
Inductive Hashing on Manifolds

Fumin Shen‡†∗, Chunhua Shen†, Qinfeng Shi†, Anton van den Hengel†, Zhenmin Tang‡

† The University of Adelaide, Australia ‡ Nanjing University of Science and Technology, China

Abstract

Learning based hashing methods have attracted consid-

erable attention due to their ability to greatly increase the

scale at which existing algorithms may operate. Most of

these methods are designed to generate binary codes that

preserve the Euclidean distance in the original space. Man-

ifold learning techniques, in contrast, are better able to

model the intrinsic structure embedded in the original high-

dimensional data. The complexity of these models, and the

problems with out-of-sample data, have previously rendered

them unsuitable for application to large-scale embedding,

however.

In this work, we consider how to learn compact binary

embeddings on their intrinsic manifolds. In order to address

the above-mentioned difficulties, we describe an efficient,

inductive solution to the out-of-sample data problem, and a

process by which non-parametric manifold learning may be

used as the basis of a hashing method. Our proposed ap-

proach thus allows the development of a range of new hash-

ing techniques exploiting the flexibility of the wide variety

of manifold learning approaches available. We particularly

show that hashing on the basis of t-SNE [29] outperforms

state-of-the-art hashing methods on large-scale benchmark

datasets, and is very effective for image classification with

very short code lengths.

1. Introduction

One of many challenges emerging from the current ex-

plosion in the volume of image-based media available is

how to index and organize the data accurately, but also ef-

ficiently. Various hashing techniques have attracted con-

siderable attention in computer vision, information retrieval

and machine learning [8, 9, 19, 31, 33], and seem to offer

great promise towards this goal. Hashing methods aim to

encode documents or images as a set of short binary codes,

while maintaining aspects of the structure of the original

data. The advantage of these compact binary representa-

tions is that pairwise comparisons may be carried out ex-

tremely efficiently. This means that many algorithms which

∗F. Shen’s contribution was made when he was visiting The University

of Adelaide.

are based on such pairwise comparisons can be made more

efficient, and applied to much larger datasets.

Locality sensitive hashing (LSH) [8] is one of the most

well-known data-independent hashing methods, and gener-

ates hash codes based on random projections. With the suc-

cess of LSH, random hash functions have been extended to

several similarity measures, including p-norm distances [6],

the Mahalanobis metric [17], and kernel similarity [16, 24].

However, the methods belonging to the LSH family nor-

mally require relatively long hash codes and several hash

tables to achieve both high precision and recall. This leads

to a larger storage cost than would otherwise be necessary,

and thus limits the sale at which the algorithm may be ap-

plied.

Data-dependent or learning-based hashing methods have

been developed with the goal of learning more compact

hash codes. Directly learning binary embeddings typically

results in an optimization problem which is very difficult

to solve, however. Relaxation is often used to simplify

the optimization (e.g., [3, 31]. As in LSH, the methods

aim to identify a set of hyperplanes, but now these hyper-

planes are learned, rather than randomly selected. For ex-

ample, PCAH [31], SSH [31], and ITQ [9] generate lin-

ear hash functions through simple PCA projections, while

LDAhash [3] is based on LDA. Extending this idea, there

are also methods which learn hash functions in a kernel

space, such as reconstructive embeddings (BRE) [15], ran-

dom maximum margin hashing (RMMH) [14] and kernel-

based supervised hashing (KSH) [20]. In a departure from

such methods, however, spectral hashing (SH) [33], one of

the most popular learning-based methods, generates hash

codes by solving the relaxed mathematical program that is

similar to the one in Laplacian eigenmaps [1].

Embedding the original data into a low dimensional

space while simultaneously preserving the inherent neigh-

borhood structure is critical for learning compact, effective

hash codes. In general, nonlinear manifold learning meth-

ods are more powerful than linear dimensionality reduc-

tion techniques, as they are able to more effectively pre-

serve the local structure of the input data without assum-

ing global linearity [26]. The geodesic distance on a man-

ifold has been shown to outperform the Euclidean distance

in the high-dimensional space for image retrieval [10], for

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.205

1560

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.205

1560

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.205

1562

(a) Queries (b) �2 dist. on 784D (c) LSH with 128-bits (d) �2 dist. on embeded 48D (e) Hamming dist. with 48-bits

Figure 1: Top 10 retrieved digits for 4 queries (a) on a subset of MNIST with 300 samples. Search is conducted in the original feature space (b, c) and embedding space by

t-SNE [29] (d, e) using Euclidean distance (b, d) and hamming distance (c, e).

example. Figure 1 demonstrates that searching using either

the Euclidean or Hamming distance after nonlinear embed-

ding results in more semantically accurate neighbors than

the same search in the original feature space, and thus that

low-dimensional embedding may actually improve retrieval

or classification performance. However, the only widely

used nonlinear embedding method for hashing is Laplacian

eigenmaps (LE) (e.g., in [21, 33, 35]). Other effective man-

ifold learning approaches (e.g., LLE [25], elastic embed-

ding [4] or t-SNE [29]) have rarely been explored for hash-

ing.

