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Abstract

Data-driven dictionaries have produced state-of-the-art
results in various classification tasks. However, when the
target data has a different distribution than the source data,
the learned sparse representation may not be optimal. In
this paper, we investigate if it is possible to optimally repre-
sent both source and target by a common dictionary. Specif-
ically, we describe a technique which jointly learns pro-
jections of data in the two domains, and a latent dictio-
nary which can succinctly represent both the domains in
the projected low-dimensional space. An efficient optimiza-
tion technique is presented, which can be easily kernelized
and extended to multiple domains. The algorithm is mod-
ified to learn a common discriminative dictionary, which
can be further used for classification. The proposed ap-
proach does not require any explicit correspondence be-
tween the source and target domains, and shows good re-
sults even when there are only a few labels available in the
target domain. Various recognition experiments show that
the method performs on par or better than competitive state-
of-the-art methods.

1. Introduction

The study of sparse representation of signals and images
has attracted tremendous interest in last few years. Sparse
representations of signals and images require learning an
over-complete set of bases called a dictionary along with
linear decomposition of signals and images as a combina-
tion of few atoms from the learned dictionary. Olshausen
and Field [16] in their seminal work introduced the idea of
learning dictionary from data instead of using off-the-shelf
bases. Since then, data-driven dictionaries have been shown
to work well for both image restoration [3] and classifica-
tion tasks [26].

The efficiency of dictionaries in these wide range of ap-
plications can be attributed to the robust discriminant rep-
∗This work was partially supported by an ONR grant N00014-12-1-

0124.

Figure 1. Overview of the proposed dictionary learning method.

resentations that they provide by adapting to the particu-
lar data samples. However, the learned dictionary may not
be optimal if the target data has different distribution than
the data used for training. These variations are common-
place in vision problems, and can happen due to changes
in image sensor (web-cams vs SLRs), camera viewpoint,
illumination conditions, etc. It has been shown that such
changes can cause significant degradation in classifier per-
formance [2]. Adapting dictionaries to new domains is a
challenging task, but has hardly been explored in the vi-
sion literature. Yangqing et al. [12] considered a spe-
cial case where corresponding samples from each domain
were available, and learned a dictionary for each domain.
More recently, Qiu et al. [19] proposed a method for adapt-
ing dictionaries for smoothly varying domains using regres-
sion. However, in practical applications, target domains are
scarcely labeled, and domain shifts may result in abrupt fea-
ture changes (e.g., changes in resolution when comparing
web-cams to DSLRs). Moreover, high dimensional features
are often extracted for object recognition. Hence learning a
separate dictionary for each domainwill have a severe space
constraint, rendering it unfeasible for many practical appli-
cations.
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In view of the above challenges, we propose a robust
method for learning a single dictionary to optimally repre-
sent both source and target data. As the features may not be
correlated well in the original space, we project data from
both the domains onto a common low-dimensional space,
while maintaining the manifold structure of data. Simul-
taneously, we learn a compact dictionary which represents
projected data from both the domains well. As the final
objective is classification, we learn a class-wise discrimina-
tive dictionary. This joint optimization method offers sev-
eral advantages in terms of generalizability and efficiency
of the method. Firstly, learning separate projection matrix
for each domain makes it easy to handle any changes in
feature dimension and type in different domains. It also
makes the algorithm conveniently extensible to handle mul-
tiple domains. Further, learning the dictionary on a low-
dimensional space makes the algorithm faster, and irrele-
vant information in original features is discarded. More-
over, joint learning of dictionary and projections ensures
that the common internal structure of data in both the do-
mains is extracted, which can be represented well by sparse
linear combinations of dictionary atoms.

An additional contribution of the paper is an efficient op-
timization technique to solve this problem. We will see that
by constraining the projection matrices to be orthonormal
matrices, convenient forms for optimal dictionary and pro-
jection matrices can be obtained. Using the kernel methods,
the proposed algorithm can be easily made non-linear, and
the resulting optimization problem has a few simple update
steps.

1.1. Paper Organization

The paper is organized in six sections. In Section 2,
we describe some of the related works. The algorithm is
formulated in Section 3, and the optimization technique is
described in Section 4. The classification scheme for the
learned dictionary is described in Section 5. Experimental
results are presented in Section 6, and the final concluding
remarks are made in 7.

