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Abstract

Many recent object retrieval systems rely on local fea-
tures for describing an image. The similarity between a
pair of images is measured by aggregating the similarity
between their corresponding local features. In this paper
we present a probabilistic framework for modeling the fea-
ture to feature similarity measure. We then derive a query
adaptive distance which is appropriate for global similar-
ity evaluation. Furthermore, we propose a function to score
the individual contributions into an image to image similar-
ity within the probabilistic framework. Experimental results
show that our method improves the retrieval accuracy sig-
nificantly and consistently. Moreover, our result compares
favorably to the state-of-the-art.

1. Introduction
We consider the problem of content-based image re-

trieval for applications such as object recognition or simi-

lar image retrieval. This problem has applications in web

image retrieval, location recognition, mobile visual search,

and tagging of photos.

Most of the recent state-of-the-art large scale image re-

trieval systems rely on local features, in particular the SIFT

descriptor [14] and its variants. Moreover, these descrip-

tors are typically used jointly with a bag-of-words (BOW)

approach, reducing considerably the computational burden

and memory requirements in large scale scenarios.

The similarity between two images is usually expressed

by aggregating the similarities between corresponding lo-

cal features. However, to the best of our knowledge, few

attempts have been made to systematically analyze how to

model the employed similarity measures.

In this paper we present a probabilistic view of the fea-

ture to feature similarity. We then derive a measure that is

adaptive to the query feature. We show - both on simulated

and real data - that the Euclidean distance density distribu-

tion is highly query dependent and that our model adapts

the original distance accordingly. While it is difficult to

know the distribution of true correspondences, it is actu-

ally quite easy to estimate the distribution of the distance of

non-corresponding features. The expected distance to the

non-corresponding features can be used to adapt the origi-

nal distance and can be efficiently estimated by introducing

a small set of random features as negative examples. Fur-

thermore, we derive a global similarity function that scores

the feature to feature similarities. Based on simulated data,

this function approximates the analytical result.

Moreover, in contrast to some existing methods, our

method does not require any parameter tuning to achieve its

best performance on different datasets. Despite its simplic-

ity, experimental results on standard benchmarks show that

our method improves the retrieval accuracy consistently and

significantly and compares favorably to the state-of-the-art.

Furthermore, all recently presented post-processing

steps can still be applied on top of our method and yield

an additional performance gain.

The rest of this paper is organized as follows. Section 2

gives an overview of related research. Section 3 describes

our method in more detail. The experiments for evaluating

our approach are described in Section 4. Results in a large

scale image retrieval system are presented in Section 5 and

compared with the state-of-the-art.

2. Related Work
Most of the recent works addressing the image similar-

ity problem in image retrieval can be roughly grouped into

three categories.

Feature-feature similarity The first group mainly works

on establishing local feature correspondence. The most fa-

mous work in this group is the bag-of-words (BOW) ap-

proach [24]. Two features are considered to be similar if

they are assigned to the same visual word. Despite the effi-

ciency of the BOW model, the hard visual word assignment

significantly reduces the discriminative power of the local

features. In order to reduce quantization artifacts, [20] pro-

posed to assign each feature to multiple visual words. In

contrast, [8] rely on using smaller codebooks but in con-

junction with short binary codes for each local feature, re-

fining the feature matching within the same Voronoi cell.

Additionally, product quantization [12] was used to esti-
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mate the pairwise Euclidean distance between features, and

the top k nearest neighbors of a query feature is considered

as matches. Recently, several researchers have addressed

the problem of the Euclidean distance not being the optimal

similarity measure in most situations. For instance in [16],

a probabilistic relationship between visual words is learned

from a large collection of corresponding feature tracks. Al-

ternatively, in [21], they learn a projection from the original

feature space to a new space, such that Euclidean metric in

this new space can appropriately model feature similarity.

Intra-image similarity The second group focuses on effec-

tively weighting the similarity of a feature pair considering

its relationship to other matched pairs.

