
Consensus of k-NNs for Robust Neighborhood Selection on Graph-Based

Manifolds

Vittal Premachandran and Ramakrishna Kakarala

School of Computer Engineering, Nanyang Technological University, Singapore-639798

vittalp@pmail.ntu.edu.sg and ramakrishna@ntu.edu.sg

Abstract

Propagating similarity information along the data man-

ifold requires careful selection of local neighborhood. Se-

lecting a “good” neighborhood in an unsupervised setting,

given an affinity graph, has been a difficult task. The most

common way to select a local neighborhood has been to

use the k-nearest neighborhood (k-NN) selection criterion.

However, it has the tendency to include noisy edges. In this

paper, we propose a way to select a robust neighborhood

using the consensus of multiple rounds of k-NNs. We ex-

plain how using consensus information can give better con-

trol over neighborhood selection. We also explain in de-

tail the problems with another recently proposed neighbor-

hood selection criteria, i.e., Dominant Neighbors, and show

that our method is immune to those problems. Finally, we

show the results from experiments in which we compare our

method to other neighborhood selection approaches. The

results corroborate our claims that consensus of k-NNs does

indeed help in selecting more robust and stable localities.

1. Introduction

Using the underlying manifold structure has proven to

significantly improve performance in many vision-related

tasks [14, 16]. The most notable of them is the task of

shape/image retrieval. The task of shape retrieval is an espe-

cially difficult task because of the vast variability of shapes

even within a particular class. Given a query object, the

goal of retrieval tasks is to retrieve the most similar shapes

in the database. Similar objects are usually retrieved using

some similarity/dissimilarity measure (ex: [2, 6]), which is

computed between pairs of shapes. Many of these simi-

larity/dissimilarity measures violate the triangle inequality

and, hence, are not metrics. If the underlying manifold

structure of the shapes is curved, then the Euclidean dis-

tance between shapes cannot be a good metric for shape

comparison. In such cases, the geodesic distance on the

shape manifold is a better metric for comparing shapes than

pairwise similarity/dissimilarity measures.

Many techniques have been proposed to capture this un-

derlying manifold structure, and hence learn the correct

geodesic distances between data points that lie on the man-

ifold. Since the manifolds are usually of a much lower di-

mensionality than the space in which they lie, many mani-

fold learning algorithms make use of dimensionality reduc-

tion methods (ex: [12, 11]) to reduce the dimensionality

of the feature space. Such dimensionality reduction tech-

niques map the features onto a lower dimensional subspace

in hope that the Euclidean distance in this new lower di-

mensional subspace can capture geodesic distance from the

original higher dimensional space.

In applications such as shape retrieval, we might not have

access to the features of the data points, and might be forced

to work in the data space. The shape manifold in the data

space is represented as a graph with edge weights propor-

tional to the similarity score. The true distance between two

shapes can be learnt by considering the distance in context

of other shapes in the neighborhood. The new distances are

calculated by propagating the similarity information along

the weighted edges of the graph.

Many recent papers make use of such contextual infor-

mation to learn new affinity scores between pairs of data

points [1, 4, 15, 16, 18]. The similarity information is usu-

ally propagated as a diffusion process on the graph. Yang

et al. [16] perform diffusion on a locally constrained sparse

graph, while in [18], the diffusion process is performed on

a tensor product graph, thus allowing the capture of higher

order information. The diffusion process is susceptible to

noise [3], and hence the affinity propagation is not per-

formed on a fully connected graph. Both [16] and [18] fol-

low different styles of graph sparsification (k-nearest neigh-

bors and dominant neighbors, respectively). The selection

of a proper neighborhood is critical for diffusion to work.

This paper addresses the question of how to build a

strong local neighborhood given data in the form of a graph.

