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Abstract

This paper introduces a novel classification method
termed Alternating Decision Forests (ADFs), which formu-
lates the training of Random Forests explicitly as a global
loss minimization problem. During training, the losses are
minimized via keeping an adaptive weight distribution over
the training samples, similar to Boosting methods. In order
to keep the method as flexible and general as possible, we
adopt the principle of employing gradient descent in func-
tion space, which allows to minimize arbitrary losses. Con-
trary to Boosted Trees, in our method the loss minimization
is an inherent part of the tree growing process, thus allow-
ing to keep the benefits of common Random Forests, such as,
parallel processing. We derive the new classifier and give
a discussion and evaluation on standard machine learning
data sets. Furthermore, we show how ADFs can be easily
integrated into an object detection application. Compared
to both, standard Random Forests and Boosted Trees, ADFs
give better performance in our experiments, while yielding
more compact models in terms of tree depth.

1. Introduction

In recent years, Random Forests [1, 5] (RFs) have

emerged as very useful classifiers for a large variety of com-

puter vision tasks, including object recognition [16], seman-

tic segmentation [30], or data clustering [28]. Although the

method is relatively simple, it has many characteristics that

make it particularly interesting for computer vision prob-

lems: (i) fast training and evaluation, (ii) robustness to la-

bel noise, (iii) inherent multi-class capability, (iv) suitabil-

ity for parallel processing, and (v) good performance for

high-dimensional input data [7]. Finally, RFs are able to

yield state-of-the-art performance in various classification

and regression tasks and compare favorably with other ma-

chine learning algorithms [9].

Interestingly and besides their simplicity, it is yet not

fully theoretically understood what makes RFs such a pow-

erful learning method. Existing explanations in the litera-

ture point to comparisons with nearest neighbor algorithms,

rules of large numbers [5], classifier consistency [3], and

large-margin methods [9], among others.

Besides these definitely valid insights, we argue that RFs

share one important characteristic with other powerful clas-

sifiers like SVMs or Boosting. They all approximate Bayes

Decision Rule – known to be the optimal classifier – via

minimizing a margin-based loss function. However, in con-

trast to other methods, RFs minimize this loss greedily and

implicitly via recursively reducing the uncertainty of given

training samples by using independent base classifiers, i.e.,
trees. Although these characteristics result in both, fast

and parallel training capabilities, there is no control over

an overall classifier loss and its proper minimization. While

this makes it theoretically hard and somewhat unintuitive to

comprehend the success of this learning method, it also un-

veils several practical disadvantages. First, during training

there is no guarantee that all parameters have been learned

properly by the entire model. Second, unnecessary empha-

sis is given on easy to classify training samples, often lead-

ing to too complex models. Third, it is hard to extend the

learner to special learning tasks, such as, domain adapta-

tion, semi-supervised or multiple instance learning, as this

is usually realized via regularizing a global loss function.

In this paper, we propose a novel classifier termed Alter-
nating Decision Forests (ADFs) that extends RFs by glob-

ally minimizing any given differentiable loss function, how-

ever, without losing the main characteristics and benefits of

the original RF method as discussed above. We achieve this

by borrowing ideas from Boosting methods, where during

training a globally tracked weight distribution guides the

loss minimization.

In more detail, like Boosting, ADFs assign a weight to

each training sample. These weights are iteratively up-

dated, i.e., become higher for hard to classify samples and
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lower for easy ones, respectively. While RFs are usually

trained in a depth-first manner, ADFs are trained breadth-

first. This has the main advantage that after having grown

one forest stage, we can check the state of the entire model,

i.e., measure its performance against a global loss. To al-

low for incorporating arbitrary differentiable loss functions,

we adopt the idea of employing gradient descent in func-

tion space [15] to calculate the weight updates. In order to

let each stage of the classifier follow the adaptive weight

distribution, we replace standard RFs splitting criteria with

the weighted entropy, while features are still randomly sub-

sampled. Thus, ADFs alternate between overall weight

updates, and parallel randomized tree growing, where the

latter one preserves the computational benefits of common

Random Forests.