Several authors exploit the property that the local fea-

tures inside the same image are not independent. As a

consequence, a direct accumulation of local feature sim-

ilarities can lead to inferior performance. This problem

was addressed in [4] by down-weighting the contribution

of non-incidentally co-occurring features. In [9] this prob-

lem was approached by re-weighting features according to

their burstiness measurement.

As the BOW approach discards spatial information, a

scoring step can be introduced which exploits the property

that the true matched feature pairs should follow a consis-

tent spatial transformation. The authors of [19] proposed

to use RANSAC to estimate the homography between im-

ages, and only count the contribution of feature pairs con-

sistent with this model. [26] and [23] propose to quantize

the image transformation parameter space in a Hough vot-

ing manner, and let each matching feature pair vote for its

correspondent parameter cells. A feature pair is considered

valid if it supports the cell of maximum votes.

Inter-image similarity Finally, the third group addresses

the problem of how to improve the retrieval performance by

exploiting additional information contained in other images

in the database, that depict the same object as the query im-

age. [5] relies on query expansion. That is, after retrieving

a set of spatially verified database images, this new set is

used to query the system again to increase recall. In [22],

a set of relevant images is constructed using k-reciprocal

nearest neighbors, and the similarity score is evaluated on

how similar a database image is to this set.

Our work belongs to the first group. By formulating the

feature-feature matching problem in a probabilistic frame-

work, we propose an adaptive similarity to each query fea-

ture, and a similarity function to approximate the quanti-

tative result. Although the idea of adapting similarity by

dissimilarity has already been exploited in [11][17], we pro-

pose to measure dissimilarity by mean distance of the query

to a set of random features, while theirs use k nearest neigh-

bors (kNN). According to the fact that, in a realistic dataset,

different objects may have different numbers of relevant im-

ages, it is actually quite hard for the kNN based method to

find an generalized k for all queries. Moreover, as kNN is an

order statistic, it could be sensitive to outliers and can’t be

used reliably as an estimator in realistic scenarios. In con-

trast, in our work, the set of random features could be con-

sidered as a clean set of negative examples, and the mean

operator is actually quite robust as shown later.

Considering the large amount of data in a typical large

scale image retrieval system, it is impractical to compute

the pairwise distances between high-dimensional original

feature vectors. However, several approaches exist to re-

lieve that burden using efficient approximations such as

[12, 13, 3, 6]. For simplicity, we adopt the method proposed

in [12] to estimate the distance between features.

3. Our Approach
In this section, we present a theoretical framework for

modeling the visual similarity between a pair of features,

given a pairwise measurement. We then derive an analytical

model for computing the accuracy of the similarity estima-

tion in order to compare different similarity measures. Fol-

lowing the theoretical analysis, we continue the discussion

on simulated data. Since the distribution of the Euclidean

distance varies enormously from one query feature to an-

other, we propose to normalize the distance locally to ob-

tain similar degree of measurement across queries. Further-

more, using the adaptive measure, we quantitatively analyze

the similarity function on the simulated data and propose a

function to approximate the quantitative result. Finally, we

discuss how to integrate our findings into a retrieval system.

3.1. A probabilistic view of similarity estimation

We are interested in modeling the visual similarity be-

tween features based on a pairwise measurement.

Let us denote as xi the local feature vectors from a query

image and as Y = {y1, ..., yj , ..., yn} a set of local fea-

tures from a collection of database images. Furthermore,

let m(xi, yj) denote a pairwise measurement between xi

and yj . Finally T (xi) represents the set of features which

are visually similar to xi, and F (xi) as the set of features

which are dissimilar to xi. Instead of considering whether

yj is similar to xi and how similar they look, we want to

evaluate how likely yj belongs to T (xi) given a measure

m. This can be modeled as follows

f(xi, yj) = p(yj ∈ T (xi) | m(xi, yj)) (1)

For simplicity, we denote mj = m(xi, yj), Ti = T (xi),
and Fi = F (xi). As yj either belongs to Ti or Fi, we have

p(yj ∈ Ti | mj) + p(yj ∈ Fi | mj) = 1 (2)