In this paper, we point out the drawbacks of using k-nearest

neighbors (k-NN) and dominant neighbors (DN). Dominant

neighbors are the nodes that form a maximal clique in a

graph (Section 3.1 explains the process of finding the domi-

nant neighbors in detail). We propose a new way for neigh-

borhood selection by making use of the consensus infor-

mation from various neighborhoods, and show that such a

neighborhood is much more robust to parameter selections.

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.209

1592

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.209

1592

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.209

1594

We also show that using our consensus neighborhood in-

formation, we are able to achieve better retrieval results on

standard databases (Ex: MPEG7 shape database), as op-

posed to the use of k-NN or DN.

2. Sparse Affinity Matrix Generation

Given N shapes from a database, we can generate a

NxN cost matrix by pairwise comparison of each pair of

shapes si and sj , ∀i, j ∈ {1, ...N}, using standard shape

comparison methods such as [2, 6]. Ideally, we would want

the shape comparison methods to generate costs such that

similar shapes have less cost and dissimilar shapes have

greater costs between them, and for them to obey the tri-

angle inequality. Unfortunately, this is not true of any of

the shape matching techniques. In order to learn the true

geodesic distances on the shape manifold, contextual infor-

mation has to be taken into consideration. Using the NxN

matrix allows us to exploit much more information about

the neighborhood structure of the data manifold than using

just the pairwise information.

2.1. Affinity Matrix

The usual trend is to work with similarity scores rather

than dissimilarity costs. The authors in [15] convert the cost

matrix into a similarity matrix (also named as affinity ma-

trix) and use this affinity matrix to learn the geodesics on

the manifold. The affinity between a pair of shapes is cal-

culated as follows:

A(i, j) = exp(−D(i, j)2/σ2

ij). (1)

Here, A is the affinity matrix, D is the distance matrix, and

σ specifies the kernel size. The choice of σ is critical in

generating a “good” affinity matrix. A “good” σ would help

in pulling intra-class objects together and in pushing inter-

class objects far away from each other. Different methods

have been proposed for choosing a proper σ. Perona et al.

[10] use σij as

σij = σiσj , where σi = D(i,K(i)), (2)

where K(i) is the Kth nearest shape to shape si, and Yang

et al. [15] use σij as

σij = mean(K−NN(si),K−NN(sj)), (3)

where mean(K-NN(si), K-NN(sj)) is the mean of the K-

nearest distances of shape si and shape sj . Both these meth-

ods rely on the proper choice of the kernel neighborhood

parameter, K, and choosing a “bad” K, would adversely

affect the generation of a good affinity matrix.

2.2. Local Neighborhood Sparsification

While performing similarity propagation on a graph, it is

extremely important to prune out noisy edges as the diffu-

sion process is susceptible to noise [3]. Roweis et al. [11]

assumed linearity of local neighbourhoods on a manifold,

and graph sparsification follows a similar principle. It is as-

sumed that the edge weights between data points that are

close to each other on the data manifold approximate the

geodesic information better than the edge weights between

data points that are farther away from each other. Hence,

graph sparsification tries to prune out edges between nodes

that are not in a local neighborhood. For a graph G(V,E),
we can have different variants of the neighborhood graph

G′, such as,

• Symmetric k-NN graph neighborhood G′(V,E),
where there is an edge E(vi, vj) if vj ∈ k-NN(vi) or

vi ∈ k-NN(vj).

• Mutual k-NN graph neighborhood G′(V,E), where

there is an edge E(vi, vj) if vj ∈ k-NN(vi) and vi ∈
k-NN(vj).

• ǫ-Neighborhood graph G′(V,E), where there is an

edge between vi and vj , if D(i, j) ≤ ǫ.

• Dominant Neighborhood graph G′(V,E), where there

is an edge E(vi, vj) if vj ∈ DN(vi).

Of these, the ǫ-neighborhood graph is susceptible to scal-

ing. Different clusters can have different radii. So, select-

ing a single ǫ for all nodes in the graph might not prop-

erly capture the neighborhood structure of the nodes. The

k-NN graph neighborhoods produce a fixed-size neighbor-

hood. However, as pointed to in [17], the k-NN graph has

a tendency to include noisy edges in the neighborhood of a

node. Moreover, using a fixed-size neighborhood might not

adequately capture the locality in the manifold.

