
Universality of the Local Marginal Polytope

Daniel Průša and Tomáš Werner
Center for Machine Perception, Faculty of Electrical Engineering, Czech Technical University

Karlovo náměstı́ 13, 12135 Praha, Czech Republic
{prusapa1,werner}@cmp.felk.cvut.cz

Abstract

We show that solving the LP relaxation of the MAP infer-
ence problem in graphical models (also known as the min-
sum problem, energy minimization, or weighted constraint
satisfaction) is not easier than solving any LP. More pre-
cisely, any polytope is linear-time representable by a local
marginal polytope and any LP can be reduced in linear time
to a linear optimization (allowing infinite weights) over a
local marginal polytope.

1. Introduction
Given a set of discrete variables and a collection of func-

tions each depending on one or two variables, the (pairwise)

min-sum problem is defined as minimizing the sum of the

functions over all the variables. This NP-complete combi-

natorial optimization problem occurs in MAP inference in

graphical models [10], and is also known as energy mini-
mization or weighted constraint satisfaction [3].

The problem has a natural LP relaxation, proposed inde-

pendently in [9, 7, 2]. While the exact min-sum problem

is equivalent to linear optimization over the marginal poly-
tope, the LP relaxation approximates this polytope by its

outer bound, known as the local marginal polytope [10].

We show that linear optimization over the local marginal

polytope is in certain sense not easier than any linear pro-

gram. In particular, we prove the following theorems.

Theorem 1. Every polytope is (up to scale) a coordinate-
erasing projection of a face of a local marginal polytope
with 3 labels, whose description can be computed from the
description of the original polytope in linear time.

Here, by polytope we mean bounded convex polyhedron.

A coordinate-erasing projection is a mapping π: Rq → R
p

with p < q given by π(x1, . . . , xq) = (xτ(1), . . . , xτ(p)) for

some injection τ : {1, . . . , p} → {1, . . . , q}.
Theorem 2. Any linear program can be reduced in linear
time to a linear optimization (allowing infinite weights) over
a local marginal polytope with 3 labels.

While Theorem 2 immediately follows from Theorem 1,

the situation is more complex when infinite weights in the

min-sum problem are not allowed. In this case, we show

that the reduction can be done in quadratic time and space.

Similar universality result are known also for other poly-

topes, such as the three-way transportation polytope [4].

The most important consequence of our result is that it

imposes a practical constraint on complexity of any algo-

rithm to solve the LP relaxation of the min-sum problem.

Designing a very efficient such algorithm might mean im-

proving complexity (time complexity, or a combination of

space and time complexity) of the best known algorithm for

general linear programming, which is unlikely.

2. The local marginal polytope
Let V be a finite set of objects and E ⊆ (

V
2

)
a set of ob-

ject pairs, so that (V,E) is an undirected graph. Let K be

a finite set of labels. The pairwise min-sum problem is de-

fined as

min
k∈KV

[∑
u∈V

gu(ku) +
∑

{u,v}∈E
guv(ku, kv)

]
(1)

where the functions gu: K → R and guv: K × K → R

are unary and pairwise interactions, R = R ∪ {∞}, and

we adopt that guv(k, �) = gvu(�, k). We will refer to the

values of gu and guv as weigths. The values of all gu and

guv together will be understood as a vector g ∈ R
I

with

I = { (u, k) | u ∈ V, k ∈ K } ∪
{ {(u, k), (v, �)} | {u, v} ∈ E; k, � ∈ K }. (2)

The problem instance is defined by a tuple (V,E,K,g).
Now we introduce the local marginal polytope [10]. It is

the set Λ of vectors μ ∈ R
I satisfying the constraints∑

�∈K
μuv(k, �) = μu(k), u ∈ V, v ∈ Nu, k ∈ K (3a)

∑
k∈K

μu(k) = 1, u ∈ V (3b)

μ ≥ 0 (3c)

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.227

1736

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.227

1736

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.227

1738

where Nu = { v | {u, v} ∈ E } is the set of neighbors of

object u and we adopt μuv(k, �) = μvu(�, k). The values of

functions μu and μuv are known as pseudomarginals. The

local marginal polytope is defined by a triplet (V,E,K).
Now the LP relaxation of problem (1) reads

Λ∗(g) = argmin
μ∈Λ

〈g,μ〉, (4)

where in the scalar product 〈g,μ〉 we define 0 ·∞ = 0. The

set Λ∗(g) contains all vectors μ for which 〈g,μ〉 attains

its minimum over Λ. It is a polytope, namely a face of Λ.