Furthermore, according to the Bayes Theorem

p(yj ∈ Ti | mj) =
p(mj | yj ∈ Ti)× p(yj ∈ Ti)

p(mj)
(3)
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and

p(yj ∈ Fi | mj) =
p(mj | yj ∈ Fi)× p(yj ∈ Fi)

p(mj)
(4)

Finally, by combining Equations 2, 3 and 4 we get

p(yj ∈ Ti | mj) =

(
1 +

p(mj | yj ∈ Fi)

p(mj | yj ∈ Ti)
× p(yj ∈ Fi)

p(yj ∈ Ti)

)−1

(5)

For large datasets the quantity p(yj ∈ Ti) can be modeled

by the occurrence frequency of xi. Therefore, p(yj ∈ Ti)
and p(yj ∈ Fi) only depend on the query feature xi.

In contrast, p(mj | yj ∈ Ti) and p(mj | yj ∈ Fi) are

the probability density functions of the distribution of mj ,

for {yj | y ∈ Ti} and {yj | y ∈ Fi}. We will show in

Section 3.3, how to generate simulated data for estimating

these distributions. In Section 3.5 we will further exploit

these distributions in our framework.

3.2. Estimation accuracy

Since the pairwise measurement between features is the

only observation for our model, it is essential to estimate

its reliability. Intuitively, an optimal measurement should

be able to perfectly separate the true correspondences from

the false ones. In other words, the better the measurement

distinguishes the true correspondences from the false ones,

the more accurately the feature similarity based on it can

be estimated. Therefore, the measurement accuracy can be

modeled as the expected pureness. Let T be a collection of

all matched pairs of features, i.e,

T = {(x, y) | y ∈ T (x))} (6)

The probability that a pair of features is a true match given

the measurement value z can be expressed as

p(T | z) = p((x, y) ∈ T | m(x, y) = z) (7)

Furthermore, the probability of observing a measurement

value z given a corresponding feature pair is

p(z | T ) = p(m(x, y) = z | (x, y) ∈ T ) (8)

Then, the accuracy for the similarity estimation is

Acc(m) =

∫ ∞

−∞
p(T | z)× p(z | T )dz (9)

with m some pairwise measurement and Acc(m) the accu-

racy of the model based on m. Since

p(T | z) ≤ 1 and

∫ ∞

−∞
p(z | T )dz = 1 (10)

the accuracy of a measure m is

Acc(m) ≤ 1 (11)

and

Acc(m) = 1⇔ p(T | z) = 1, ∀p(z | T ) > 0 (12)

This measure allows to compare the accuracy of different

distance measurements as will be shown in the next section.

3.3. Ground truth data generation

In order to model the property of T (xi), we simulate cor-

responding features using the following method: First, re-

gions ri,0 are detected on a random set of images by the

Hessian Affine detector[15]. Then, we apply numerous ran-

dom affine warpings (using the affine model proposed by

ASIFT [25]) to ri,0, and generate a set of related regions.

Finally, SIFT features are computed on all regions resulting

in {xi,1, xi,2, ..., xi,n} as a subset of T (xi,0).
The parameters for the simulated affine transformation

are selected randomly and some random jitter is added to

model the detection errors occurring in a practical setting.

The non-corresponding features F (xi) are simply generated

by selecting 500K random patches extracted from a differ-

ent and unrelated dataset. In this way, we also generate a

dataset D containing 100K matched pairs of features from

different images, and 1M non-matched paris. Figure 1 de-

picts two corresponding image patches randomly selected

from the simulated data.

Figure 1. Corresponding image patches for two randomly selected

points of the simulated data

3.4. Query adaptive distance

It has been observed that the Euclidean distance is not

an appropriate measurement for similarity [21, 16, 11]. We

argue that the Euclidean distance is a robust estimator when

normalized locally.

As an example, Figure 2 depicts the distributions of

the Euclidean distance of the corresponding and non corre-

sponding features for the two different interest points shown

in Figure 1. For each sample point xi, we collected a set of

500 corresponding features T (xi) using the procedure from

Section 3.3 and a set of 500K random non-corresponding

features F (xi). It can be seen, that the Euclidean dis-

tance separates the matching from the non-matching fea-

tures quite well in the local neighborhood of a given query

feature xi.