The need for a variable-size neighborhood for manifold

structure learning was pointed to in [17] and [19]. Zhang

et al. [19] propose an adaptive neighborhood selection for

manifold learning in the feature space, while Yang et al.

[17] make use of dominant set computation method [9] for

selecting the dominant subset of the k-nearest neighbors in

the data space. The idea behind selecting a dominant neigh-

borhood as opposed to just the k-nearest neighbors is that,

the dominant neighborhood usually forms tight clusters and

is therefore composed of nodes that are highly similar to

each other. Therefore, dominant neighbors are less prone to

noisy edges than k-nearest neighborhood.

While the dominant neighborhood graph can select vari-

able sized neighborhoods, it is still dependent on the se-

lection of the sparsification parameter, k1. Both k-NN and

DN, can be adversely affected if the value of k is incor-

rectly chosen. In the next section, we explain in detail the

problems related to the parameter selection. We will also

explain how our consensus neighborhood selection strategy

will help mitigate those problems.

1We use K to denote the kernel parameter and k to denote the sparsifi-

cation parameter

159315931595

3. Consensus k-NNs

Both k-NN and DN can select good local neighborhoods

as long as the graph sparsification parameter, k, is properly

selected. Looking back at symmetric k-NN neighborhood

selection, we can see that an edge between vi and vj is se-

lected if vj ∈ kNN(vi) or vi ∈ kNN(vj). This process

is repeated for all nodes i ∈ {1, 2, ...N} in order to obtain

local neighborhoods of every node in the graph. Some of

these edges might be noisy edges, while some of them are

indeed accurate edges. Accurate edges are those edges that

connect a particular node to other nodes, which are part of

the true neighborhood, while noisy edges are those that con-

nect a node to other nodes that are not part of the true neigh-

borhood. As the neighborhood size, k, increases, so do the

chances of adding in noisy edges. To make the neighbor-

hood more stable even for large values of k, we propose to

make use of consensus information from the multiple k-NN

procedures that are applied to the graph. Consensus cluster-

ing has been previously used for other problems [5, 8] and

has shown impressive results.

We define a consensus matrix, C, to keep track of the

number of times a pair of nodes (vp, vq) appear together

among all rounds of k-NN. A simple pseudocode to popu-

late our consensus matrix is given below.

C = 0;

for i = 1 : N do

Si = k-NN(vi);
for p = 1 : N do

for q = p+ 1 : N do

if p ∈ Si and q ∈ Si then

C(p, q) = C(p, q) + 1;

C(q, p) = C(q, p) + 1;

end

end

end

end

Algorithm 1: Algorithm to collect the consensus informa-

tion from multiple rounds of k-NNs.

The first advantage that we obtain from having such a

consensus matrix is that it allows us to capture stronger rela-

tions between pairs of nodes. In the symmetric k-NN graph,

a pair of nodes is either part of each other’s neighborhood,

or not. Whereas, if we use the consensus of k-NNs, we

can be far more certain about the similarity, or dissimilarity,

between pairs of vertices. The relation between a pair of

nodes (vp, vq), which are a part of k-NN(vi), were ignored

in the case of symmetric k-NN (just the edges between vi
and vp, and between vi and vq , were added to the graph).

However, the fact that the two nodes vp and vq are a part of

the same neighborhood, albeit some other node vi, shows

that vp and vq are similar to each other as well. If vp and

vq keep appearing among the k-NNs of multiple nodes, then

the chances of the two nodes being similar to each other fur-

ther increases. This points to the second advantage of using

consensus information.