Conversely, every face of Λ is Λ∗(g) for some g.

3. The input polyhedron
The input polyhedron is assumed to have the form

P = {x = (x1, . . . , xn) ∈ R
n | Ax = b, x ≥ 0 } (5)

where A = [aij] ∈ Z
m×n, b = (b1, . . . , bm) ∈ Z

m, and

m ≤ n. Any convex polyhedron that can be represented by

a finite number of bits can be described this way.

Before encoding, the system Ax = b is rewritten as

follows. In the i-th equation

ai1x1 + · · ·+ ainxn = bi (6)

it is assumed that bi ≥ 0 (if not, multiply the whole equation

by −1). Further, the terms with negative coefficients are

moved to the other side of the equation, such that both sides

have only non-negative terms. Precisely, (6) is rewritten as

a+i1x1 + · · ·+ a+inxn = a−i1x1 + · · ·+ a−inxn + bi (7)

where a+ij ≥ 0, a−ij ≥ 0, and aij = a+ij − a−ij .

Moreover, it is assumed that neither side of (7) vanishes

for any i. If a−i1 = · · · = a−in = bi = 0 and a+ij > 0 then

inevitably xj = 0 and thus xj can be eliminated from (5).

If a+i1 = · · · = a+in = 0 and bi > 0 then P = ∅.
Next we derive bounds that will be needed in the encod-

ing algorithm. The following lemmas are not surprising but

we state them with proofs for completeness of the paper.

Lemma 3. For any matrix A ∈ R
n×n with columns aj ,

|detA| ≤ nn/2
n∏

j=1

‖aj‖∞.

Proof. By well-known Hadamard’s inequality, |detA| ≤∏n
j=1 ‖aj‖2. And obviously ‖aj‖2 ≤ n1/2‖aj‖∞. �

Lemma 4. If (x1, . . . , xn) is a vertex of P , then for each
j = 1, . . . , n we have xj = 0 or M−1 ≤ xj ≤M where

M = mm/2
n+1∏
j=1

Bj (8a)

Bj = max{1, |a1j |, . . . , |amj |}, j = 1, . . . , n (8b)

Bn+1 = max{1, |b1|, . . . |bm|}. (8c)

Proof. It is well-known from the simplex algorithm that ev-

ery vertex x of the polyhedron is a solution of a system

A′x′ = b′, where x′ = (x′1, x
′
2, . . .) are the non-zero

components of x, A′ is a non-singular submatrix of A,

and b′ is a subvector of b. By Cramer’s rule we have

x′j = (detA′j)/(detA
′) where A′j denotes A′ with the

j-th column replaced by b′. Because m ≤ n, Lemma 3 im-

plies
∣∣detA′j∣∣ , ∣∣detA′∣∣ ≤M , which proves the claim. �

Lemma 5. If the polyhedron P is bounded then for every
x ∈ P , each side of equation (7) is not greater than

N = M
n+1∑
j=1

Bj . (9)

Proof. Every (x1, . . . , xn) ∈ P is a convex combination

of the vertices of P , hence, by Lemma 4, each xj satisfies

xj ≤ M . We have |aij | ≤ Bj and |bi| ≤ Bn+1. There are

at most n summands on each side of equation (7). �

4. Encoding
In this section we prove Theorem 1 by giving a linear-

time algorithm to encode the polyhedron P as a face of a lo-

cal marginal polytope. We assume here that P is bounded—

we relax this requirement later in §5.

The input of the algorithm is a set of equations (7). Its

output is a min-sum problem (V,E,K,g) with |K| = 3
labels and with weights gu(k) = 0 for all u ∈ V and k ∈ K,

and guv(k, �) ∈ {0, 1} for all {u, v} ∈ E and k, � ∈ K.

This min-sum problem is such that minμ∈Λ〈g,μ〉 = 0 if

and only if P = ∅. Thus, the case P = ∅ is indicated by

minμ∈Λ〈g,μ〉 > 0. It further means that if P = ∅ then

for every μ ∈ Λ∗(g) we inevitably have μuv(k, �) = 0
whenever guv(k, �) = 1.