However, by averaging the distributions of T (xi) and

F (xi) respectively for all queries xi, the Euclidean distance

loses its discriminative power. This explains, why the Eu-

clidean distance has inferior performance in estimating vi-
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Figure 2. Distribution of the Euclidean distance for two points

from the simulated data. The solid lines show the distribution for

corresponding features T (xi), whereas the dotted line depict non-

corresponding ones F (xi).

sual similarity from a global point of view. A local adapta-

tion is therefore necessary to recover the discriminability of

the Euclidean Distance.

Another property can also be observed in Figure 2: if a

feature has a large distance to its correspondences, it also

has a large distance to the non-matching features. By ex-

ploiting this property, a normalization of the distance can

be derived for each query feature

dn(xi, yj) = d(xi, yj)/Nd(xi) (13)

where dn(·, ·) represents the normalized distance, d(·, ·)
represents the original Euclidean distance and Nd(xi) rep-

resents the expected distance of xi to its non-matching fea-

tures. It is intractable to estimate the distance distribution

between all feature and their correspondences, but it is sim-

ple to estimate the expected distance to non-corresponding

features. Since the non-corresponding features are inde-

pendent from the query, a set of randomly sampled, thus

unrelated features can be used to represent the set of non-

correspondent features to each query. Moreover, if we as-

sume the distance distribution of the non-corresponding set

to follow a normal distribution N (μ, σ), then the estima-

tion error of its mean based on a subset follows another

normal distributionN (0, σ/N), with N the size of the sub-

set. Therefore, Nd(xi) can be estimated sufficiently well

and very efficiently from even a small set of random, i.e.

non-corresponding features.

The probability that an unknown feature matches to the

query one when observing their distance z can be modeled

as,

p(T | z) = NT × p(z | T )
NT × p(z | T ) +NF × p(z | F)

= {1 + NF

NT
× p(z | F)

p(z | T )}
−1

(14)

with NT and NF the number of corresponding and non-

corresponding pairs respectively. In practical settings, NF

is usually many orders of magnitude larger than NT . There-

fore, once p(z | F) starts getting bigger than 0, p(T | z)
rapidly decreases, and the corresponding features would be

quickly get confused with the non-corresponding ones.

Figure 3 illustrates how the adaptive distance recovers

more correct matches compared to the Euclidean distance.

Moreover, by assuming that NF /NT ≈ 1000 the

measurement accuracy following Equation 9 can be com-

puted. For the Euclidean distance, the estimation accuracy

is 0.7291, and for the adaptive distance, the accuracy is

0.7748. Our proposed distance thus significantly outper-

forms the Euclidean distance.

3.5. Similarity function

In this section, we show how to derive a globally appro-

priate feature similarity in a quantitative manner. After hav-

ing established the distance distribution of the query adap-

tive distance in the previous section, the only unknown in

Equation 5 remains
p(yj∈Fi)
p(yj∈Ti)

.

As discussed in Section 3.1, this quantity is inversely

proportional to the occurrence frequency of xi, and it is

generally a very large term. Assuming c =
p(yj∈Fi)
p(yj∈Ti)

be-

ing between 10 and 100000, the full similarity function can

be estimated and is depicted in Figure 4.

The resulting curves follow an inverse sigmoid form

such that the similarity is 1 for dn → 0 and 0 if dn → 1.

They all have roughly the same shape and differ approxi-

mately only by an offset. It is to be noted, that they show

a very sharp transition making it very difficult to correctly

estimate the transition point and thus to achieve a good sep-

aration between true and false matches.

In order to reduce the estimation error due to such sharp

transitions, a smoother curve would be desirable. Since the

distance distributions are all long-tailed, we have fitted dif-

ferent kinds of exponential functions to those curves. How-

ever, we observe similar results. For the reason of simplic-

ity, we choose to approximate the similarity function as

f(xi, yj) = exp(−α× dn(xi, yj)
4) (15)

As can be seen in Figure 4, this curve is flatter and covers

approximately the full range of possible values for c.
In Equation 15, α can be used to tune the shape of the

final function and roughly steers the slope of our function,

we achieved best results with α = 9 and keep this value

throughout all experiments.