One problem hindering the use of manifold learning for

hashing is that these methods do not directly scale to large

datasets. For example, to construct the neighborhood graph

(or pairwise similarity matrix) in these algorithms for n
data points is O(n2) in time, which is intractable for large

datasets. The second problem is that they are typically

non-parametric and thus cannot efficiently solve the criti-

cal out-of-sample extension problem. This fundamentally

limits their application to hashing, as generating codes for

new samples is an essential part of the problem. One of

the widely used solutions for the methods involving spec-

tral decomposition (e.g., LLE, LE and ISOMap [27]) is the

Nyström extension [2], which solves the problem by learn-

ing eigenfunctions of a kernel matrix. As mentioned in [33],

however, this is impractical for large-scale hashing since the

Nyström extension is as expensive as doing exhaustive near-

est neighbor search (O(n)). A more significant problem,

however, is the fact that the Nyström extension cannot be

directly applied to non-spectral manifold learning methods

such as t-SNE.

In order to address the out-of-sample extension prob-

lem, we propose a new non-parametric regression approach

which is both efficient and effective. This method allows

rapid assignment of new codes to previously unseen data in

a manner which preserves the underlying structure of the

manifold. Having solved the out-of-sample extension prob-

lem, we develop a method by which a learned manifold may

be used as the basis for a binary encoding. This method

is designed so as to generate encodings which reflect the

geodesic distances along such manifolds. On this basis we

develop a range of new embedding approaches based on a

variety of manifold learning methods. The best perform-

ing of these is based on manifolds identified through t-SNE,

which has been shown to be effective in discovering seman-

tic manifolds amongst the set of all images [29].

Given the computational complexity of many manifold

learning methods, we show that it is possible to learn the

manifold on the basis of a small subset of the data B (with

size m), and subsequently to inductively insert the remain-

der of the data, and any out-of-sample data, into the em-

bedding in O(m) time per point. This process leads to an

embedding method we label Inductive Manifold-Hashing

(IMH) which we show to outperform state-of-the-art meth-

ods on several large scale datasets both quantitatively and

qualitatively.

Related work Spectral Hashing Weiss et al. [33] formu-

lated the spectral hashing (SH) problem as

min
Y

∑
xi,xj∈X

w(xi,xj)‖yi − yj‖2 (1)

s.t. Y ∈ {−1, 1}n×r, Y�Y = nI, Y�1 = 0.

Here yi ∈ {−1, 1}r, the ith row in Y, is the hash code

we want to learn for xi ∈ Rd, which is one of the n
data points in the training data set X. W ∈ Rn×n with

Wij = w(xi,xj) = exp(−‖xi − xj‖2/σ2) is the graph

affinity matrix, where σ is the bandwidth parameter. I is the

identity matrix. The last two constraints force the learned

hash bits to be uncorrelated and balanced, respectively. By

removing the first constraint (i.e., spectral relaxation [33]),

Y can be easily obtained by spectral decomposition on the

Laplcaian matrix L = D −W, where D = diag(W1)
and 1 is the vector with all ones. However, constructing W

is O(dn2) (in time) and calculating the Nyström extension

for a new point is O(rn), which are both intractable for

large datasets. It is assumed in SH [33], therefore, that the

data are sampled from a uniform distribution, which leads

to a simple analytical eigenfunction solution of 1-D Lapla-

cians. However, this strong assumption is not true in prac-

tice and the manifold structure of the original data are thus

destroyed [21].

Anchor Graph Hashing To efficiently solve problem (1),

anchor graph hashing (AGH) [21] approximated the affin-

ity matrix W by the low-rank matrix Ŵ = ZΛ−1Z, where

Z ∈ Rn×m is the normalized affinity matrix (with k non-

zeros in each row) between the training samples and m an-

chors (generated by K-means), and Λ−1 normalizes Ŵ to

be doubly stochastic. Then the desired hash functions may

be efficiently identified by binarizing the Nyström eigen-

functions [2] with the approximated affinity matrix Ŵ.

AGH is thus efficient, in that it has linear training time and

constant search time, but as is the case for SH [33], the

156115611563

generalized eigenfunction is derived only for the Laplacian

eigenmaps embedding.

Self-Taught Hashing Self-taught hashing (STH) [35] ad-

dressed the out-of-sample problem by a novel way: hash

functions are obtained by training an SVM classifier for

each bit using the pre-learned binary codes as class labels.

The binary codes were learned by directly solving (1) with

a cosine similarity function. This process has prohibitive

computational and memory costs, however, and training the

SVM can be very time consuming for dense data.

2. The proposed method

2.1. Inductive learning for hashing

Assuming that we have the manifold-based embedding

Y := {y1,y2, · · · , yn} for the entire training data X :=
{x1, x2, · · · , xn}. Given a new data point xq , we aim to

generate an embedding yq which preserves the local neigh-

borhood relationships among its neighbors Nk(xq) in X.

We choose to minimize the following simple objective:

C(yq) =
n∑

i=1

w(xq,xi)‖yq − yi‖2. (2)

Here we define

w(xq,xi) =

{
exp(−‖xq − xi‖2/σ2), if xi ∈ Nk(xq),

0 otherwise.