It will be convenient to depict min-sum problems by pic-

tures, similarly as e.g. in [11]. Figure 4 illustrates the mean-

ing of constraints (3) in these pictures. In the sequel, only

a subset of the nine edges between two objects are shown,

where the visible edges have weight guv(k, �) = 0 and the

invisible edges have weight guv(k, �) = 1.

4.1. Elementary constructions

The encoding algorithm uses several elementary con-

structions as its building blocks. Each construction is a

standalone min-sum problem that imposes a certain simple

constraint on some unary pseudomarginals of every optimal

solution:

COPY, Figure 2(a), enforces equality of two unary pseudo-

marginals a, d in two objects {u, v} ∈ E while imposing no

other constraints on b, c, e, f . Precisely, if a, b, c, d, e, f ≥ 0
and a + b + c = 1 = d + e + f , then there exist pairwise

pseudomarginals satisfying (3) if and only if a = d.

173717371739

a cb

p q r

Figure 1. A pair of objects {u, v} ∈ E with |K| = 3 labels.

Objects u ∈ V are depicted as boxes, labels k ∈ K as nodes, and

label pairs (k, �) ∈ K × K as edges. Each node is assigned a

unary pseudomarginal μu(k) and each edge is assigned a pairwise

pseudomarginal μuv(k, �). One constraint (3b) imposes for unary

pseudomarginals a, b, c that a + b + c = 1. One constraint (3a)

imposes for pairwise pseudomarginals p, q, r that a = p+ q + r.

ADDITION, Figure 2(b), adds two unary pseudomarginals

a, b in one object and represents the result as a unary pseu-

domarginal c = a+b in another object. No other constraints

are imposed on the remaining unary pseudomarginals.

EQUALITY, Figure 2(c), enforces equality of two unary

pseudomarginals a, b in a single object, introducing two

auxiliary objects. No other constraints are imposed on the

remaining unary pseudomarginals. In the sequel, this con-

struction will be abbreviated by omitting the two auxiliary

objects and writing the equality sign between the two nodes,

as in Figure 2(d).

POWERS, Figure 2(e), creates the sequence of unary pseu-

domarginals with values 2ia for i = 0, . . . , d, each in a

separate object. We will call d the depth of the pyramid.

NEGPOWERS, Figure 2(f), is similar to POWERS but con-

structs values 2−i for i = 0, . . . , d.

Figure 3 shows an example of how the elementary con-

structions can be combined.

4.2. The algorithm

Now we describe the whole encoding algorithm. In the

algorithm, labels and objects are numbered by integers,

K = {1, 2, 3} and V = {1, . . . , |V |}.
The algorithm is initialized as follows:

1. For each variable xj in (5), introduce a new object j
into V . The variable xj will be represented by pseudo-

marginal μj(1). After this step, we have |V | = n.

2. For each such object j ∈ V , build POWERS to the depth

dj = �log2 Bj� based on label 1. This yields the se-

quence of numbers 2iμj(1) for i = 0, . . . , dj .

3. Build NEGPOWERS to the depth d = �log2 N�. The

number 2−d will play the role of the unit in our con-

struction, it is the scale mentioned in Theorem 1. The

choice of d ensures that all values that have to be rep-

resented by pseudomarginals will be bounded by 1.

Then the algorithm proceeds by encoding each equation (7)

in turn. The i-th equation is encoded as follows:

a b c

d e f

(a) COPY

ba

c

(b) ADDITION

ba

(c) EQUALITY

= ba

(d) its shorthand

=

=

=

=

a

2a

4a

8a

(e) POWERS

=

=

=

1

1/2

1/4

1/8

(f) NEGPOWERS

Figure 2. Elementary constructions.

=

=

=

1/8

5/8

1/2 1/4

1/8

1

1/2

Figure 3. Construction of value 5
8

. The edge colors distinguish dif-

ferent elementary constructions. The example can be generalized

in an obvious way to construct the value 2−dk for any d, k ∈ N

such that 2−dk ≤ 1. If more than two values are added, interme-

diate results are stored in auxiliary objects using COPY.

1. Construct pseudomarginals with values a+ijxj , a−ijxj

by summing selected values from the powers built in

Step 2 of the initialization, similarly as in Figure 3.