Probabilistic Neighborhood Information: A row-

normalized consensus matrix can be viewed as a probabil-

ity matrix, where each value specifies the probability of that

pair of nodes being similar to each other. We are not privy to

such soft measures if we use the symmetric k-NN for neigh-

borhood generation. In a symmetric k-nearest neighbor-

hood, noisy edges have the same probability of being a part

of a particular locality as accurate edges. Such noisy edges

might have been included in the neighborhood by chance.

The probability that such edges will be a part of multiple

neighborhoods, however, is low. With the use of the con-

sensus matrix, we can easily identify such noisy edges as

those edges that have a low probability value, and can hence

be ignored. Figure 2b shows a consensus matrix from one

of our experiments.

With the use of such probabilistic information, we get

more control over neighborhood tuning. A simple way to

prune out noisy edges is to select only those pairs of edges

that have a probability greater than some fixed threshold.

More formally, the new probabilistic neighborhood graph

G′(V,E), has an edge E(vi, vj), if C(i, j) ≥ τ . The

threshold, τ , is a global threshold that does not need to be

set independently for separate nodes. Unlike symmetric k-

nearest neighborhoods, even for a fixed value of τ we can

get variable-sized neighborhoods that can adaptively repre-

sent the local neighborhood structure.

Pruning out noisy edges leaves us with coherent clusters,

where elements of the clusters are all highly similar to each

other. Yang et al. [17] also tried to obtain such a neighbor-

hood, but they used the dominant set method for identifying

such clusters. Our consensus neighborhood identification

method is better in many ways compared to the dominant

set extraction, especially when used for manifold learning.

In the following subsection, we explain the issues that the

dominant sets cannot overcome, which are especially criti-

cal for manifold learning.

3.1. Advantages of Consensus Neighborhood over
Dominant Sets

As mentioned in the previous sections, the goal of any

graph sparsification method is to produce a neighborhood

that best preserves the locally linear neighborhood prop-

erty of manifolds. It is assumed that coherent clusters form

good local neighborhoods and, hence, clustering algorithms

are used to identify local neighborhoods. The dominant

set extraction method, proposed by Pavan and Pellilo [9]

has shown impressive results for identifying good clusters.

The authors of [9] consider clusters as dominant sets and

159415941596

159515951597

Dominant Neighbors

20 40 60 80 100 120 140 160

50

100

150
0

0.2

0.4

0.6

0.8

1

(a)

Consensus k−NNs

20 40 60 80 100 120 140 160

50

100

150
0

0.2

0.4

0.6

0.8

1

(b)

Figure 2: (Best viewed in color) Neighborhood matrix for

a subset of the MPEG7 shape database. We use k = 50
for both cases. (a) Figure shows the dominant neighbors,

where all nodes have a binary status. Also, note that class

1 (rows 1 to 20) has chosen a neighborhood that belongs to

a completely different class, class 7 (columns 121 to 140).

This is because of the false neighborhood problem that was

described in Section 3.1. (b) Figure shows a probabilistic

version of the neighborhood matrix obtained from consen-

sus of k-NNs. Note that the neighborhood of class 1 still

includes others nodes from the same class, with high prob-

ability, unlike DN.

tible to this problem as the first goal of k-NN is to sort the

rest of the nodes in decreasing order of similarity. So, we

are always guaranteed to select the most similar nodes to

a particular node vi. The problem with k-NN (i.e., its ten-

dency include noisy edges), which forced the adoption of

DN, is overcome by our method of using consensus infor-

mation from multiple k-NNs. Consensus information not

only retains the most similar nodes, but also gives a means

to prune out noisy edges. Consensus of k-NNs has the ad-

vantages that motivated the use of DN, and is not affected

by the issues that affect DN.

Disconnected Graphs: The final problem that we will

discuss is the case of disconnected graphs. In order to prop-

agate similarity information between every pair of nodes,

there should be at least one path connecting a node vi to ev-

ery other node vj . This means to say that, the sparse graph

should be a connected graph (need not be a fully connected

graph). The graph sparsification step should not output a

graph with two or more subgraphs that have no connections

between them. This is critical if we wish to learn the true

geodesic distance between every pair of nodes.