In the next section, the robustness of this function in real

image retrieval system will be evaluated.

3.6. Overall method

In this section we will integrate the query adaptive dis-

tance measurement and the similarity function presented
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Figure 3. The comparison of our adaptive distance to the Euclidean distance on dataset D. The solid lines are the distance distribution of the

matched pairs, and the dotted lines are the distance distribution of non-matched pairs. The green dashed lines denotes where the probability

of the non-matching distance exceed 0.1%, i.e, the non-matching feature is very likely to dominate our observation. A comparison of the

right tails of both distributions is shown in (c).
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Figure 4. Feature similarity evaluated on dataset D. Red lines are

the visual similarity for different c evaluated on the simulated data.

The blue line is our final similarity function with α = 9.

before into an image retrieval system.

Let the visual similarity between the query image q =
{x1, ..., xm} and a database image d = {y1, ..., yn} be

sim(q, d) =
m∑
i=1

n∑
j=1

f(xi, yj) (16)

with f(xi, yj) the pairwise feature similarity as in Equa-

tion 15. As mentioned before, dn(xi, yj) and Nd(xi) are

estimated using the random set of features.

For retrieval, we use a standard bag-of-words inverted

file. However, in order to have an estimation of the pairwise

distance d(xi, yj) between query and database features, we

add a product quantization scheme as in [12] and select the

same parameters as the original author. The feature space

is firstly partitioned into Nc = 20′000 Voronoi cells ac-

cording to a coarse quantization codebook Kc. All features

located in the same Voronoi cell are grouped into the same

inverted list. Each feature is further quantized with respect

to its coarse quantization centroid. That is, the residual be-

tween the feature and its closest centroid is equally split into

m = 8 parts and each part is separately quantized according

to a product quantization codebookKp with Np = 256 cen-

troids. Then, each feature is encoded using its related image

identifier and a set of quantization codes, and is stored in its

corresponding inverted list.

We select random features from Flickr and add 100 of

them to each inverted list. For performance reasons, we

make sure that the random features are added to the inverted

list before adding the database vectors.

At query time, all inverted lists whose related coarse

quantization centers are in the k nearest neighborhood of

the query vector are scanned.

With our indexing scheme, the distances to non-

matching features are always computed first, with their

mean value being directly Nd(xi). Then, the query adap-

tive distance dn(xi, yj) to each database vector can directly

be computed as in Equation 13. In order to reduce un-

necessary computation even more, a threshold β is used

to quickly drop features whose Euclidean distance is larger

than β × Nd(xi). This parameter has little influence on the

retrieval performance, but reduces the computational load

significantly. Its influence is evaluated in Section 4.

As pointed out by [9], local features of an image tend to

occur in bursts. In order to avoid multiple counting of statis-

tically correlated features, we incorporate both “intra bursti-

ness” and “inter burstiness” normalization [9] to re-weight

the contributions of every pair of features. The similarity

function thus changes to

sim(q, d) =

m∑
i=1

n∑
j=1

w(xi, yj)f(xi, yj) (17)

with w(xi, yj) the burstiness weighting.
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4. Experiments
In this part, we first introduce the evaluation protocol.

Then we give some implementation details of our algo-

rithm. Furthermore, we discuss the influence of each pa-

rameter and experimentally select the best ones. Finally, we

evaluate each part of our method separately.

4.1. Datasets and performance evaluation protocol

We evaluated our method on the Oxford5k[19],

Paris[20], Holidays[8] and Oxford105k dataset. Ox-

ford105k consists of Oxford5k and 100285 distractor im-

ages. The 100285 distractor images are a set of random

images that we downloaded from Flickr having the same

resolution of 1024× 768 as the original Oxford5k dataset.

We follow the same evaluation measurement method as

proposed in the original publications, that is, the mean av-

erage precision (mAP) is calculated as the overall perfor-

mance of the retrieval system.