In our experiments on both, machine learning and image

data, we show that ADFs yield better classification errors

compared to standard Random Forests and Boosted Trees.

Furthermore, we empirically demonstrate that ADFs give

more compact models in terms of tree depth as the training

of the decision trees is guided by the sample weights, i.e.,
the global loss function.

2. Alternating Decision Forests
Before introducing and discussing Alternating Decision

Forests, we shortly review standard Random Forests.

Random Forests [1, 5] are ensembles of T binary deci-

sion trees Tt(x) : X → RK , where X = R
M is the M -

dimensional feature space and RK = [0, 1]K describes the

space of class probability distributions over the label space

Y = {1, . . . ,K}. During testing, each decision tree thus

returns a class probability distribution pt(y|x) for a given

test sample x ∈ R
M , and the final class label y∗ is then

obtained via averaging:

y∗ = argmax
y

1

T

T∑
t=1

pt(y|x) . (1)

During training of a RF, the decision trees are provided

with a random subset of the training data (i.e., bagging [5])

and are trained independently from each other. Training a

single decision tree involves recursively splitting each node

such that the training data in the newly created child nodes

is pure according to class labels. Each tree is grown until

some stopping criterion, e.g., the maximum tree depth, is

reached and the class probability distributions are estimated

in the leaf nodes.

A splitting function s(x; Θ) is typically parameterized

by two values: (i) a feature dimension Θ1 ∈ {1, . . . ,M}
and (ii) a threshold Θ2 ∈ R. The splitting function is then

defined as

s(x; Θ) =

{
0 if x(Θ1) < Θ2

1 otherwise
, (2)

where the outcome defines to which child node the sample

x is routed.

Each node chooses the best splitting function Θ∗ out of

a randomly sampled set {Θi} by optimizing

I =
|L|

|L|+ |R|H(L) +
|R|

|L|+ |R|H(R) , (3)

where L and R are the sets of data samples that are routed to

the left and right child nodes, according to s(x; Θi); H(S)
is the local score of a set S of data samples (L or R), which

is either the entropy or the Gini index [5]. Throughout this

paper, we always use the entropy, which is defined as

H(S) = −
K∑

k=1

[p(k|S) · log(p(k|S))] , (4)

where K is the number of classes, and p(k|S) is the proba-

bility for class k, estimated from the set S.

2.1. RFs Approximate the Bayes Optimal Classifier

In the literature [4, 26], it is well known that the Bayes

optimal classifier is the best classification technique. In

practice, however, it is mostly infeasible to estimate such

a classifier and one has to rely on approximations. Lin [23]

showed that minimizing so called Fisher-consistent margin-

based loss functions automatically leads to good approxi-

mations of the unknown Bayes decision rule. Zou et al. [31]

extended this concept to multi-class problems. Prominent

Fisher-consistent loss functions are, e.g., hinge (SVM), ex-

ponential (Boosting) or logit (logistic regression), which de-

liver one reasonable explanation for the success of the corre-

sponding learners. Due to lack of space, we refer the reader

to the corresponding literature for more details.

As reviewed above, training in RFs is performed via re-

cursively splitting training data into child nodes, where each

split locally tries to optimize Eq. (3). As shown in [22], the

local score H(S) can generally be defined as

H(S) =
K∑

k=1

[
p(k|S) · lmm

(
p(k|S)− 1

K

)]
, (5)

where lmm(·) is a margin maximizing loss function. Hence,

it is easy to see that minimizing the entropy is equivalent

to minimizing the log likelihood, a typical Fisher-consistent

loss. Thus, via greedily minimizing such a local score, a de-

cision tree aims at minimizing a Fisher-consistent loss func-

tion, and is hence approximating Bayes optimal learners.