2. Related Work

The problem of adapting classifiers to new visual do-
mains has recently gained importance in the vision com-
munity and several methods have been proposed [21, 13,
6, 5, 11]. Of these methods, Jhuo et al. [11] learnt a
transformation of source data onto target space, such that
the joint representation is low-rank. It however cannot uti-
lize the labeled data while learning the projections. On the
other hand, our method jointly learns projections of both the
domains, while utilizing the available labels to learn a dis-
criminative dictionary. Han et al. [10] suggested learning a
shared embedding for different domains, along with a spar-
sity constraint on the representation. However, they assume

pre-learned projections, which may not be optimal. In the
dictionary learning literature, Yang et al. [27] and Wang et
al. [24] proposed learning dictionary pairs for cross-modal
synthesis. Similarly, methods for joint dimensionality re-
duction and sparse representation have also been proposed
[29, 4, 14, 15]. Additional methods may be found within
these references.

3. Problem Framework

The classical dictionary learning approachminimizes the
representation error of the given set of data samples subject
to a sparsity constraint [1]. LetY = [y1, · · · ,yN ] ∈ R

n×N

be the data matrix. Then, the K-atoms dictionary, D ∈
R

n×K , can be trained by solving the following optimization
problem

{D∗,X∗} = argmin
D,X

‖Y −DX‖2F s.t. ‖xi‖0 ≤ T0 ∀i

where, X = [x1,x2, ...,xN ] ∈ R
K×N is the sparse repre-

sentation of Y over D, and T0 is the sparsity level. Here,
‖.‖0-norm counts the number of nonzero elements in a vec-
tor and ‖.‖F is the Frobenius norm of a matrix.

Now, consider a special case, where we have data from
two domains, Y1 ∈ R

n1×N1 and Y2 ∈ R
n2×N2 . We wish

to learn a sharedK-atoms dictionary,D ∈ R
n×K and map-

pings P1 ∈ R
n×n1 , P2 ∈ R

n×n2 onto a common low-
dimensional space, which will minimize the representation
error in the projected space. Formally, we desire to mini-
mize the following cost function:

C1(D,P1,P2,X1,X2) = ‖P1Y1 −DX1‖2F+
‖P2Y2 −DX2‖2F

subject to sparsity constraints on X1 and X2. We further
assume that rows of the projection matrices,P1 andP2 are
orthogonal and normalized to unit-norm. This prevents the
solution from becoming degenerate. We will also see that it
leads to an efficient scheme for optimization and makes the
kernelization of the algorithm possible.

Regularization: It will be desirable if the projections,
while bringing the data from two domains to a shared sub-
space, do not lose too much information available in the
original domains. To facilitate this, we add a PCA-like reg-
ularization term which preserves energy in the original sig-
nal, given as:

C2(P1,P2) = ‖Y1 −PT
1 P1Y1‖2F+

‖Y2 −PT
2 P2Y2‖2F .

It is easy to show after some algebraic manipulations that
the costs C1 and C2, after ignoring the constant terms in Y,
can be written as:

C1(D, P̃, X̃) = ‖P̃Ỹ −DX̃‖2F , (1)

C2(P̃) = −trace((P̃Ỹ)(P̃Ỹ)T ) (2)
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where,

P̃ = [P1 P2], Ỹ =

(
Y1 0
0 Y2

)
, and X̃ = [X1 X2].

Hence, the overall optimization is given as:

{D∗, P̃∗, X̃∗} = argmin
D,P̃,X̃

C1(D, P̃, X̃) + λC2(P̃)

s.t. PiP
T
i = I, i = 1, 2 and ‖x̃j‖0 ≤ T0, ∀j (3)

where, λ is a positive constant.

3.1. Multiple domains

The above formulation can be extended so that it can
handle multiple domains. For M domain problem, we sim-
ply construct matrices Ỹ, P̃, X̃ as:

P̃ = [P1, · · · ,PM] , Ỹ =

⎛
⎜⎝

Y1 · · · 0
...

. . .
...