4.2. Implementation details

Preprocessing For all experiments, all images are resized

such that their maximum resolution is 1024× 768. In each

image, interest points are detected using the Hessian Affine

detector and a SIFT descriptor is computed around each

point. As in [2] a square root scaling is applied to each SIFT

vector, yielding a significantly better retrieval performance

when using the Euclidean metric.

Codebook training The vocabularies were trained on an

independent dataset of images randomly downloaded from

Flickr in order to prevent overfitting to the datasets.

Random feature dataset preparation Random images

from Flickr (however different from the codebook training

dataset) are used to generate the random feature dataset.

4.3. Parameter selection

In this section, we evaluate the retrieval performance of

our approach on the Oxford5K dataset for different settings

of parameters. There are two parameters in our method: the

number of random features in each inverted list, and the cut-

off threshold β for filtering out features whose contribution

is negligible.

The influence of the number of the random features Ta-

ble 1 shows the retrieval performance by varying the num-

ber of random features for each inverted list. The perfor-

mance remains almost constant for a very large range of

number of random features. This supports the assumption,

that the mean distance of a query feature to the dissimilar

features can be robustly estimated even with a small num-

ber of random features. We select 100 random features per

inverted list throughout the rest of this paper.

The influence of the cut-off threshold β Table 2 shows

that features with a distance larger than β × Nd(xi) with

Length 50 100 500 1000 10000

mAP 0.739 0.739 0.739 0.739 0.738
Table 1. Influence of the size of the random feature set for each

inverted list on Oxford5k

β 0.80 0.85 0.9 0.95

similarity score 0.025 0.009 0.003 0.001

#selected features 13 43 124 292

mAP 0.733 0.739 0.740 0.739
Table 2. Influence of the cut-off value β on Oxford5k

β ∈ [0.8, 0.95] have almost no contribution to the retrieval

performance. In order to reduce the number of updates of

the scoring table, we select β = 0.85 for all experiments.

4.4. Effectiveness of our method

Local adaptive distance In order to compare the adap-

tive distance function to the Euclidean distance, we use a

threshold for separating matching and non-matching fea-

tures. Figure 4.4 shows the retrieval performance for a vary-

ing threshold both for the Euclidean distance as well as for

the adaptive distance. Overall, the best mAP using the adap-

tive distance is 3% better than the Euclidean distance. Fur-

thermore, the adaptive distance is less sensitive when se-

lecting a non-optimal threshold. It is to be noted that in the

final setup, our method does not require any thresholding.
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Figure 5. Comparison of our adaptive distance with Euclidean dis-

tance on Oxford5k dataset

Contributions of other steps In order to justify the contri-

bution of other steps that are contained in our method, we

evaluate the performance of our method by taking them out

of the pipeline. For the experiment on Oxford5k, we find

out that without the feature scaling, mAP will drop from

0.739 to 0.707, while without burstiness weighting, mAP

will drop to 0.692. With multi-assignment only on the query

side, mAP can increase from 0.739 to 0.773 for MA = 5,

and 0.780 for MA = 10. MA denotes the number of in-

verted lists that are traversed per query feature.
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5. Results
Throughout all experiments, the set of parameters was

fixed to the values obtained in the previous section and

vocabularies were trained always on independent datasets.

Table 3 shows the retrieval performance on all typical

benchmarks both with single assignment (SA) and multi-

assignment (MA = 10). As expected, multi-assignment

(scanning of several inverted lists) reduces the quantization

artifacts and improves the performance consistently, how-

ever, in exchange for more computational load.

Furthermore, we applied an image level post-processing

step on top of our method. We choose to use reciprocal

nearest neighbors (RNN) [22], for the reason that it can be

easily integrated on top of a retrieval system independently

from the image similarity function. We adopt the publicly

available code [1] provided by the original authors and the

default settings. RNN significantly improves the results on

Oxford5K and Paris datasets, but slightly lowers the result

on Holidays. Considering that RNN tries to exploit addi-

tional information contained in other relevant database im-

ages, which are scarce in Holidays (in average only 2 to 3
relevant database images per query), it is difficult for query

expansion methods to perform much better.