However, unlike other learners like Boosting or SVM

approaches, RFs do not have an explicit global loss func-

tion. In turn, the nodes operate locally and trees are grown

isolated, disregarding the current state of the entire classi-

fier. While in practice this approach performs remarkably

well, there is no global control over the entire ensemble,

thus leading to sub-optimal approximations.
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Figure 1: Loss functions (a) and their corresponding weight

update functions (b), both with respect to the margin.

2.2. Introducing a Global Loss

To allow for integrating different, global loss functions

into the Random Forests training procedure, we adopt ideas

from Boosting [29, 13]. A Boosting classifier F (x) con-

sists of T weak learners ft(x) : X → RK , where each

weak learner gives a prediction pt(y|x) about the class con-

fidences for a sample x. The final output of a Boosting

classifier is the weighted sum of the class confidences, such

as, F (x) =
∑T

t=1 νtft(x), where νt steers the influence of

each individual weak learner.

The training procedure of Boosting runs in T iterations,

where in each iteration a new classifier ft(x) is trained,

its contribution rate νt determined, and both added to the

model F . Boosting also keeps a weight distribution wt
i

for all training samples xi, i = 1 . . . N , in each iteration

t. This weight distribution gets updated, such that “easy”

samples are downweighted and “hard” samples are assigned

higher weights, respectively. This allows the model to sub-

sequently put its emphasis on hard samples (i.e., those that

have been misclassified).

There exist several different Boosting variants, most of

them differing by the loss function they use, which in turn

determines the shape of the weight distribution [17]. In

Fig. 1a we illustrate prominent loss functions, such as,

Logit, Hinge, Exponential, Savage [25], and Tangent [24].

While the first three are well known and often used in

SVMs, Boosting (e.g., AdaBoost [14]), or logistic regres-

sion, the last two are non-convex and more robust to out-

liers.

Friedman et al. [15] showed that Boosting can be un-

derstood as performing Gradient Descent in function space,

paving the way for a new Boosting method named Gra-
dientBoost. In more detail, given a labeled training set

{xi, yi}Ni=1, training a single weak learner can be written

as the global loss minimization problem

argmin
Θt

N∑
i=1

l(yi;F1:t−1(xi; Θ̄) + ft(xi; Θ
t)) . (6)

Here, l(·) is a differentiable loss function, F1:t−1(x; Θ̄) =∑t−1
j=1 ν · fj(x; Θj) describes the already trained classifier

and ft(x; Θ
t) is the classifier in the current iteration t; Θ̄ is

the collection of the parameters of the already fixed weak

learners and Θt are the parameters to be trained in the cur-

rent iteration; ν is the so-called shrinkage factor [17].

With a Taylor expansion, we can re-write Eq. (6) as

argmin
Θt

N∑
i=1

l(yi;F1:t−1(xi, Θ̄))−

∂ l(yi,F1:t−1(xi; Θ̄))

∂F(x) · ft(xi; Θ
t) ,

(7)

in order to learn the parameters Θt of the current weak

classifier. As shown in [15], this can be done by training

ft(x; Θ
t) to have high correlation with the negative gradi-

ent of the loss, which corresponds to updating the weights

wt
i for each training sample xi in iteration t as

wt
i =

∣∣∣∣∂ l(yi,F1:t−1(xi; Θ̄)

∂F(x)

∣∣∣∣ . (8)

GradientBoost has the advantage that any differentiable

loss function can be used. This even allows for incorporat-

ing non-convex loss functions, which have been shown to

be more robust to label noise [25]. For better understand-

ing, in Fig. 1b, we illustrate the derivatives of frequently

used losses. For more details we refer the interested reader

to [17] and the references therein.

2.3. Training Alternating Decision Forests

In order to incorporate any differentiable, global loss

function into Random Forests, we adopt the idea of the

above reviewed Gradient Boosting method, i.e., we perform

Gradient Descent in function space. While we could easily

train Boosted Trees that respect a global loss function, i.e.,
Gradient Boosting having decision trees as weak learners,

the goal of Alternating Decision Forests is to explicitly in-

tegrate the global loss into the tree growing scheme, thus

preserving the parallel training of standard RFs. For that

purpose, we need (i) a stage-wise tree growing scheme dur-

ing which we update the weight distribution and (ii) split-

ting functions taking these weights into account.