2. Construct a pseudomarginal with value 2−dbi by sum-

ming selected values from the negative powers built in

173817381740

Step 3 of the initialization, similarly as in Figure 3. The

value 2−dbi represents bi, which sets the scale between

the input and output polytope to 2−d.

3. Represent each side of the equation by summing all its

terms by repetitively applying ADDITION and COPY.

4. Apply COPY to enforce equality of the two sides of the

equation.

When the algorithm finishes, the output min-sum problem

encodes the (nonempty) input polytope as

P = π(Λ∗(g)) (10)

where π: RI → R
n is the scaled coordinate-erasing projec-

tion given by

(x1, . . . , xn) = π(μ) = 2d(μ1(1), . . . , μn(1)). (11)

Figure 4 shows the output min-sum problem for an ex-

ample polytope P .

4.3. The length of the encoding

Here we finish the proof of Theorem 1 by showing that

the encoding time is linear in the length L of the description

of the input polyhedron P . Since this time is obviously1

linear in |E|, it suffices to show that |E| = O(L).
Object pairs are created only when an object is created

and the number of object pairs added with one object is al-

ways bounded by a constant. Therefore |E| = O(|V |).
Let P be described by a bit sequence including the binary

representations of all entries of A and b. The length of this

sequence is L. Clearly,

L ≥ max
{
mn,

n+1∑
j=1

log2 Bj

}
. (12)

The algorithm initialization creates
∑n

j=1(dj + 1) ob-

jects via POWERS and d + 1 objects via NEGPOWERS. By

comparison with (12), both these numbers are O(L).
Finally, encoding one equality (7) adds at most as many

objects as there are bits in the binary representation of all its

coefficients. The cumulative sum is thus O(L).

5. Reducing a linear program to linear opti-
mization over a local marginal polytope

In this section we show how to efficiently reduce any

linear program to linear optimization over a local marginal

polytope. By saying that problem A can be reduced to prob-
lem B we mean there is an oracle to solve problem B which

1 The only thing that may not be obvious is how to multiply large inte-

gers a, b in linear time. But this issue can be avoided by instead computing

p(a, b) = 2�log2 a�+�log2 b�, which can be done in linear time using bit-

wise operations. Since ab ≤ p(a, b) ≤ (2a)(2b), the bounds like M
become larger but this does not affect the overall complexity.

takes constant time and which can be called (possibly re-

peatedly) to solve problem A. We further assume that if

problem B is a linear program then the oracle returns both

an optimal argument and the optimal value.

The input linear program is assumed to have the form

P ∗(c) = argmin
x∈P

〈c,x〉 (13)

where P is given by (5) and c = (c1, . . . , cn) ∈ Z
n.

The encoding in §4 can be applied only to a bounded

polyhedron P but the LP (13) can be unbounded. This issue

is settled by the following lemma, which is not surprising

but proved here for completeness.

Lemma 6. Every linear program (13) can be reduced in lin-
ear time to a linear program over a bounded polyhedron.

Proof. Denote H(α) = {x ∈ R
n | 〈1,x〉 ≤ α }. By

Lemma 4, all vertices of P are contained in the halfspace

H(nM). Clearly,

min
x∈P∩H(nM)

〈c,x〉 ≥ min
x∈P∩H(2nM)

〈c,x〉. (14)

Each side of (14) is a linear program over a bounded polyhe-

dron. Inequality (14) is tight if and only if (13) is bounded,

in which case (14) has the same optimum as (13). The linear

programs (14) are infeasible if and only if (13) is infeasible.

The description length of numbers nM and 2nM is

O(L), thus the reduction is done in linear time. �

By Lemma 6 and Theorem 1, any linear program (13)

can be reduced in linear time to optimizing a linear function

over a face of Λ. Given an oracle to optimize a linear func-

tion over Λ, it may seem unclear how to optimize a linear

function over a face of Λ. But this can be done by setting

some pairwise weights to a large constant, g∞.