0 · · · YM

⎞
⎟⎠ ,

and
X̃ = [X1, · · · ,XM].

With these definitions, (3) can be extended to multiple do-
mains as follows

{D∗, P̃∗, X̃∗} = argmin
D,P̃,X̃

C1(D, P̃, X̃) + λC2(P̃)

s.t. PiP
T
i = I, i = 1, · · · ,M and ‖x̃j‖0 ≤ T0, ∀j (4)

3.2. Discriminative Dictionary

The dictionary learned in (3) can reconstruct the two do-
mains well, but it cannot discriminate between the data from
different classes. Recent advances in learning discrimina-
tive dictionaries [20, 28] suggest that learning class-wise,
mutually incoherent dictionaries works better for discrimi-
nation. To incorporate this into our framework, we write the
dictionary D as D = [D1, · · · ,DC], where C is the total
number of classes. We modify the cost function similar to
[28], which encourages reconstruction samples of a given
class by the dictionary of the corresponding class, and pe-
nalizes reconstruction by out-of-class dictionaries. The new
cost function, C1(D, P̃, X̃) is given as:

C1(D, P̃, X̃) = ‖P̃Ỹ −DX̃‖2F + μ‖P̃Ỹ −DX̃in‖2F+
ν‖DX̃out‖2F , (5)

where μ and ν are the weights given to the discriminative
terms, and matrices X̃in and X̃out are given as:

X̃in[i, j] =

{
X̃[i, j], Di, Ỹj ∈ same class
0, otherwise,

X̃out[i, j] =

{
X̃[i, j], Di, Ỹj ∈ different class
0, otherwise.

The cost function is defined only for labeled data in both
domains. Unlabeled data can be handled using semi-
supervised approaches to dictionary learning [18]. How-
ever, we do not explore it further in this paper. Also, note
that we do not need to modify the forms of projection matri-
ces, since they capture the overall domain shift, and hence
are independent of class variations.

4. Optimization

For the above optimization problem, we can prove the
following proposition. The proof is given in the Supple-
mentary Material.

Proposition 1: There exists an optimal solution
P∗1, · · · ,P∗M,D∗ to equation (4), which has the following
form:

P∗i = (YiAi)
T ∀ i = 1, · · · ,M (6)

D∗ = P̃∗ỸB̃ (7)

where, P̃∗ = [P∗1, · · · ,P∗M], for some Ai ∈ R
Ni×n and

some B̃ ∈ R

∑
Ni×K .

With this proposition, the cost functions can be written
as:

C1(Ã, B̃, X̃) = ‖ÃTK̃(I− B̃X̃)‖2F+
μ‖ÃTK̃(I− B̃X̃in)‖2F + ν‖ÃTK̃B̃X̃out‖2F (8)

C2(Ã) = −trace((ÃTK̃)(ÃTK̃)T ) (9)

where, K̃ = ỸTỸ and ÃT = [AT
1 , · · · ,AT

M]. The equal-
ity constraints now become:

PiP
T
i = AT

i KiAi = I, ∀i = 1, · · · ,M (10)

where, Ki = YT
i Yi. The optimization problem now be-

comes:

{Ã∗, B̃∗, X̃∗} = argmin
Ã,B̃,X̃

C1(Ã, B̃, X̃) + λC2(Ã)

s.t. AT
i KiAi = I, i = 1, · · · ,M and ‖x̃j‖1 ≤ T0, ∀j

(11)

This formulation allows joint update of D and Pi via Ai.
Also, the form of the cost functions makes it easier to ker-
nelize, which we will see in 4.3.

4.1. Update step for Ã

Here we assume that (B̃, X̃) are fixed. Then, the opti-
mization for Ã can be solved efficiently. We have the fol-
lowing proposition.
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Proposition 2: The optimal solution of equation (11)
when (B̃, X̃) are fixed is:

Ã∗ = VS−
1
2G∗ (12)

where, V and S come from the eigendecomposition of
K̃ = VSVT, and G∗ ∈ R

∑
Ni×n = [G∗T1 , · · · ,G∗TM ]T

is the optimal solution of the following problem:

{G∗} = argmin
G

trace[GTHG]

s.t. GT
i Gi = I ∀ i = 1, · · · ,M (13)

where,

H = S
1
2VT((I− B̃X̃)(I− B̃X̃)T + μ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T − λI)VS
1
2 (14)

Proof: See Supplementary material.
Equation (13) is non-convex due to non-linear equality

constraints. Specifically, due to the orthonormality condi-
tion onGi, it involves optimization on the Stiefel manifold.
We solved this problem using the efficient approach pre-
sented in [25].