Minimizing (2) naturally uncovers an embedding for the

new point on the basis of its nearest neighbors on the low-

dimensional manifold initially learned on the base set. That

is, in the low-dimensional space, the new embedded loca-

tion for the point should be close to those of the points close

to it in the original space.

Differentiating C(yq) with respect to yq , we have

∂C(yq)

yq

∣∣∣∣
yq=y�

q

= 2
n∑

i=1

w(xq,xi)(y
�
q − yi) = 0, (3)

which leads to the optimal solution

y�
q =

∑n
i=1 w(xq,xi)yi∑n
i=1 w(xq,xi)

. (4)

Equation (4) provides a simple inductive formulation for the

embedding: produce the embedding for a new data point by

a (sparse) linear combination of the base embeddings.

The proposed approach here is inspired by Delalleau et

al. [7], where they have focused on non-parametric graph-

based learning in semi-supervised classification. Our aim

here is completely different: We try to scale up the manifold

learning process for hashing in an unsupervised manner.

The resulting solution (4) is consistent with the basic

smoothness assumption in manifold learning, that close-

by data points lie on or close to a locally linear manifold

[1, 25, 27]. This local-linearity assumption has also been

widely used in semi-supervised learning [7,34], image cod-

ing [32], and similar. In this paper, we propose to apply this

assumption to hash function learning.

However, as aforementioned, (4) does not scale well for

both computing Y (O(n2) e.g., for LE) and out-of-sample

extension (O(n)), which is intractable for large scale tasks.

Next, we show that the following prototype algorithm is

able to approximate yq using only a small base set well.

This prototype algorithm is based on entropy numbers de-

fined below.

Definition 1 (Entropy numbers [12]). Given any Y ⊆ R
r

and p ∈ N, the m-th entropy number εm(Y) of Y is defined

as

εm(Y) := inf{ε > 0|N(ε, Y, ‖ · − · ‖) ≤ m},
where N is the covering number. Then εm(Y) is the smallest

radius that Y can be covered by less or equal to m balls.

2.1.1 The prototype algorithm

Inspired by Theorem 27 of [12], we construct a prototype

algorithm below. We use m clusters to cover Y. Let αi =
w(xq,xi)∑

n
j=1

w(xq,xj)
and Cj =

∑
i∈Ij

αi. For each cluster index

set Ij , we randomly draw �j = �mCj + 1� many indices

from Ij proportional to their weight αi. That is, for μ ∈
{1, · · · , �j}, the μ-th randomly drawn index uj,μ Pr(uj,μ =
i) = αi

Cj
, ∀j ∈ {1, · · · ,m}. We then construct ŷq as

ŷq =
m∑
j=1

Cj

�j

�j∑
μ=1

yuj,μ
. (5)

Theorem 2. For any even number n′ ≤ n. If Prototype

Algorithm uses n′ many non-zero y ∈ Y to express ŷq ,

then

Pr[‖ŷq − yq‖ ≥ t] <
2(εn′

2

(Y))2

n′t2
. (6)

Corollary 3. For an even number n′, any ε > εn′

2

(Y), any

δ ∈ (0, 1) and any t > 0, if n′ ≥ 2ε2

δt2
, then with probability

at least 1− δ,

‖ŷq − yq‖ < t.

Refer to the supplementary material for the proofs of the

theorem and corollary. The quality of the approximation

depends on εn′

2

(Y) and n′. If data exhibit strong clustering

patterns, i.e., data within each cluster are very close to clus-

ter center, we will have small εn′

2

(Y), hence better approxi-

mation. Likewise, the bigger n′ is, the better approximation

is.

2.1.2 Approximation of the prototype algorithm

The clusters can be obtained via clustering algorithm such

as K-means. Since the n could be potentially massive,

it is impractical to compute αi within all clusters. Let

αi(xq) =
w(xq,xi)∑

n
j=1

w(xq,xj)
. Ideally, for each cluster, we

want to select the yi that has high overall weight Oi =

156215621564

∑
xq∈X

αi(xq). For large scale X, we only have lim-

ited information available such as cluster centers {cj , j =
1, · · · ,m} and w(cj ,x),x ∈ X. Fortunately, the cluster-

ing result gives useful information about Oi. The cluster

centers have the largest overall weight w.r.t the points from

their own cluster, i.e.
∑

i∈Ij
w(cj ,xi). This suggests we

should select all cluster centers to express ŷq .

Following many methods in the area (e.g., [21, 33]), we

obtain our general inductive hash function by binarizing the

low-dimensional embedding

h(x) = sgn

(∑m
j=1 w(x, cj)yj∑m
j=1 w(x, cj)

)
, (7)

where sgn(·) is the sign function and YB := {y1, y2,
· · · , ym} is the embedding for the base set B := {c1, c2,
· · · , cm}, which is the cluster centers obtained by K-means.

Here we assume that the embeddings yi are centered on the

origin. We term our hashing method Inductive Manifold-

Hashing (IMH). The inductive hash function provides a nat-

ural means for generalization to new data, which has a con-

stant O(dm + rk) time. With this, the embedding for the

training data becomes

Y = W̄XBYB, (8)

where W̄XB is defined such that W̄ij =
w(xi,cj)∑
m
i=1

w(xi,cj)
,

for xi ∈ X, cj ∈ B.