Precisely, let (V,E,K,g′) be the min-sum problem en-

coding P , as constructed in §4. Define the vector g ∈ R
I

by

gi(k) =

{
ci if k = 1 and i ∈ {1, . . . , n},
0 otherwise,

(15a)

gij(k, �) =

{
0 if g′ij(k, �) = 0,

g∞ if g′ij(k, �) = 1.
(15b)

The constant g∞ must be large enough to ensure that every

μ ∈ Λ∗(g) satisfies μij(k, �) = 0 whenever gij(k, �) =
g∞, so that Λ∗(g) ⊆ Λ∗(g′). Then

P ∗(c) = π(Λ∗(g)) (16)

because by (15a), the components of μ multiplied by ci in

the product 〈g,μ〉 are precisely those that represent the vari-

ables xi of the input problem (13). We assume here that P

173917391741

=

=

=

1

1/2

1/28

1/29

=

=

=

=

=

1/29

1/283/29

x

x+2y+2z

2y+2z

2y+2z

2y

2z

2y 2z

y zx

y

2y

3y

3y

3y+1/29

1/29

Figure 4. The min-sum problem encoding the polytope P = { (x, y, z) | x+ 2y + 2z = 3; −x+ 3y = −1; x, y, z ≥ 0 }.

is bounded and non-empty; recall that the case P = ∅ is

indicated by minμ∈Λ〈g′,μ〉 > 0.

It remains to choose g∞. The situation is different de-

pending on whether we are allowed to use infinite weights

(components of g) or not. If infinite weights are allowed,

we simply set g∞ =∞. This proves Theorem 2.

If infinite weights are not allowed, g∞ must be a large

enough finite constant. Unfortunately, manipulation with

these large numbers increases the complexity of the reduc-

tion. This is given by Theorem 8. To prove it, we need

Lemma 7, which refines Lemma 4 for the special case of

the local marginal polytope.

Lemma 7. Let Λ be a local marginal polytope given by a
triplet (V,E,K) where |K| = 3. Every component μ of
every vertex μ of Λ satisfies μ = 0 or 2−|V |−6|E| ≤ μ.

Proof. Write constraints (3a) and (3b) as Uμ = u. The

matrix U has |V | + 2|K||E| = |V | + 6|E| rows and

|K||V |+ |K|2|E| = 3|V |+ 9|E| columns. The composed

matrix [U |u] contains exactly 4 non-zero elements in every

row, each of them being either −1 or 1. Let U′ be a non-

singular submatrix of [U |u]. By Hadamard’s inequality,

|detU′| = |detU′�| ≤
|V |+6|E|∏

j=1

√
4 = 2|V |+6|E|,

which implies the claimed lower bound. �

Theorem 8. Any linear program (13) can be reduced in
time and space O(L(L + L′)) to a linear optimization (al-
lowing only finite weights) over a local marginal polytope
with 3 labels, where L′ is the length of the binary represen-
tation of c.

Proof. Let (V,E,K,g′) be the min-sum problem encod-

ing P , where we assume that P is bounded and non-empty.

Let g be given by (15) where

g∞ = 1 + C2|V |+6|E|+1, C =
n∑

i=1

|ci|.

We claim that then (16) holds. To prove this, we need to

show that every μ ∈ Λ∗(g) satisfies μij(k, �) = 0 when-

ever gij(k, �) = g∞. It suffices to show this only for the ver-

tices of Λ∗(g) because taking a convex combination cannot

violate the condition μij(k, �) = 0.

Since P is non-empty, we have minμ∈Λ〈g′,μ〉 = 0. The

constant C is chosen such that minμ∈Λ〈g,μ〉 ≤ C. For

contradiction, suppose for some μ ∈ Λ∗(g) there is some

{(i, k), (j, �)} such that gij(k, �) = g∞ and μij(k, �) > 0.

But by Lemma 7, μij(k, �) > 2−|V |−6|E|. Thus,

min
μ∈Λ

〈g,μ〉 ≥ g∞2−|V |−6|E| − C > C.

174017401742

The binary length of g∞ is O(L + L′). It occurs in g at

O(|K|2|E|) = O(L) positions, thus the binary length of g
is O(L(L+ L′)). This induces the claimed time and space

complexities. �

Recall that an algorithm runs in a strongly polynomial

time if its number of operations in the arithmetic model of

computation (in which any operation takes the unit time) is

bounded by a polynomial in the number of integers in the in-

put instance and the space used by the algorithm is bounded

by a polynomial in the size of the input. Our last theorem

specifies a class of linear programs that can be reduced in

strongly polynomial time to the LP relaxation of a min-sum

problem.

Theorem 9. Every linear program (13) where A ∈
{−1, 0, 1}m×n and b ∈ {−1, 0, 1}m can be reduced in
strongly polynomial time to a linear optimization over a lo-
cal marginal polytope.