4.2. Update step for B̃, X̃

For a fixed Ã, the problem becomes that of discrimina-
tive dictionary learning, with data as Z = ÃTK̃ and dictio-
nary D = ÃTK̃B̃. To jointly learn the dictionary, D, and
sparse code, X̃, we use the framework of the discriminative
dictionary learning approach presented in [28]. Once the
dictionary,D, is learned, we can update B̃ as:

B̃ = Z†D, (15)

where Z† is the pseudo-inverse of Z defined as Z† =
(ZTZ)−1ZT .

4.3. Non-linear extension

In many vision problems, projecting the original fea-
tures may not be good enough due to non-linearity in data.
This can be overcome by transforming the data into a high-
dimensional feature space. Let Φ : Rn → H be a mapping
to the reproducing kernel Hilbert space H. The mapping
P i to the reduced space, can ne characterized by a compact,
linear operator, P i : H → R

d. Let K = 〈Φ(Ỹ),Φ(Ỹ)〉H.
It can be shown similar to proposition 1 that:

P∗i = ATΦ(Y)T;D∗ = ÃTKB̃.

Thus, we get the cost functions as:

C1(Ã, B̃, X̃) = ‖ÃTK(I− B̃X̃‖2F+
μ‖ÃTK(I− B̃X̃in‖2F + ν‖ÃTKB̃X̃out‖2F , (16)

C2(Ã) = −trace((ÃTK)(ÃTK)T ) (17)

and the equality constraints as,

AT
i KiAi = I ∀ i = 1, · · · ,M,

whereKi = 〈Φ(Yi),Φ(Yi)〉H.

5. Classification

Given a test sample, yte from domain k, we propose the
following steps for classification, similar to [15]. We con-
sider the general case of classifying mapping of the sample
into kernel space, Φ(yte).

1. Compute the embedding of the sample in the common
subspace, zte using the projection,P∗k.

zte = P∗kΦ(yte) = AkKte

where,Kte = 〈Φ(Yk),Φ(yte)〉.
2. Compute the sparse coefficients, x̂te, of the embedded

sample over dictionary D using the OMP algorithm
[17].

x̂te = argmin
x

‖zte −Dx‖2F s.t. ‖x‖0 ≤ T0.

3. Now, the sample can be assigned to class i, if the
reconstruction using the class dictionary, Di and the
sparse code corresponding to the atoms of the dictio-
nary, x̂i

te is minimum.

Output class = argmin
i=1,··· ,C

‖zte −Dix̂
i
te‖2F.

However, the reconstruction error may not be discrimi-
native enough in the reduced space. So, we project the
dictionary, Di into the feature space, and assign the
test sample to the class with the minimum error in the
original feature space:

Output class = argmin
i=1,··· ,C

‖Φ(yte)−P∗Tk Dix̂
i
te‖2F

= argmin
i=1,··· ,C

κte − 2KteA
∗
kDi + x̂iT

teD
T
i A

∗
kKkA

∗
kDix̂

i
te,

where κte = 〈Φ(yte),Φ(yte)〉. The proposed, Shared
Domain-adapted Dictionary Learning (SDDL) algorithm is
summarized in Algorithm 1.