Although the objective function (2) is formally related

to LE, it is general in preserving local similarity. The em-

beddings YB can be learned by any appropriate manifold

learning method which preserves the similarity of interest

in the low dimensional space. We empirically evaluate sev-

eral other embedding methods in Section 2.4. Actually, as

we show, some manifold learning methods (e.g., t-SNE de-

scribed in Section 2.2) can be better choices for learning

binary codes, although LE has been widely used. We will

discuss two methods for learning YB in the sequel.

We summarize the Inductive Manifold-Hashing frame-

work in Algorithm 1. Note that the computational cost is

dominated by K-means in the first step, which is O(dmnl)
in time (with l the number of iterations). Considering that

m (normally a few hundreds) is much less than n, and is a

function of manifold complexity rather than the volume of

data, the total training time is linear in the size of training

set. If the embedding method is LE, for example, then using

IMH to compute YB requires constructing the small affin-

ity matrix WB and solving r eigenvectors of the m × m
Laplacian matrix LB which is O(dm2 + rm). Note that

in step 3, to compute W̄XB, one needs to compute the dis-

tance matrix between B and X, which is a natural output

of K-means, or can be computed additionally in O(dmn)
time. The training process on a dataset of 70K items with

784 dimensions can thus be achieved in a few seconds on a

standard desktop PC.

Algorithm 1 Inductive Manifold-Hashing (IMH)

Input: Training data X := {x1,x2, . . . ,xn}, code length r, base set

size m, neighborhood size k

Output: Binary codes Y := {y1,y2, . . . ,yn} ∈ R
n×r

1) Generate the base set B by random sampling or clustering (e.g. K-

means).

2) Embed B into the low dimensional space by (9), (12) or any other ap-

propriate manifold leaning method.

3) Obtain the low dimensional embedding Y for the whole dataset induc-

tively by Equation (8).

4) Threshold Y at zero.

Connection to the Nyström method As Equation (4),

the Nyström eigenfunction by Bengio et al. [2] also gener-

alizes to a new point by a linear combination of a set of low

dimensional embeddings:

φ(x) =
√
n

n∑
j=1

K̃(x,xj)V
j
rΣ

−1
r .

For LE, Vr and Σr correspond to the top r eigenvectors and

eigenvalues of a normalized kernel matrix K̃ with K̃ij =

K̃(xi,xj) = 1
n

w(xi,xj)√
Ex[w(xi,x)]Ex[w(x,xj)]

. In AGH [21], the

formulated hash function was proved to be the correspond-

ing Nyström eigenfunction with the approximate low-rank

affinity matrix. LELVM [5] also formulate out-of-sample

mappings for LE in a manner similar to (4) by combining

latent variable models. Both of these methods, and ours, can

thus be seen as applications of the Nyström method. Note,

however, that our method differs in that it is not restricted

to spectral methods such as LE, and that we aim to learn bi-

nary hash functions for similarity-based search rather than

dimensionality reduction. LELVM [5] cannot be applied to

other embedding methods other than LE.

2.2. Stochastic neighborhood preserving hashing

In order to demonstrate our approach we now derive

a hashing method based on t-SNE [29], which is a non-

spectral embedding method. t-SNE is a modification of

stochastic neighborhood embedding (SNE) [13] which aims

to overcome the tendency of that method to crowd points

together in one location. t-SNE provides an effective tech-

nique for visualizing data and dimensionality reduction,

which is capable of preserving local structures in the high

dimensional data while retaining some global structures

[29]. These properties make t-SNE a good choice for near-

est neighbor search. Moreover, as stated in [30], the cost

function of t-SNE in fact maximizes the smoothed recall

[30] of query points and their neighbors.

The original t-SNE does not scale well, as it has a time

complexity which is quadratic in n. More significantly,

however, it has a non-parametric form, which means that

there is no simple function which may be applied to out-

of-sample data in order to calculate their coordinates in the

embedded space. As was proposed in the previous subsec-

156315631565

tion, we first apply t-SNE to the base set B [29],

min
YB

=
∑
xi∈B

∑
xj∈B

pij log

(
pij
qij

)
. (9)

Here pij is the symmetrized conditional probability in the

high dimensional space, and qij is the joint probability de-

fined using the t-distribution in the low dimensional embed-

ding space. The optimization problem (9) is easily solved

by a gradient descent procedure. After we get embeddings

YB of samples xi ∈ B, the hash codes for the entire dataset

can be easily computed using (7). It is this method which

we label IMH-tSNE.

2.3. Hashing with relaxed similarity preservation

As in the last subsection, we can compute YB consider-

ing local smoothness only within B. Based on equation (4),

in this subsection, we alternatively compute YB by consid-

ering the smoothness both within B and between B and X.