Proof. In this case L = O(mn). Bounding the linear pro-

gram (13) by Lemma 6 adds (twice) an equation whose bi-

nary length is O(n +m logm). In the arithmetic model of

computation, g∞ from Theorem 8 can be computed using

O(mn) additions and multiplications. Furthermore, all the

computed numbers are represented in space O(mnL). �

6. Consequences
Our result has a number of immediate consequences.

Most importantly, it shows that solving the LP relaxation

of a pairwise min-sum problem is comparably hard as solv-

ing any LP. This is straightforward if infinite weights are

allowed. Then, by Theorem 2, the reduction is done in time

O(L), while the best known algorithm [5] for general LP

has time complexity O(n3.5L2 logL log logL). Finding a

very fast algorithm, such asO(L2 logL), to solve LP relax-

ation of min-sum problems (which permit infinite weights)

would imply improving the best-known complexity of LP.

Our result makes more precise the known observation

that local marginal polytopes with |K|=3 labels are more

complex than those with 2 labels. Any pairwise min-sum

problem with 2 labels can be reduced in linear time to a

quadratic pseudoboolean optimization problem, whose LP

relaxation can be reduced in linear time to a max-flow prob-

lem [1, 8], which has a lower best known complexity than

a general LP. Local marginal polytopes with 2 labels have

half-integral vertices (i.e., all components of the vertices are

in {0, 1
2 , 1}) [6, 11], while the components of the vertices of

local marginal polytopes with 3 labels can have much more

general values, as indicated by Figure 4. Moreover, there

seems to be not much difference in complexity between lo-

cal marginal polytopes with 3 labels and those with 4 or

more labels.

When solving the LP relaxation of a min-sum problem

by the simplex algorithm, due to high degeneracy of the

local marginal polytope the simplex algorithm sometimes

stays in a single basic solution for a very large number of

iterations, only changing degenerate bases (this is known as

stalling). Finding a pivoting rule that would guarantee no

stalling would imply this rule is applicable to any LP.

Last but not least, the question whether there is a strongly

polynomial algorithm for the LP relaxation of the min-sum

problem is shown to be equivalent to the question whether

any LP with components of A and b in {−1, 0, 1} (without

any restriction on c) has a strongly polynomial algorithm.

Acknowledgment
Both authors were supported by the Grant Agency of the

Czech Republic project P202/12/2071. Besides, DP was

supported by the EC project FP7-ICT-247525 HUMAVIPS

and TW by the EC project FP7-ICT-270138 DARWIN.

References
[1] E. Boros and P. L. Hammer. Pseudo-Boolean optimization.

Discrete Applied Mathematics, 123(1-3):155–225, 2002. 6

[2] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approxima-

tion algorithms for the metric labeling problem via a new

linear programming formulation. In Symposium on Discrete
Algorithms, pages 109–118, 2001. 1

[3] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. The com-

plexity of soft constraint satisfaction. Artificial Intelligence,

170:983–1016, 2006. 1

[4] J. A. De Loera and S. Onn. All linear and integer programs

are slim 3-way transportation programs. SIAM J. on Opti-
mization, 17(3):806–821, 2006. 1

[5] N. Karmarkar. A new polynomial-time algorithm for linear

programming. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, STOC ’84, pages 302–

311, New York, NY, USA, 1984. ACM. 6

[6] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. IEEE Trans. Pattern Analysis
and Machine Intelligence, 28(10):1568–1583, 2006. 6

[7] A. Koster, C. van Hoesel, and A. Kolen. The partial con-

straint satisfaction problem: Facets and lifting theorems. Op-
erations Research Letters, 23(3–5):89–97, 1998. 1

[8] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szum-

mer. Optimizing binary MRFs via extended roof duality.

In Conf. Computer Vision and Pattern Recognition (CVPR),
2007. 6

[9] M. I. Shlezinger. Syntactic analysis of two-dimensional vi-

sual signals in noisy conditions. Cybernetics and Systems
Analysis, 12(4):612–628, 1976. Translation from Russian. 1

[10] M. J. Wainwright and M. I. Jordan. Graphical models, expo-

nential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1-2):1–305, 2008. 1

[11] T. Werner. A linear programming approach to max-sum

problem: A review. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 29(7):1165–1179, 2007. 2, 6

174117411743