To get a stage-wise classifier, we let our trees grow in an

iterative, breadth-first manner, contrary to a typical depth-

first scheme in standard RFs. Each stage in ADFs corre-

sponds to a single depth of the forest, i.e., the iterations

are now indexed with d = 1, . . . , Dmax, where Dmax is the

maximum tree depth of the forest. After training each sin-

gle iteration d, we have a classification model T d(xi) =
1
T

∑T
t=1 p

d
t (yi|xi), where pdt (yi|xi) is the class probability

estimate of sample xi returned by tree T d
t , which denotes

tree Tt grown up to depth d. We can now use this strong

classifier and a given loss l(·) to update the weights wd+1
i

of all training samples for the next iteration as illustrated in

508508510



Figure 2: Overview of the proposed tree growing principle of Alternating Decision Forests. In the first iteration (d = 1), the

weights wd
i are uniform, and the first split functions are trained in a breadth-first manner. This forest with depth d = 2 can

give predictions on the training samples, which are used to calculate weights, based on a global loss function, for the next

iteration d = 3. This procedure is repeated until the maximum tree depth d = Dmax is reached.

Eq.(8). In the first iteration, all weights are set uniformly.

After the weight updates, we train the next stage of the for-

est in parallel. This is done by converting all leaf nodes in

the current iteration to split nodes.

To let the splitting functions consider the sample
weights, we change the standard entropy calculation from

Eq. (4) to become a weighted entropy by changing the esti-

mation of the class distributions p(k|S) for the set S:

p(k|S) =
∑|S|

i=1 [yi = k] · wd
i∑|S|

i=1 w
d
i

. (9)

Here, [yi = k] is the indicator function returning 1 if the

label yi of the sample xi ∈ S is equal to k, and 0 otherwise.

This process of alternating between training a single

stage d and updating the weights wd+1
i for the next stage

is repeated until the same stopping criteria as in standard

RFs are reached. Hence, we name this learning method Al-
ternating Decision Forests. We give an illustrative overview

of this scheme in Fig. 2 and summarize it in Alg. 1. Further-

more, we note that inference in ADFs is exactly the same as

in RFs, i.e., ADFs also inherit the properties of low com-

putational costs during the testing phase from RFs. Thus,

Alternating Decision Forests can incorporate well-defined

losses into the training of Random Forests; however, with-

out violating their most important benefits and characteris-

tics.

Algorithm 1 ADF Training

Require: Labeled training set {xi, yi}Ni=1 ∈ X × Y
Require: Maximum tree depth Dmax

1: Init weights w1
i = 1

N
2: Init the root nodes

3: for d from 1 to Dmax do
4: Check stopping criteria for all nodes in depth d
5: Split nodes in depth d; Eq. (3), Eq. (4), Eq. (9)

6: Update weights wd+1
i ; Eq. (8)

7: end for

Please note that, if each tree would correspond to one

weak learner ft(x; Θ), each being fully trained in a single

iteration, we would get a version of Boosted Trees [17]. In

contrast, we train all trees in parallel, by switching from a

depth-first to a breadth-first tree growing scheme. In detail,

we start the training of our model by creating T trees. Then,

we run Dmax iterations, where in each iteration all trees of

the forest are simultaneously grown deeper by one stage.

The weighted tree growing scheme in ADFs can be in-

terpreted as a guided training of each single decision tree,

but also as an explicit collaboration between all trees in the

model. All nodes in the trees concentrate on “hard” training

samples and, thus, don’t waste effort on samples that are al-

ready learned relatively well by the entire model. However,

unlike Boosted Trees, this global loss is now an inherent

part of Random Forests. As we show in our experimental

evaluations, this property of ADFs leads to more compact

models in terms of tree depth.