6. Experiments

We conducted various experiments to ascertain the ef-
fectiveness of the proposed method. First, we demonstrate
some synthesis and recognition results on the CMU Multi-
Pie dataset for face recognition across pose and illumina-
tion variations. This also provides insights into our method
through visual examples. Next we show the performance of
our method on domain adaptation databases and compare it
with existing adaptation algorithms.
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Input: Data {Yi}Mi=1 and corresponding class labels
{Ci}Mi=1 for M domains, sparsity level T0, dictionary size
K and dimension n, parameter values μ, ν
Procedure:
1. Initialize: Initialize Ã such that AiKiAi = I
∀ i = 1, · · · ,M . For this, find SVD of each kernel matrix,
Ki = ViSiV

T
i . Set Ai as the matrix of eigen-vectors with

top n eigen-values as columns.
2. Update step for B̃: Learn common dictionary D with
data as Z = ÃTK, and using discriminative dictionary
learning algorithm as FDDL. Update B̃ as:

B̃ = Z†D

3. Update step for Ã: Update Ã as:

{G∗} = argmin
G

trace[GTHG]

s.t. GT
i Gi = I ∀ i = 1, · · · ,M

where, Ã∗ = VS−
1
2 G∗ and H is:

H = S
1
2VT((I− B̃X̃)(I− B̃X̃)T + μ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T − λI)VS
1
2

Output: Learned dictionary D, projection matrices
{Ai}Mi=1

Algorithm 1: Shared Domain-adapted Dictionary
Learning (SDDL)

6.1. CMU Multi-Pie Dataset

TheMulti-pie dataset [9] is a comprehensive face dataset
of 337 subjects, having images taken across 15 poses, 20 il-
luminations, 6 expressions and 4 different sessions. For the
purpose of our experiment, we used 129 subjects common
to both Session 1 and 2. The experiment was done on 5
poses, ranging from frontal to 75o. Frontal faces were taken
as the source domain, while different off-frontal poses were
taken as target domains. Dictionaries were trained using il-
luminations {1, 4, 7, 12, 17} from the source and the target
poses, in Session 1 per subject. All the illumination images
from Session 2, for the target pose, were taken as probe im-
ages. The linear kernel was used for all the experiments.

6.1.1 Pose Alignment

First we consider the problem of pose alignment using the
proposed dictionary learning framework. Pose alignment is
challenging due to the highly non-linear changes induced
by 3-D rotation of face. Images at the extreme pose of 60o

were taken as the target pose. A shared discriminative dic-
tionary was learned using the approach described in this pa-
per. Given the probe image, it was projected on the latent
subspace and reconstructed using the dictionary. The recon-

struction was back-projected onto the source pose domain,
to give the aligned image. Figure 2(a) shows the synthe-
sized images for various conditions. We can draw some
useful insights about the method from this figure. Firstly, it
can be seen that there is an optimal dictionary size, K = 5,
where the best alignment is achieved. Further, by learning
a discriminative dictionary, the identity of the subject is re-
tained. ForK = 7, the alignment is not good, as the learned
dictionary is not able to successfully correlate the two do-
mains when there are more atoms in the dictionary. Dictio-
nary with K = 3 has higher reconstruction error, hence the
result is not optimal. We choseK = 5 for additional exper-
iments with noisy images. It can be seen that from rows 2
and 3 that the proposed method is robust even at high levels
of noise and missing pixels. Moreover, de-noised and in-
painted synthesized images are produced as shown in rows
2 and 3 of Figure 2(a), respectively. This shows the effec-
tiveness of our method. Moreover, the learned projection
matrices (Figure 2(b)) show that our method can learn the
internal structure of the two domains. As a result, it is able
to learn a robust common dictionary.

(a)

(b)
Figure 2. (a) Examples of pose-aligned images using the proposed
method. Synthesis in various conditions demonstrate the robust-
ness of the method. (b) First few components of the learned pro-
jection matrices for the two poses.
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6.1.2 Recognition

We also conducted recognition experiment using the set-up
described above. Table 1 shows that our method compares
favorably with some of the recently proposed multi-view
recognition algorithms [23], and gives the best performance
on average. The dictionary learning algorithm, FDDL [28]
is not optimal here as it is not able to efficiently represent
the non-linear changes introduced by the pose variation.

Method
Probe pose

Average
15o 30o 45o 60o 75o

PCA 15.3 5.3 6.5 3.6 2.6 6.7
PLS [22] 39.3 40.5 41.6 41.1 38.7 40.2
LDA 98.0 94.2 91.7 84.9 79.0 89.5

CCA [22] 92.1 89.7 88.0 86.1 83.0 83.5
GMLDA [23] 99.7 99.2 98.6 94.9 95.4 97.6
FDDL [28] 96.8 90.6 94.4 91.4 90.5 92.7

SDDL 98.4 98.2 98.9 99.1 98.8 98.7

Table 1. Comparison of the proposed method with other algo-
rithms for face recognition across pose.