As in [7], the objective can be easily obtained by modifying

(1) as:

C(YB) =
∑

xi,xj∈B

w(xi,xj)‖yi − yj‖2 (CBB)

+ λ
∑

xi∈B,xj∈X

w(xi,xj)‖yi − yj‖2 (CBX)

(10)

where λ is the trade-off parameter. CBB enforces smooth-

ness of the learned embeddings within B while CBX en-

sures the smoothness between B and X. This formula-

tion is actually a relaxation of (1), by discarding the part

which minimizes the dissimilarity within X (denoted as

CXX). CXX is ignored since computing the similarity ma-

trix within X costs O(n2) time. The smoothness between

points in X is implicitly ensured by (8).

Applying equation (8) for yj , j ∈ X to (10), we obtain

the following problem

min trace(Y�B(DB −WB)YB) (11)

+λ trace(Y�B(DBX − W̄�
XBWXB)YB),

where DB = diag(WB1) and DBX = diag(WBX1) are

both m×m diagonal matrices. Taking the constraint in (1),

we obtain

min
YB

trace(Y�B(M+ λT)YB) (12)

s.t. Y�BYB = mI

where M = DB−WB, T = DBX−W̄�
XBWXB. The op-

timal solution YB of the above problem is easily obtained

by identifying the r eigenvectors of M+λT corresponding

to the smallest eigenvalues (excluding the eigenvalue 0 with

respect to the trivial eigenvector 1)1. We name this method

IMH-LE in the following text.

1We set λ to 2 in all experiments.

16 32 48 64 80 96 112 128
0.1

0.12

0.14

0.16

0.18

0.2

Code length

M
A

P

CIFAR

IMH−tSNE
IMH−SNE
IMH−EE
IMH−LE
IMH−LE

B

IMH−LLE
IMH−DM
IMH−PCA
PCAH
GIST L2 scan

Figure 2: Comparison among different manifold learning methods within our IMH

hashing framework on CIFAR-10. IMH with the linear PCA (IMH-PCA) and PCAH

[31] are also evaluated for comparison. For clarity, forIMH-LE in Section 2.3, we

term IMH with the original LE algorithm on the base set B as IMH-LEB. IMH-DM

is IMH with the diffusion maps of [18].

2.4. Manifold learning methods for hashing

In this section, we compare different manifold learning

methods for hashing within our IMH framework. The com-

parison results are reported in Figure 2. For comparison, we

also evaluate the linear PCA within the framework (IMH-

PCA in the figure). We can clearly see that IMH-tSNE,

IMH-SNE and IMH-EE (with Elastic Embedding (EE) [4])

perform slightly better than IMH-LE (Section 2.3). This is

mainly because these three methods are able to preserve lo-

cal neighborhood structure while, to some extent, prevent-

ing data points from crowding together. It is promising that

all of these methods perform better than an exhaustive �2
scan using the uncompressed GIST features.

Figure 2 shows that LE (IMH-LEB in the figure), the

most widely used embedding method in hashing, does not

perform as well as a variety of other methods (including

t-SNE), and in fact performs worse than PCA, which is a

linear technique. This is not surprising because LE (and

similarly LLE) tends to collapse large portions of the data

(and not only nearby samples in the original space) close

together in the low-dimensional space. The results are con-

sistent with the analysis in [4, 29]. Based on the above ob-

servations, we argue that manifold learning methods (e.g. t-

SNE, EE), which not only preserve local similarity but also

force dissimilar data apart in the low-dimensional space, are

more effective than the popular LE for hashing.

It is interesting to see that IMH-PCA outperforms PCAH

[31] by a large margin, despite the fact that PCAH is per-

formed on the whole training data set. This shows that the

generalization capability of IMH based on a very small set

of data points also works for linear dimensionality methods.

3. Experimental results

We evaluate IMH on four large scale image datasets:

CIFAR-102, MNIST , SIFT1M [31] and GIST1M3. The

MNIST dataset consists of 70, 000 images, each of 784 di-

mensions, of handwritten digits from ‘0’ to ‘9’. As a subset

of the well-known 80M tiny image collection [28], CIFAR-

10 consists of 60,000 images which are manually labelled

2http://www.cs.toronto.edu/˜kriz/cifar.html
3http://corpus-texmex.irisa.fr/

156415641566

100 200 300 400 500 600 700 800
0.12

0.14

0.16

0.18

0.2

0.22

Base set size m

M
A

P

CIFAR @64 bits

IMH−tSNEH
IMH−LE
IMH−LE

B

AGH

2 5 10 15 20

0.15

0.16

0.17

0.18

0.19

0.2

Number of nearest neighbours k

M
A

P

CIFAR @64 bits

IMH−tSNEH
IMH−LE
IMH−LE

B

AGH

Figure 3: MAP results versus varying base set size m (left, fixing k = 5) and

number of nearest base points k (right, fixing m = 400) for the proposed methods

and AGH. The comparison is conducted on the CIFAR-10 dataset using 64-bits .

bits IMH-LEB IMH-LE IMH-tSNE AGH

32
Random 14.07 16.20 17.26 -

K-means 16.05 17.48 18.38 15.76

64
Random 14.64 16.98 16.93 -

K-means 15.90 18.20 19.04 14.55

96
Random 14.76 17.02 17.21 -

K-means 15.46 18.56 19.41 13.98

Table 1: MAP (%) evaluation of different base generating methods: random sampling

vs. K-means. The comparison is performed on the CIFAR-10 dataset with code

lengths from 32 to 96 and base set size 400.

as 10 classes with 6, 000 samples for each class. We rep-

resent each image in this dataset by a GIST feature vec-

tor [23] of dimension 512. For MNIST and CIFAR-10, the

whole dataset is split into a test set with 1, 000 samples and

a training set with all remaining samples.