For RFs, an upper bound on the generalization error GE

can be defined as GE ≤ ρ 1−s2

s2 , where ρ denotes the mean

pair-wise correlation between trees and s the strength of in-

dividual trees [5]. A low generalization error thus requires

strong but decorrelated trees. While ADFs explicitly en-

force the collaboration of all trees in the forest, the decorre-

lation ρ can be preserved as in standard RFs, because (i) the

splitting functions s(x; Θ) are still drawn completely ran-

domly and (ii) the set of samples falling in common nodes

is different for each tree. This is important as the correlation

ρ directly affects the generalization error.

3. Relation to Previous Work
In [12], Freund and Mason proposed a formulation to

represent AdaBoost as a single decision tree. Although the

method is termed Alternating Decision Tree or AD Tree, it

is quite different to the algorithm presented in this paper. In

more detail, an AD Tree consists of two different types of

nodes, a split node and a predictor node, which are alter-

nated during training. Several split nodes can be attached
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to a single predictor node, thus allowing for multiple paths

of a single example to traverse down the tree. This entity

makes both training and inference rather slow.

In contrast to standard RFs, the individual trees of ADFs

become interdependent or entangled during training. This

is similar to the works of [27] and [20] that train decision

trees breadth-first or according to a priority queue, in order

to incorporate contextual features into the learning process.

However, both works only consider the predictions within a

single decision tree and use those predictions as additional

features for the splitting functions in the next stage. In con-

trast, ADFs collect the information from the whole classi-

fier, i.e., all decision trees, and uses the predictions in or-

der to minimize a global loss function. While it is beyond

the scope of this paper, extending ADFs to incorporate such

contextual information is straight-forward.

Another work that optimizes trees according to a differ-

entiable loss function is that of Jancsary et al. [19], where

the leaves of the trees store parameters for a Gaussian

Conditional Random Field with different interaction types.

Each factor type is only associated with a single tree but

they are connected implicitly via the random field. In con-

trast, ADFs train a set of trees, which are connected via av-

eraging over the predictions, i.e., a generic Random Forest.

We further would like to point out the differences of

ADFs to Boosted Trees [17] (BTs), i.e., standard Boosting

with decision trees as weak learners. As mentioned before,

in BTs, the decision trees are trained sequentially and the

weights are updated after training each single tree. This

makes the whole training phase much slower than ADFs, as

no parallelization is possible. Furthermore, during training

a single decision tree in BTs, the weights cannot be updated.

Contrary, in ADFs, it is exactly this property that allows for

learning more compact models as the growing of each tree

is somehow guided by the weight updates from the previous

depth in the trees.

4. Machine Learning Experiments
Our experiments on machine learning benchmarks give

a detailed analysis of the proposed classifier. First, we com-

pare ADFs with the most related competing methods, i.e.,
Random Forests (RFs) and Boosted Trees (BTs) on 5 dif-

ferent data sets. We also investigate different choices of the

loss function. Then, we evaluate the influence of two im-

portant parameters common to ADFs, RFs, and BTs on the

overall classification performance. Finally, we give a dense

evaluation of different parameter choices for our classifier.

Data sets: We use 5 standard machine learning data sets

to compare ADFs with related approaches and also to in-

vestigate different parameter settings. We use the G50c data

set from [8], the Letter and MNIST data sets from [11], the

USPS data set from [18], and the Char74k data set from [6].

The properties of these data sets are summarized in Tab. 1.

Dataset # Train # Test # Features # Classes

G50c 50 500 50 2

Letter 16000 4000 16 26

USPS 7291 2007 256 10

MNIST 60000 10000 784 10

Char74k 66707 7400 64 62

Table 1: Properties of the machine learning data sets used

in our evaluation.