Dominant set extraction procedure has a tendency to out-

put tight-knit clusters. The different optima of the optimiza-

tion objective in Eq. (4) are nodes that are subsets of V .

These subsets are coherent subsets with a high degree of

intra-set similarity. This causes inter-cluster edges to be

pruned off, resulting in a fragmented graph with multiple

connected subgraphs. If diffusion was performed on such

a graph, the true geodesic distances between pairs of nodes

would be learnt only among the nodes within a connected

subgraph. All distances between nodes belonging to differ-

ent subgraphs would end up being very large, and therefore,

meaningless. In our experiments, we noticed such fragmen-

tation of the graphs, even when k was set to moderate val-

ues (k = 10). This meant that, while using the dominant set

for neighborhood extraction, we were never able to learn

the geodesic distance between nodes belonging to mutually

disconnected subgraphs for particular values of k.

The probability of ending up with fragmented subgraphs

is much less while using k-nearest neighborhoods. This is

because the edges are not forced to remain only among a

selected subset of nodes. We noticed fragmentation of the

graph, while using k-NN, only when k was chosen to be

very small (k = {1, 2, 3}). Such small neighborhoods do

not provide any locality information. Hence, choosing such

small k’s is hardly ever the case.

Summary: To summarize, consensus of k-NNs has lots

of advantages over dominant neighbors. Firstly, they are

not prone to problems such as local optimality. While using

dominant sets, one can end up with neighborhoods that arise

out of locally optimal solutions. Secondly, the “neighbors”

generated by the dominant sets are not guaranteed to contain

the true neighbors of the node under consideration. There

are no such problems while using consensus of k-NNs as

k-NN guarantee that the most similar nodes to a particular

node are always part of the local neighborhood. Finally,

the chances of graph fragmentation is much less (in fact,

hardly ever the case) in the case of consensus k-NNs when

compared to the dominant neighbors. This allows similarity

information to propagate between all pairs of nodes.

159615961598

3.2. Diffusion Using Consensus Information

The consensus information just gathered can be used in

two ways before performing diffusion. As mentioned in

Section 2, there are two pre-processing steps that are per-

formed before propagating the similarity information. The

cost matrix to affinity matrix conversion stage relies on a

good choice of the kernel, σ. Eq. (3) selects σij as the mean

of the K-NN distances of the two nodes vi and vj . Using

the consensus information, the parameter can be chosen as

the mean of the distances between pairs of nodes that have

a probability greater than, say, τ . This would better ensure

similar nodes to be grouped together much more tightly, and

dissimilar nodes to be pushed much further away.

Secondly, consensus information has significant uses

during the graph sparsification stage i.e., neighborhood gen-

eration stage. We have explained above, how a good neigh-

borhood graph, G′, can be obtained from the consensus in-

formation. Given a neighborhood graph G′ generated using

consensus of k-NNs, one can obtain a probabilistic transi-

tion matrix P as

P (i, j) =
E′(i, j)

∑
j E

′(i, j)
, (8)

where, E′ is the edge set obtained from the sparse graph G′.

Once P is calculated, we can now perform diffusion using

any of the graph diffusion procedures (Ex: LCDP [16], or

TPG [18]). In our experiments, we primarily use TPG diffu-

sion as it takes into account higher-order similarity relations

for the same space and time complexity as classical diffu-

sion on the original graph.

4. Experiments

To demonstrate the stability of using consensus neigh-

borhood, we compare the diffusion process when using k-

NN, DN, and consensus of k-NNs for many different values

of k. We perform our experiments on a spiral data and on

the standard MPEG-7 shape retrieval database.