Dataset SA MA MA + RNN

Oxford5k 0.739 0.780 0.850

Oxford105k 0.678 0.728 0.816

Paris 0.703 0.736 0.855

Holidays 0.814 0.821 0.801
Table 3. Performance of our method on public datasets.

5.1. Comparison with state-of-the-art
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Figure 6. Retrieval Performance by using top k nearest neighbor

as similar features [12]

We first compare the performance of our method to [12]

which relies on using the top k nearest neighbors of the

Euclidean distance for selecting the similar features of a

query. This work is closest to ours, both in memory over-

head and computational complexity. It can be seen in Fig-

ure 6, that no single k maximizes the performance for all

datasets, showing that this parameter is very sensitive to the

data. Moreover, our method outperforms the peak results

from [12] consistently by roughly 10 points of mAP.

Table 4 shows the comparison to several other methods

without applying any image-level post-processing step. As

pointed out by [10], training a vocabulary on independent

data rather than the evaluated dataset itself can better rep-

resent the search performance in a very large dataset. We

only compare to state-of-the-art methods using codebooks

trained on independent datasets. We achieve the best per-

formance for Oxford5k, Oxford105k, and Holidays and fall

only slightly behind [16] on Paris.

Dataset Ours [16] [7] [18]

Oxford5k 0.780 0.742 0.704 0.725
Oxford105k 0.728 0.675∗ - 0.652
Paris 0.736 0.749 - -

Holidays 0.821 0.749∗∗ 0.817 0.769/0.818∗∗

Table 4. Comparisons with state-of-the-art methods without apply-

ing image level post-processing. ∗ indicates the score of merging

Oxford5k and Paris and 100K distractor images. ∗∗ denotes the

result obtained by manually rotating all images in the Holidays

dataset to be upright.

Furthermore, Table 5 gives a comparison for the results

when additional image-level post-processing steps are ap-

plied. We argue, that any post-processing step can directly

benefit from our method and illustrate with RNN as exam-

ple that the best performance can be achieved.

Dataset Ours+RNN [16] [18] [2]

Oxford5k 0.850 0.849 0.822 0.809
Oxford105k 0.816 0.795 0.772 0.722
Paris 0.855 0.824 - 0.765
Holidays 0.801 0.758∗∗ 0.78 -

Table 5. Comparisons with the state of art methods with post-

processing in image level. ∗∗ denotes the result obtained by man-

ually rotating all images in the Holidays dataset to be upright.

In all of the previous experiments, each feature costs 12
bytes of memory. Specifically, 4 bytes is used for the image

identifier and 8 bytes for the quantization codes. As [11]

mainly show results using more bytes for feature encoding,

we also compare our method to theirs with more bytes per

feature. As shown in Table 6, using more bytes further im-

proves the retrieval results. Even with less bytes than [11],

better performance is achieved on all datasets.

In all experiments, we compare favorably to the state-

of-the-art by exploiting a simple similarity function without

any parameter tuning for each dataset. The good results
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Dataset Ours Ours [11]

Bytes 12 36 44

Oxford5k 0.780 0.831 0.764
Paris 0.736 0.756 0.728
Holidays 0.821 0.844 0.844

Table 6. Comparison to [11] using more bytes per feature.

justify our previous analysis and the effectiveness of our

method.

5.2. Computational Complexity

In a small scale experiment, e.g for Oxford5k, we ob-

serve that our method is 30% faster than the original prod-

uct quantization algorithm[12] while traversing the inverted

lists, for the reason that our method requires no heap struc-

ture. However, for a large scale experiment, we observe

similar timing of our method to theirs as each inverted list

contains a very long list of database features, and thus the

computation of the Euclidean distance will dominate the

computational time.

6. Conclusion
In this paper, we present a probabilistic framework for

the feature to feature similarity for high-dimensional local

features such as SIFT. We then propose a query adaptive

feature to feature distance measurement and derive a global

image to image similarity function. Despite the simplicity

of this approach, it achieves consistently good results on

all evaluated datasets, supporting the validity of our model.

Furthermore, it does not require parameter tuning to achieve

optimal performance.
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