Experimental Setup: For a fair comparison between all

three classifiers we set the common parameters to the same

values. We thus set the number of trees T = 100 (for BT,

this is equivalent to the number of weak learners), the max-

imum depth Dmax of the trees to either 10, 15, or 25 (de-

pending on the size of the training data of the data sets), the

number of random splits per node to
√
M [5], the number of

random thresholds to 10 per node and the minimum number

of samples for further splitting to 5. We always report the

average error and standard deviation over several indepen-

dent runs as all classifiers are non-deterministic; we have

250 runs for G50c and 5 runs for the remaining data sets, as

they are much larger.

4.1. Comparison of ADFs with Other Classifiers

First, we directly compare all methods against each other

on all 5 data sets. As the common parameters of ADFs,

RFs and BTs are set equally, as mentioned before, we di-

rectly compare the way the tree structure is built. For ADFs

and BTs we also evaluate 5 different loss functions that can

be integrated in the Gradient Boosting formulation: Logit,

Hinge, Exponential, Savage [25] and Tangent [24].

Tab. 2 depicts our results. As can be seen, the combina-

tion of ADFs and the Tangent loss function yields the best

results on all 5 data sets. ADFs with Savage loss and Ex-

ponential loss are the second best choices on 3, respectively

1 data sets. Only for G50c, BTs with Savage loss gives the

second best results. Most interesting, however, is the fact

that ADFs (Tangent loss) constantly outperform both RFs

and BTs, i.e., the main competitors.

It is also worthwhile to investigate the influence of the

different loss functions. The Logit, Hinge and Exponential

losses are typically outperformed by the Savage and Tan-

gent losses for both methods, ADFs and BTs. This indicates

that the non-convexity of the loss, and thus the robustness to

outliers (see Sec. 2 and Fig. 1a), plays a crucial role for the

weight updates and thus the tree growing. For our further

experiments, we fix the loss function to be the Tangent loss,

as we can expect the best overall performance.

We further evaluate the computational costs of training

ADFs and give a relative comparison to RFs and BTs in

Tab. 3. As expected, BTs are much slower (around 7 times

slower), while ADFs and RFs show similar training time.
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Method Loss G50c Letter USPS MNIST Char74k

Alternating Logit 19.83± 1.34 6.81± 0.34 6.31± 0.23 3.82± 0.08 17.38± 0.16
Decision Hinge 19.47± 1.26 4.89± 0.16 5.87± 0.19 3.20± 0.06 17.00± 0.10
Forests Exp 19.09± 1.17 4.27± 0.13 6.03± 0.29 2.96± 0.05 16.82± 0.15

Savage [25] 19.00± 1.32 3.94± 0.14 5.76± 0.16 2.78± 0.09 16.92± 0.15
Tangent [24] 18.71 ± 1.27 3.52 ± 0.12 5.59 ± 0.16 2.71 ± 0.10 16.67 ± 0.21

Boosted Trees [17] Logit 18.99± 1.51 4.98± 0.09 5.99± 0.21 3.18± 0.08 17.98± 0.19
Hinge 18.97± 1.33 4.87± 0.15 5.90± 0.15 3.23± 0.05 17.65± 0.19
Exp 18.91± 1.30 4.78± 0.12 5.83± 0.19 3.17± 0.07 17.57± 0.10
Savage [25] 18.87± 1.31 4.65± 0.12 5.92± 0.19 3.19± 0.07 17.62± 0.25
Tangent [24] 18.90± 1.31 4.70± 0.18 5.93± 0.27 3.15± 0.05 17.59± 0.29

Random Forests [1, 5] - 18.91± 1.33 4.75± 0.10 5.96± 0.21 3.21± 0.07 17.76± 0.13

Table 2: Alternating Decision Forests compared with the two main competitors, Random Forests and Boosted Trees, on 5
data sets. Best performing methods are highlighted and marked bold-face, second best methods are highlighted only.

Method G50c Letter USPS MNIST Char74k

ADF 1.0 1.0 1.0 1.0 1.0

BT 3.99 6.55 7.32 7.05 7.09

RF 1.55 0.45 0.70 0.79 1.52

Table 3: Training time comparison between the three main

competitors on all 5 data sets, relative to ADFs.