We compare nine hashing algorithms including the pro-

posed IMH-tSNE, IMH-LE and seven other unsupervised

state-of-the-art methods: PCAH [31], SH [33], AGH [21]

and STH [35], BRE [15], ITQ [9], Spherical Hashing (SpH)

[11]. We use the provided codes and suggested parame-

ters according to the authors of these methods. Because our

methods are fully unsupervised we did not consider super-

vised methods in our experiments. Due to the high com-

putational cost of BRE and high memory cost of STH, we

sample 1, 000 and 5, 000 training points for these two meth-

ods respectively. We measure performance by mean of av-

erage precision (MAP) or precision and recall curves for

hamming ranking using 16 to 128 hash bits. We also report

the results for hash lookup using a Hamming radius within 2

by F1 score [22]: F1 = 2(precision·recall)/(precision+
recall). Ground truths are defined by the category informa-

tion for the labeled datasets MNIST and CIFAR-10, and by

Euclidean neighbors for SIFT1M and GIST1M.

Base selection In this section, we take the CIFAR-10

dataset for example to compare different base generation

methods and different base sizes for the proposed methods.

AGH is also evaluated here for comparison. Table 1 com-

pares two methods for generating base point sets: random

sampling and K-means on the training data. Not surpris-

ingly, we see that the performance of our methods using

K-means is better at all code lengths than that using random

sampling. Also we can see that, even with base set by ran-

dom sampling, the proposed methods outperform AGH in

all cases but one. Due to the superior results and high effi-

ciency in practice, we generate the base set by K-means in

16 32 48 64 80 96 112 128
0.1

0.12

0.14

0.16

0.18

0.2

Code length

M
A

P

CIFAR

16 32 48 64 80 96
0

0.05

0.1

0.15

0.2

0.25

Code length

F
1 m

ea
su

re

CIFAR

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 4: Comparison of different methods on CIFAR-10 based on MAP (left) and

F1 (right) for varying code lengths.

the following experiments.

From Figure 3, we see that the performance of the pro-

posed methods and AGH do not change significantly with

both the base set size m and the number of nearest base

points k. Based on this observation, for the remainder of

this paper, we set m = 400 and k = 5 for our methods,

unless otherwise specified. Also it is clear that IMH-LEB,

which only enforces smoothness in the base set, does not

perform as well as IMH-LE, which also enforces smooth-

ness between the base set and training set. Note, however,

that IMH-LEB is still better than AGH on this dataset.

Results on CIFAR-10 dataset We report the compara-

tive results based on MAP for hamming ranking with code

lengths from 16 to 128 bits in Figure 4. We see that the pro-

posed IMH-LE and IMH-tSNE perform best in all cases.

Among the proposed algorithms, the LE based IMH-LE

is inferior to the t-SNE based IMH-tSNE. IMH-LE is still

much better than AGH and STH, however. ITQ performs

better than SpH and BRE on this dataset, but is still inferior

to IMH. SH and PCAH perform worst in this case, because

SH relies upon its uniform data assumption while PCAH

simply generates the hash hyperplanes by PCA directions,

which does not explicitly capture the similarity information.

The results are consistent with the complete precision and

recall curves shown in the supplementary material. We also

report the F1 results for hash lookup with Hamming radius

2 It is can be seen that IMH-LE and IMH-tSNE also out-

perform all other methods by large margins. BRE and AGH

obtain better results than the remaining methods, although

the performance of all methods drop as code length grows.

Figure 5 shows the precision and recall curves of ham-

ming ranking for the compared methods. We see that STH

and AGH obtain relatively high precisions when a small

number of samples are returned, however precision drops

significantly as the number of retrieved samples increases.

In contrast, IMH-tSNE, IMH-LE and ITQ achieve higher

precisions with relatively larger numbers of retrieved points.

We also show qualitative results of IMH and related

methods on a sample query in Figure 6. As can be seen,

IMH-tSNEH achieves the best search quality in term of vi-

sual relevance.

Results on MNIST dataset The MAP and F1 scores for

these compared methods are reported in Figure 7. As in Fig-

ure 4, IMH-tSNE achieves the best results. On this dataset

156515651567

(a) Query

(b) IMH-tSNE (c) SH (d) AGH (e) STH

Figure 6: The query image (a) and the query results returned by various methods with 32 hash bits. False positive returns are marked with red borders.

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
re

ci
si

on

Number of samples (X 2000)

CIFAR @64 bits

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Number of samples (X 2000)

CIFAR @64 bits

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 5: Comparison of different methods on CIFAR-10 based on precision (left)

and recall (right) using 64-bits. Please refer to the complementary for complete re-

sults for other code lengths.