6.2. Object Recognition

We now evaluate our method for object recognition. Per-
formance of the proposed SDDL method is compared to
FDDL [28], and some recently proposed domain-adaptation
algorithms [21, 6, 5, 11].

6.2.1 Experimental Set-up

The experiments use the dataset which was introduced
in [21]. The dataset consists of images from 3 sources:
Amazon (consumer images from online merchant sites),
DSLR (images by DSLR camera) andWebcam (low quality
images from webcams). In addition, we also tested on the
Caltech-256 dataset [8], taking it as the fourth domain. Fig-
ure 3 shows sample images from these datasets, and clearly
highlights the differences between them. We follow 2 set-
ups for testing the algorithm. In the first set-up, 10 common
classes: BACKPACK, TOURING-BIKE, CALCULATOR,
HEADPHONES, COMPUTER- KEYBOARD, LAPTOP-101,
COMPUTER- MONITOR, COMPUTER-MOUSE, COFFEE-
MUG, AND VIDEO- PROJECTOR, common to all the four
datasets are used. In this case, there are a total of 2533
images. Each category has 8 to 151 images in a dataset. In
the second set-up, we evaluate the methods for adaptation
using multiple domains. In this case, we restrict to the
first dataset, and test on all the 31 classes in it. For both
the cases, we use 20 training samples per class for Ama-
zon/Caltech, and 8 samples per class for DSLR/Webcam
when used as source, and 3 training samples for all of them
when used for target domain. Rest of the data in the target
domain is used for testing. The experiment is run 20 times

Figure 3. Example images from KEYBOARD and BACK-PACK
categories in Caltech-256, Amazon, Webcam and DSLR. Caltech-
256 and Amazon datasets have diverse images, Webcam and
DSLR are similar datasets with mostly images from offices.

for random train/test splits and the result is averaged over
all the runs.

Feature Extraction: We used the 800-bin SURF fea-
tures provided by [21] for the Amazon, DSLR and Webcam
datasets. For the Caltech images, first SURF features were
extracted from the images of the Caltech data and a random
subset of the Amazon dataset. The features obtained from
the Amazon dataset were grouped into 800 clusters using
the k-means algorithm. The cluster centers were then used
to quantize the SURF features obtained from the Caltech
data to form 800-bin histograms. The histograms were
normalized and then used for classification.

Parameter Settings: For our SDDL method, we used
the simple non-parametric histogram intersection kernel for
reporting all the values. We set μ = 4 and ν = 30. Dic-
tionary size, K = 4 atoms per class and final dimension,
n = 60 for the first set-up. For the second set-up, K = 6
atoms per class and n = 90. For FDDL, the parameters, μ
and ν are the same as SDDL, and we learn K = 8 atoms
per class for the first set-up andK = 10 atoms per class for
the second. The FDDL dictionary was trained using both
the source and the target domain features, as it was found to
give the best results. Original histogram features were used
for both the algorithms.

6.2.2 Results using single source

Table 2(a) shows a comparison of the results of different
methods on 8 source-target pairs. The proposed algorithm
gives the best performance for 5 domain pairs, and is the
second best for 2 pairs. For Caltech-DSLR and Amazon-
Webcam domain pairs, there is more than 15% improve-
ment over the GFK algorithm [5]. Furthermore, a com-
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(a) Performance comparison on single source four domains benchmark (C: caltech, A: amazon, D: dslr, W: webcam)

Methods C → A C→ D A → C A → W W → C W → A D → A D → W
Metric[21] 33.7± 0.8 35.0± 1.1 27.3± 0.7 36.0± 1.0 21.7± 0.5 32.3± 0.8 30.3± 0.8 55.6± 0.7
SGF[6] 40.2± 0.7 36.6± 0.8 37.7± 0.5 37.9± 0.7 29.2± 0.7 38.2± 0.6 39.2± 0.7 69.5± 0.9
GFK[5] 46.1± 0.6 55.0± 0.9 39.6± 0.4 56.9± 1.0 32.8± 0.1 46.2± 0.6 46.2± 0.6 80.2± 0.4