4.2. Comparison of Common Parameters

Next, we evaluate the influence of two important param-

eters of all evaluated classifiers on the Char74k data set.

We investigate the number of trees T and the maximum

tree depth Dmax, which we vary in the ranges [1, 100] and

[10, 25], respectively. As mentioned before, we choose the

Tangent loss for both ADFs and BTs due to the good overall

performance in the last experiment.

It is interesting that ADFs improve over RFs and BTs

only for larger number of trees (see Fig. 3a). For a small

number of trees, the performance is more or less the same.

This could be explained by the weight updates in ADF,

which follow the predictions of the current state of the clas-

sifier. However, due to the small number of trees and the

fact that the trees are not fully grown yet, these predictions

are unreliable. This might decrease the performance as the

weights take unreasonable values. However, as soon as the

number of trees increases, also the performance of ADFs

increases and outperforms both RFs and BTs.

The behavior of the second parameter, i.e., the maximum

tree depth Dmax, is different. Here, ADFs consistently out-

perform RFs and BTs (see Fig. 3b). This can be explained

by the fact that the weight updates can rely on more stable

predictions, as a larger number of trees is available. This

experiment also reflects the guidance of the tree growing

mentioned in Sec. 3, as both RFs and BTs need deeper trees

to reach the performance of ADFs.
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Figure 3: Influence of (a) the number of trees T and (b) the

maximum tree depth Dmax on the three classifiers ADFs,

RFs, and BTs on the Char74k data set.

4.3. Parameter Evaluation

Finally, we also give a detailed evaluation of various pa-

rameter choices on the Char74k data set for our proposed

method. Here, we compare several combinations of two

different parameters – again, the number of trees T and the

maximum tree depth Dmax. We show our results in Tab. 4.

This evaluation confirms the properties of ADFs, inher-

ited from RFs. The performance steadily increases with the

number of trees and also the maximum depth of the trees.

Parameter choices beyond those shown in the table do not

further improve the results, which indicates that the perfor-

mance saturates at some point, similar as for RFs and BTs.

Tab. 4 also contains our overall best result of 16.18% er-

ror on the Char74k data set with 300 trees and a maximum

depth of 25.

5. Alternating Decision Hough Forests
We now adopt our novel Alternating Decision Forests for

one concrete computer vision application, namely for ob-

ject detection with the popular Hough Forests (HFs) frame-

work [16]. We denote our extension Alternating Decision

Hough Forests (ADHF).
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Tree Depth Number of trees T

Dmax 1 10 25 50 100 200 300

5 83.12± 0.68 53.75± 0.69 48.15± 0.58 46.34± 0.54 44.97± 0.29 44.20± 0.13 44.38± 0.14
10 55.63± 1.75 34.32± 0.35 32.17± 0.37 31.23± 0.19 30.60± 0.25 30.49± 0.08 30.40± 0.15
15 39.76± 1.18 24.64± 0.43 21.66± 0.38 20.38± 0.17 19.79± 0.20 19.61± 0.13 19.41± 0.14
20 36.07± 0.54 21.52± 0.32 18.83± 0.15 17.72± 0.12 17.09± 0.12 16.93± 0.11 16.72± 0.13
25 35.52± 0.41 21.17± 0.25 18.52± 0.21 17.16± 0.28 16.66± 0.22 16.38± 0.22 16.18 ± 0.13

Table 4: Different parameter choices of the number of trees T and the maximum tree depth Dmax for Alternating Decision

Forests on the Char74k data set.

HF is an object detection approach that describes an ob-

ject by a set of 16× 16 patches Pi, each storing several ap-

pearance feature channels Φc(Pi), one offset vector di that

points to the object center, and a label yi indicating that the

patch belongs to an object. Negative patches are extracted

from background regions and do not store an offset vector.

