background model immedi-

ately.

In the cases of “Light Switch” and “Noisy Night”, the

proposed backward analysis contributed considerably to an

improvement in accuracy. Especially in the scene of “Light

Switch”, as well as Scene 3 captured indoors, the effective-

ness of the proposed method was confirmed.

Finally, the literature does not discuss the implementa-

tion cost of the nine compared methods. However, the im-

plementation of the compared methods will have memory

costs much greater than the cost of implementing the pro-

posed method. Therefore, the proposed method provides a

good balance of high accuracy and low cost.

5. Discussion
The experiments described above clarified the advan-

tages of the proposed method. Firstly, the proposed method

achieved better results than most other methods including

state-of-the-art methods in terms of the accuracy of back-

ground subtraction in various scenes. The experimental re-

sults supported the effectiveness of bidirectional analysis.

Secondly, the proposed method can be implemented with

low-cost memory usage. There are two factors that con-

tribute to the reduction in memory cost. One is the case-by-

case model sharing strategy, which allows pixels to share

a background model according to the pixel property. The

other is the idea that piecewise time-reversal symmetry

allows forward analysis and backward analysis to share

the same background database. As a result, the proposed

method has reduced memory cost suitable for practical ap-

plication.

Finally, the accepted delay for our concept was set to just

one frame in our implementation3. The delay is 33 millisec-

onds in the case of a video sequence. The 33-millisecond

delay can be ignored in most visual surveillance applica-

tions, but it improves the accuracy of background subtrac-

tion remarkably.

6. Conclusion
This paper discussed background modeling based on

bidirectional analysis. The introduction of backward anal-

ysis and its combined use with forward analysis provide a

good solution to improve background subtraction accuracy.

The proposed framework can be realized with low-memory

cost and short computational time, which are suitable for

3See the query r in Eq. (2), which uses only Xt+1 as future informa-

tion.

practical use. Experimental results using real scenes and

artificial scenes demonstrated these advantages of the pro-

posed method.

The proposed method still has some limitation that the

backward analysis does not always work well in some

scenes where the pixel values constantly increase/decrease,

where the occlusion lasts for a long time, including the

situations of a human/car stops, near-field object detec-

tion. Meanwhile, it is also true that the effectiveness of

the proposed method could be confirmed in far-field sensing

datasets evaluated in this paper.

In future work, further scenes need to be used in eval-

uating the proposed method, and application of the bidi-

rectional background modeling framework to other back-

ground models will be studied. We believe that the case-

based background modeling framework has great potential.
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