16 32 48 64 80 96 112 128
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Code length

M
A

P

MNIST

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Code length

F
1 m

ea
su

re

MNIST

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 7: Comparison of different methods on the MNIST dataset using MAP (left)

and F1 (right) for varying code lengths.

we can clearly see that IMH-tSNE outperforms IMH-LE by

a large margin, which increases as code length increases.

This further demonstrates the advantage of t-SNE as a tool

for hashing by embedding high dimensional data into a low

dimensional space. The dimensionality reduction procedure

not only preserves the local neighborhood structure, but also

reveals important global structure (such as clusters) [29].

Among the four LE-based methods, while IMH-LE shows

a small advantage over AGH, both methods achieve much

better results than STH and SH. ITQ and BRE obtain high

MAPs with longer bit lengths, but they still perform less

well for the hash look up F1. PCAH performs worst in

terms of both MAP and the F1 measure. Refer to the sup-

Method Train time Test time

64-bits 128-bits 64-bits 128-bits

IMH-LE 9.9 9.9 5.1× 10−5 3.8× 10−5

IMH-tSNE 16.7 20.2 2.8× 10−5 3.1× 10−5

SH 6.8 16.2 5.8× 10−5 1.8× 10−4

STH 266.1 485.4 1.8× 10−3 3.6× 10−3

AGH 9.5 9.5 4.7× 10−5 5.5× 10−5

PCAH 3.8 4.1 5.7× 10−6 1.2× 10−5

SpH 19.7 41.0 1.3× 10−5 2.0× 10−5

ITQ 10.4 20.3 6.9× 10−6 1.1× 10−5

BRE 418.9 1731.9 1.2× 10−5 2.4× 10−5

Table 2: Comparison of training and testing times (in seconds) on MNIST with 70K

784D feature points. K-means dominates the cost of AGH and IMH (8.9 seconds),

which can be conducted in advance in practice. The experiments are based on a

desktop PC with a 4-core 3.07GHZ CPU and 8G RAM.

16 32 48 64 80 96 112 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Code length

F
1 m

ea
su

re

SIFT1M

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Code length

R
ec

al
l

SIFT1M

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 8: Comparative results results on SIFT1M for F1 (left) and recall (right) with

hamming radius 2. Ground truth is defined to be the closest 2 percent of points as

measured by the Euclidean distance.

plementary material for the complete precision and recall

curves which validate the observations here.

Efficiency Table 2 shows training and testing time on the

MNIST dataset for various methods, and shows that the lin-

ear method, PCAH, is fastest. IMH-tSNE is slower than

IMH-LE, AGH and SH in terms of training time, however

all of these methods have relatively low execution times and

are much faster than STH and BRE. In terms of test time,

both IMH algorithms are comparable to other methods, ex-

cept STH which takes much more time to predict the binary

codes by SVM on this non-sparse dataset.

Results on SIFT1M and GIST1M SIFT1M contains

one million local SIFT descriptors extracted from a large

set of images [31], each of which is represented by a 128D

vector of histograms of gradient orientations. GIST1M con-

tains one million GIST features and each feature is repre-

sented by a 960D vector. For both of these datasets, one

million samples are used as training set and additional 10K

are used for testing. As in [31], ground truth is defined as

the closest 2 percent of points as measured by the Euclidean

distance. For these two large datasets, we generate 1, 000
points by K-means and set k = 2 for both IMH and AGH.

The comparative results on SIFT1M and GIST1M are sum-

marized in Figure 8 and Figure 9, respectively. Again, IMH

consistently achieves superior results in terms of both F1

score and recall with hamming radius 2. We see that the

performance of most of these methods decreases dramati-

cally with increasing code length as the hamming spaces

become more sparse, which makes the hash lookup fail

more often. However IMH-tSNE still achieves relatively

high scores with large code lengths. If we look at Figure 8

(left), ITQ obtains the highest F1 with 16-bits, however it

decreases to near zero at 64-bits. In contrast, IMH-tSNE

still manages an F1 of 0.2. Similar results are observed in

156615661568

16 32 48 64 80 96 112 128
0

0.05

0.1

0.15

0.2

Code length

F
1 m

ea
su

re

GIST1M

IMH−tSNE
IMH−LE
AGH
SH
PCAH
SpH
ITQ

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

Code length

R
ec

al
l

GIST1M

IMH−tSNE
IMH−LE
AGH
SH
PCAH
SpH
ITQ

Figure 9: Comparative results results on GIST1M by F1 (left) and recall (right) with

hamming radius 2. Ground truth is defined to be the closest 2 percent of points as

measured by the Euclidean distance.

3264 128 256 384 512

70

75

80

85

90

95

Code length

A
cc

ur
ac

y
(%

)

MNIST

IMH−LE
IMH−tSNE
AGH
ITQ
SH
PCAH
SphH
STH
BRE

Figure 10: Classification accuracy (%) on MNIST with binary codes of various hash-

ing methods by linear SVM.

the recall curves.

Classification on binary codes In order to demonstrate

classification performance we have trained a linear SVM on

the binary codes generate by IMH for the MNIST data set.