Given those patches Pi, a Random Forest is trained with two

different splitting criteria: (i) a standard classification crite-

rion (see Sec. 2) and (ii) a regression criterion [16]. The

former criterion tries to split patches according to the class

label, the latter one according to the offset vectors (only for

positive patches). The splitting function s(Pi; Θ) in HF is

defined as

s(Pi; Θ) =

{
0 if PΘ1

i (Θ2)− PΘ1
i (Θ3) < Θ4

1 otherwise
, (10)

where Θ defines the splitting parameters. The feature chan-

nel is given by Θ1, two pixel positions within the patch are

defined by Θ2 and Θ3, and a random threshold is given by

Θ4. The resulting RF stores a foreground probability and a

set of offset vectors in its leaf nodes. The two criteria en-

sure that the leafs are clean with respect to both, labels and

offset vectors.

However, as in standard RFs, also Hough Forests only

optimize the entropy on the node level, i.e., locally, without

regarding a global loss function. This results in the same

disadvantages as for standard RFs. We thus also incorpo-

rate the minimization of a global loss function via iterative

weight updates in the classification criterion in this frame-

work. Each patch Pi is thus assigned a weight wi, which is

always updated after training a single stage of the classifier

according to a given global loss function l(·), as described

in Sec. 2.

The inference process of both, HFs and ADHFs, is equal

and follows the generalized Hough voting scheme. Each

patch in a test image votes for tentative object centers in

a Hough image, where local maxima indicate detected ob-

jects [16].

Evaluation: We evaluate ADHF on two different data

sets, TUD-pedestrian [2] and ETHZ-cars [21]. We com-

pare with standard Hough Forests [16] (HFs), but also with
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Figure 4: Precision-Recall curves of ADHF, BHF, and HF

on (a) the TUD-pedestrian and (b) the ETHZ-cars data sets.

Boosted Hough Forests (BHFs), i.e., Boosting with a Hough

Tree as weak learner, similar to Boosted Trees [17]. For

both data sets, we extract a total number of 12000 patches

and train a forest with 10 trees, a maximum depth of 15
and 5000 random tests per node. We also evaluate different

loss functions for ADHF and BHF. For a fair comparison,

we randomly extract the set of patches Pi once and let all

methods, i.e., ADHFs, BHFs, and HFs, use the same set for

training. We thus prevent benefits for one method, just due

to a better training set. Furthermore, we average our results

over 5 independent runs because of the random nature of

the methods.

Interestingly, our evaluations revealed that different loss

functions perform better on different data sets. While

for TUD-pedestrian both non-convex and noise-robust loss

functions, i.e., Savage and Tangent, give the best results, for

ETHZ-cars the Logit and Exponential losses outperform the

others. This observation holds for both, ADHF and BHF.

An intuitive explanation for this result is that the ETHZ-
cars data set contains less noise than the TUD-pedestrian
data set, as cars typically fit well in the bounding boxes,

which is not true for pedestrians.

We present our results as precision-recall curves and av-

erage precision values [10] in Fig. 4. For ADHF and BHF,

we show the curves of the best performing loss functions as

presented above. As can be seen, ADHF and BHF can both

outperform standard HF, while BHF take much more time

to train (around 7 times), cf., Tab. 3.
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6. Conclusion
We proposed a novel classifier, termed Alternating De-

cision Forest (ADF), which illustrates how to formulate the

Random Forest training as a global loss minimization prob-

lem. In contrast to the local optimization in standard Ran-

dom Forests, we grow the trees stage-wise and include sam-

ple weight updates to minimize the global loss, as in Boost-

ing algorithms. Our results on machine learning data con-

firm that the novel classifier inherits the benefits of Ran-

dom Forests (fast training and testing, multi-class capabil-

ity, etc.), while yielding better results and more compact
models in terms of tree depth. We also demonstrate how

this new formulation can be integrated in the popular Hough

Forest framework for object detection, which yields better

results on standard benchmark data sets compared to the

original Hough Forests. We finally note that ADFs are rel-

atively easy to implement and can replace standard RFs in

any application without great efforts.
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