4.1. Spiral Data

The spiral data is obtained by generating samples from

the Archimedes spiral as a function of arc length. We sam-

ple 1000 points from the spiral. Each generated point is per-

turbed by random noise. The spiral, which lies in the 2-D

space, has an intrinsic 1-D structure. Here, we compare the

performance of consensus of k-NNs with the simple k-NN,

by purposely setting the value of k to be “large”.

Figure 3 shows the output of the two approaches. The

first row is obtained by using the naive k-NN, and the sec-

ond row from consensus of k-NNs. The graphs on the left

show the plots of the second most-important eigen vec-

tor against the arc length. The figures on the right show

a color-coded spiral. Similar colors mean that the points

0 200 400 600 800 1000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

(a) (b)

0 200 400 600 800 1000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(c) (d)

Figure 3: Top row shows the diffusion results from using

simple k-NN sparse graph, and the bottom row, using the

sparse graph generated using consensus of k-NNs. (a) and

(c) show a plot of the mapped 1-D coordinates of the points

versus the arc length. (b) and (d) show a color-coded spiral.

Points that are close to each other after mapping to the lower

dimension are similarly colored.

are mapped close to each other after learning the mani-

fold structure [11, 13]. Clearly, consensus of k-NNs has

learnt a better neighborhood than the simple k-NN. From

Figure 3a, we can see there there is no one-to-one map-

ping of the coordinates to the arc length. This indicates

that the geodesic distances were incorrectly learnt due to

the presence of noisy edges in the simple k-nearest neigh-

borhood. On the other hand, Figure 3c shows a clear one-

to-one mapping of the coordinates to the arc length, which

shows that the neighborhood generated by consensus of k-

NNs was more robust to noise. For this experiment, k is set

to 15, and we use TPG to perform diffusion. We have tried

for many different k’s and found that consensus of k-NNs

performs better than the simple k-NN.

4.2. MPEG7 Shape Retrieval Database

In this sub-section, we show the results from our exper-

iments on a more challenging and real-world application

i.e., image retrieval by learning the manifold of shapes. The

well-known, and widely used, MPEG7 CE-Shape-1 Part B

database consists of silhouettes of 1400 images with a wide

variety among them. The database is split into 70 classes,

with each class containing 20 example images. The shape-

retrieval performance is measured by the so-called Bullseye

score. The Bullseye score is basically the percentage of ob-

jects belonging to the same class as the query object among

its top-40 best matching objects.

We learn the true shape manifold by starting off with the

1400 × 1400 pairwise dissimilarity matrix. We make use

159715971599

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

70

80

90

100

Neighborhood Size

B
u
ll
s
e
y
e
 S

c
o
re

 (
%

)

Dominant Neighbors
k−NN
Consensus k−NNs

(a) K=25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

70

80

90

100

Neighborhood Size

B
u
ll
s
e
y
e
 S

c
o
re

 (
%

)

Dominant Neighbors
k−NN
Consensus k−NNs

(b) K=50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

70

80

90

100

Neighborhood Size

B
u

ll
s
e

y
e

 S
c
o

re
 (

%
)

Dominant Neighbors
k−NN
Consensus k−NNs

(c) K=75

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

70

80

90

100

Neighborhood Size
B

u
ll
s
e

y
e

 S
c
o

re
 (

%
)

Dominant Neighbors
k−NN
Consensus k−NNs

(d) K=100

Figure 4: The figure shows plots of Bullseye score v. neighborhood size, for four different affinity matrices, while using

TPG diffusion process. The affinity matrices were generated using different kernels, which are calculated using different

neighborhood sizes of (a) 25, (b) 50, (c) 75, and (d) 100. For each affinity matrix, we show plots of the performance of DN,

k-NN and Consensus of k-NNs. We can see that DN is better than k-NN for small values of k, but deteriorates quickly for

larger k’s. Consensus of k-NNs performs better than DN and k-NN for almost all neighborhood sizes. Also, the performance

deterioration rate is significantly slower than both k-NN and DN for larger neighborhood sizes, thus pointing towards stable

localities.

of the IDSC shape dissimilarity matrix [6], which is exten-

sively used in the literature, for learning the shape manifold

structure. The matrix has a Bullseye score of 85.40% before

diffusion. While the previous trend in the literature is to

carefully hand-tune a good neighborhood size, and to prop-

erly select a good number of diffusion iterations, for getting

better Bullseye scores, in our experiments, we purposely

select neighborhood sizes that are bound to include noisy

edges and show that consensus k-NNs produce a much more

stable neighborhood than k-NN or DN.