FDDL[28] 39.3± 2.9 55.0± 2.8 24.3± 2.2 50.4± 3.5 22.9± 2.6 41.1± 2.6 36.7± 2.5 65.9± 4.9
SDDL 49.5± 2.6 76.7± 3.9 27.4± 2.4 72.0± 4.8 29.7± 1.9 49.4± 2.1 48.9± 3.8 72.6± 2.1

(b) Performance comparison on multiple sources three domains benchmark

Source Target SGF* [7] SGF [6] RDALR[11] FDDL[28] SDDL
dslr, amazon webcam 64.5± 0.3 52 ± 2.5 36.9± 1.1 41.0± 2.4 57.8± 2.4

amazon, webcam dslr 51.3± 0.7 39 ± 1.1 31.2± 1.3 38.4± 3.4 56.7± 2.3
webcam, dslr amazon 38.4± 1.0 28 ± 0.8 20.9± 0.9 19.0± 1.2 24.1± 1.6

Table 2. Comparison of the performance of the proposed method on the Amazon, Webcam, DSLR and Caltech datasets. SGF* [7] refers
to the PAMI submission of the author, currently under review. Numbers obtained by personal communication.

parison with the FDDL algorithm shows that the learning
framework of [28] is inefficient, when the test data comes
from a different distribution than the data used for training.

6.2.3 Results using multiple sources

As our proposed framework can also handle multiple do-
mains, we also experimented with multiple source adapta-
tion. Table 2 (b) shows the results for 3 possible combina-
tions. Our method outperforms the original SGF method [6]
on two settings, and other methods for all the settings. How-
ever, [7] reports higher numbers on webcam and amazon as
targets, using boosted classifiers. Similarly techniques can
be explored for improving the proposed method as a future
direction.

6.2.4 Ease of adaptation

A rank of domain (ROD) metric was introduced in [5]
to measure the adaptability of different domains. It was
shown that ROD correlates with the performance of adap-
tation algorithm. For example, Amazon-Webcam pair has
higher ROD than DSLR-Webcam pair, hence, GFK per-
forms worse on the former. However, for our case, we find
that the recognition rates for these cases are 72.0% and 72.6
%, respectively. This is the case because by learning projec-
tions along-with the common dictionary, we can achieve a
better alignment of the datasets.

6.2.5 Parameter Variations

We also conducted experiments studying recognition per-
formance under different input parameters. Figure 4 shows
the result of different settings. The implications are briefly
discussed below:

1. Number of source images: Here, we choose Ama-
zon/Webcam domain pair, as it is "difficult" to adapt.
We increased the number of source images and stud-
ied the performance of SDDL and compared it with

FDDL. It can be seen that while FDDL’s perfor-
mance decreases sharply with more source images,
SDDL method shows an increase in the performance.
Hence, by adapting the source to the target domain, our
method can use the source information to increase the
accuracy of target recognition, even when their distri-
butions are very different.

2. Dictionary size: All the domain pairs show an initial
sharp increase in the performance, and then become
almost flat after the dictionary size of 3 or 4. The flat
region indicates that alignment of the source and the
target data is limited by the number of available target
samples. But also, on a positive note, it can be seen
that even a smaller dictionary can give the optimal per-
formance.

3. Common subspace dimension: Similar to the previ-
ous case, we get an initial sharp increase followed by
a flat recognition curve. This shows that the method is
effective even when the data is projected onto a low-
dimensional space.

7. Conclusion

We have proposed a novel framework for adapting dic-
tionaries to testing domains under arbitrary domain shifts.
An efficient optimization method is presented. Further-
more, the method is kernelized so that it is robust and can
deal with the non-linearity present in the data. The learned
dictionary is compact and low-dimensional. We show that
the method achieves the state-of-the-art performance on the
object and face recognition databases. Future works will
include studying the effect of using unlabeled data while
training, and other relevant problems like large-scale and
online adaptation of dictionaries.
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