In order to learn codes with higher bit lengths for IMH and

AGH, we set the size of the base set to 1, 000. Accuracies

of different binary encodings are shown in Figure 10. Both

IMH and AGH achieve high accuracies on this dataset, al-

though IMH performs better with higher code lengths. In

contrast, the best results of all other methods, obtained by

ITQ, are consistently worse than those for IMH, especially

for short code lengths. Note that even with only 128-bit

binary features IMH obtains a high 94.1%. Interestingly,

we get the same classification rate of 94.1% applying the

linear SVM to the uncompressed 784D features, which oc-

cupy several hundreds times as much space as the learned

hash codes.

Conclusion We have proposed a simple yet effective

hashing framework which provides a practical connec-

tion between manifold learning methods (typically non-

parametric and with high computational cost) and hash

function learning (requiring high efficiency). By preserv-

ing the underlying manifold structure with several non-

parametric dimensionality reduction methods, the proposed

hashing methods outperform several state-of-the-art meth-

ods in terms of both hash lookup and hamming ranking

on several large-scale retrieval-datasets. The proposed in-

ductive formulation of the hash function sees the proposed

methods require only linear time (O(n)) for indexing all

of the training data and a constant search time for a novel

query. The learned hash codes were also shown to have

promising results on a classification problem even with very

short code lengths.

This work was in part supported by ARC Future Fellowship

FT120100969.

References

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Proc. Adv. Neural Inf. Process. Syst., 2001.
[2] Y. Bengio, O. Delalleau, N. Roux, J. Paiement, P. Vincent, and M. Ouimet.

Learning eigenfunctions links spectral embedding and kernel PCA. Neural

Comput., 16(10):2197–2219, 2004.
[3] M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller de-

scriptors. IEEE Trans. Pattern Anal. Mach. Intell., 2012.
[4] M. Carreira-Perpinán. The elastic embedding algorithm for dimensionality re-

duction. In Proc. Int. Conf. Mach. Learn., 2010.
[5] M. Carreira-Perpinán and Z. Lu. The laplacian eigenmaps latent variable

model. Proc. Int. Conf. Artif. Intell. Stat., 2007.
[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hash-

ing scheme based on p-stable distributions. In Ann. Symp. Comput. Geometry,

2004.
[7] O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametric function

induction in semi-supervised learning. In Proc. Int. Workshop Artif. Intelli.

Stat., pages 96–103, 2005.
[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In Proc. Int. Conf. Very Large Datadases, 1999.
[9] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to

learning binary codes. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011.
[10] X. He, W.-Y. Ma, and H.-J. Zhang. Learning an image manifold for retrieval.

In Proc. ACM Multimedia, 2004.
[11] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon. Spherical hashing. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., 2012.
[12] R. Herbrich and R. C. Williamson. Algorithmic luckiness. J. Mach. Learn.

Res., 3:175–212, 2002.
[13] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Proc. Adv. Neural

Inf. Process. Syst., 2002.
[14] A. Joly and O. Buisson. Random maximum margin hashing. In Proc. IEEE

Conf. Comp. Vis. Patt. Recogn., 2011.
[15] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embed-

dings. In Proc. Adv. Neural Inf. Process. Syst., 2009.
[16] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable

image search. In Proc. IEEE Int. Conf. Comp. Vis., 2009.
[17] B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics.

IEEE Trans. Pattern Anal. Mach. Intell., pages 2143–2157, 2009.
[18] S. Lafon and A. Lee. Diffusion maps and coarse-graining: A unified framework

for dimensionality reduction, graph partitioning, and data set parameterization.

IEEE Trans. Pattern Anal. Mach. Intell., 28(9):1393–1403, 2006.
[19] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick. Learning hash func-

tions using column generation. In Proc. Int. Conf. Mach. Learn., 2013.
[20] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang. Supervised hashing with kernels.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2012.
[21] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In Proc.

Int. Conf. Mach. Learn., 2011.
[22] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Re-

trieval. Cambridge University Press, New York, NY, USA, 2008.
[23] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-

sentation of the spatial envelope. Int. J. Comp. Vis., 2001.
[24] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-

invariant kernels. In Proc. Adv. Neural Inf. Process. Syst., 2009.
[25] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, pages 2323–2326, 2000.
[26] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2008.
[27] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, pages 2319–2323, 2000.
[28] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data

set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal.

Mach. Intell., pages 1958–1970, 2008.
[29] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. J. Mach.

Learn. Res., 9:2579–2605, 2008.
[30] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval

perspective to nonlinear dimensionality reduction for data visualization. J.

Mach. Learn. Res., 11:451–490, 2010.
[31] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large scale

search. IEEE Trans. Pattern Anal. Mach. Intell., 34(12):2393 –2406, 2012.
[32] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained

linear coding for image classification. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2010.
[33] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. Adv. Neural

Inf. Process. Syst., 2008.
[34] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate cod-

ing. In Proc. Adv. Neural Inf. Process. Syst., 2009.
[35] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity

search. In Proc. ACM SIGIR Conf., 2010.

156715671569