Objects belonging to the same class, usually, belong to

the same neighborhood. Since the MPEG-7 shape database

has 20 objects per class, it comes as no surprise that

the previous state-of-the-art Bullseye scores were reported

for neighborhood sizes that were purposely selected to be

smaller than or equal to 20 (k = 20 in [16] and k = 10
in [18]). Such parameter selections are an example of su-

pervised neighborhood selection. However, in a completely

unsupervised setting, selecting k to be less than or equal

to the number of items in a particular class is highly un-

likely. Therefore, we would like our neighborhoods to be

stable enough even when k is chosen to be greater than the

number of examples in a particular class, and thus including

more objects into the local neighborhood than there would

be in the “true neighborhood”.

We have experimented with multiple values of k, and in

Figure 4, we show the plots of Bullseye scores v. neighbor-

hood sizes, when using k-NN, DN and consensus k-NN. Re-

member from Section 2 that the generation of a good sparse

affinity matrix requires the choice of two neighborhood pa-

rameters: one while generating the affinity matrix and one

while sparsifying the matrix. The four plots correspond to

four different choices of K(= 25, 50, 75 and 100) that were

used to compute the kernel σij , while generating the affin-

ity matrix. For each of these affinity matrices, we exper-

iment over different neighborhood sizes while sparsifying

the graph. From the plots, we can see that the neighborhood

generated by using consensus of k-NNs is quite stable to the

neighborhood size parameter. Once the neighborhood size

goes above the true neighborhood size (i.e., k > 20), the

performance obtained from both k-NN and DN starts dete-

riorating at a quicker rate than consensus k-NNs. We can

also see that, up to a neighborhood size of 35-40, DN out-

performs k-NN, but after that, k-NN performs better. This

is because, DN starts converging onto false neighborhoods

because of the problems that were explained in Section 3.1.

Moreover, even while selecting small neighborhood sizes of

up to 35-40, we can see that consensus of k-NNs has learnt a

159815981600

20 30 40 50 60 70 80 90 100 110 120 130 140 150
70

75

80

85

90

95

100

Neighborhood Size

B
u

lls
e

y
e

 S
c
o

re
 (

%
)

k−NN
Consensus k−NNs

Figure 5: Bullseye score v. neighborhood size plot while

using LCDP. The affinity matrix was generated using K =
75. We see a similar performance as in Figure 4. Consensus

of k-NNs produces a more stable neighborhood than k-NN

for larger values of k.

better neighborhood than DN, thus producing better Bulls-

eye scores after diffusion. For extremely small values of k,

there is a relative drop in performance of our method be-

cause there is hardly any consensus information that can be

extracted while using such small neighborhood sizes.

We also compared the effect of the using k-NN versus

consensus of k-NNs using the Locally Constrained Diffu-

sion Process (LCDP). We found that the neighborhood se-

lection had a similar effect as while using TPG. Figure 5

shows the plot for one such trial. Thus we see that the selec-

tion of neighborhood is independent of the diffusion process

and behaves similarly across different diffusion processes.

As a final comment, we would like to point out that our

method can be applied to other forms of graph sparsifica-

tion techniques as well. Ex: We can generate a consensus

of ǫ-neighborhood graphs while using ǫ-neighborhood spar-

sification. In our experiments we found that consensus of

ǫ-neighborhoods outperformed the simple ǫ-neighborhood

by a Bullseye score of 1-3%, when we experimented

with multiple threshold values (ǫ). We do not discuss ǫ-
neighborhood graphs in detail due to the lack of space and

also because it is well-known that k-NN graphs are more

stable than ǫ-neighborhood graphs (Section 2.2).

5. Conclusion

In this paper, we have identified some of the problems

with the currently used neighborhood selection methods.

We also propose a new way for neighborhood selection,

which makes use of the consensus information from differ-

ent k-NNs. We have shown that making use of such infor-

mation increases the robustness of the neighbors, and thus,

helps the similarity information to propagate better on the

data manifolds. In the future, we would like to explore how

such consensus information can be used to obtain adaptive

neighborhoods on graph-based manifolds.

References

[1] X. Bai, X. Yang, L. Latecki, W. Liu, and Z. Tu. Learn-

ing context-sensitive shape similarity by graph transduction.

IEEE Trans. Pattern Anal. Machine Intell., 32(5):861–874,

2010.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. IEEE Trans. Pattern

Anal. Machine Intell., pages 509–522, 2002.

[3] M. Jaakkola. Partially labeled classification with markov

random walks. In NIPS, volume 2, page 945. MIT Press,

2002.

[4] P. Kontschieder, M. Donoser, and H. Bischof. Beyond pair-

wise shape similarity analysis. In ACCV, pages 655–666.

Springer, 2010.

[5] A. Lancichinetti and S. Fortunato. Consensus clustering in

complex networks. Scientific Reports, 2, 2012.

[6] H. Ling and D. Jacobs. Shape classification using the inner-

distance. IEEE Trans. Pattern Anal. Machine Intell., pages

286–299, 2007.

[7] H. Liu, X. Yang, L. Latecki, and S. Yan. Dense neighbor-

hoods on affinity graph. Int. J. of Computer Vision, pages

1–18, 2011.

[8] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus

clustering: a resampling-based method for class discovery

and visualization of gene expression microarray data. Ma-

chine learning, 52(1):91–118, 2003.

[9] M. Pavan and M. Pelillo. Dominant sets and pairwise cluster-

ing. IEEE Trans. Pattern Anal. Machine Intell., 29(1):167–

172, 2007.

[10] P. Perona and L. Zelnik-Manor. Self-tuning spectral cluster-

ing. NIPS, 17:1601–1608, 2004.

[11] S. Roweis and L. Saul. Nonlinear dimensionality reduc-

tion by locally linear embedding. Science, 290(5500):2323–

2326, 2000.

[12] B. Schölkopf, A. Smola, and K. Müller. Nonlinear compo-

nent analysis as a kernel eigenvalue problem. Neural com-

putation, 10(5):1299–1319, 1998.

[13] J. Tenenbaum, V. De Silva, and J. Langford. A global ge-

ometric framework for nonlinear dimensionality reduction.

Science, 290(5500):2319–2323, 2000.

[14] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-

sification on riemannian manifolds. In CVPR, pages 1–8.

IEEE, 2007.

[15] X. Yang, X. Bai, L. Latecki, and Z. Tu. Improving shape

retrieval by learning graph transduction. ECCV, pages 788–

801, 2008.

[16] X. Yang, S. Koknar-Tezel, and L. Latecki. Locally con-

strained diffusion process on locally densified distance

spaces with applications to shape retrieval. In CVPR, pages

357–364. IEEE, 2009.

[17] X. Yang and L. Latecki. Affinity learning on a tensor prod-

uct graph with applications to shape and image retrieval. In

CVPR, pages 2369–2376. IEEE, 2011.

[18] X. Yang, L. Prasad, and L. Latecki. Affinity learning with

diffusion on tensor product graph. IEEE Trans. Pattern Anal.

Machine Intell., 2012.

[19] Z. Zhang, J. Wang, and H. Zha. Adaptive manifold learning.

IEEE Trans. Pattern Anal. Machine Intell., 34(2):253–265,

2012.

159915991601

