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Abstract

In this paper we consider the challenging problem of ar-
ticulated human pose estimation in still images. We observe
that despite high variability of the body articulations, hu-
man motions and activities often simultaneously constrain
the positions of multiple body parts. Modelling such higher
order part dependencies seemingly comes at a cost of more
expensive inference, which resulted in their limited use in
state-of-the-art methods. In this paper we propose a model
that incorporates higher order part dependencies while re-
maining efficient. We achieve this by defining a conditional
model in which all body parts are connected a-priori, but
which becomes a tractable tree-structured pictorial struc-
tures model once the image observations are available. In
order to derive a set of conditioning variables we rely on the
poselet-based features that have been shown to be effective
for people detection but have so far found limited appli-
cation for articulated human pose estimation. We demon-
strate the effectiveness of our approach on three publicly
available pose estimation benchmarks improving or being
on-par with state of the art in each case.

1. Introduction

In this paper we consider the challenging task of artic-

ulated human pose estimation in monocular images. State-

of-the-art approaches in this area [2, 15, 26] are based on

the pictorial structures model (PS) and are composed of

unary terms modelling body part appearance and pairwise

terms between adjacent body parts and/or joints capturing

their preferred spatial arrangement. While this approach

leads to tree-based models and thus efficient and exact in-

ference, it fails to capture important dependencies between

non-adjacent body parts. That modelling such dependen-

cies is important for effective pose estimation can be seen

e.g. in Fig. 1: activities of people like playing soccer, tennis

or volleyball results in strong dependencies between many

if not all body parts; this can not be modelled with the above

approach.

This well known problem has so far been addressed in

two ways. The first simply uses a mixture of tree models

thus learning separate pairwise terms for different global

body configurations e.g. [14, 15]. The second approach is to

add more pairwise terms including non-adjacent body parts

leading to a loopy part graph that requires approximate in-

ference [2, 23, 21, 25]. A key challenge in designing mod-

els for pose estimation is thus to encode the higher-order

part dependencies while still allowing efficient inference.

In this paper we propose a novel model that incorporates

higher order information between body parts by defining a

conditional model in which all parts are a-priori connected,

but which becomes a tractable PS model once the mid-level

features are observed. This allows to effectively model de-

pendencies between non-adjacent parts while still allowing

for exact and efficient inference in a tree-based model.

Clearly, the choice of the particular mid-level image rep-

resentation used for conditioning our model is crucial for

good performance of the overall approach. On the one hand,

this representation has to be robust with respect to variations

in people appearance, pose and imaging conditions. On the

other hand, it has to be highly informative for the under-

lying human pose. In order to satisfy these requirements

we rely on the non-parametric poselet representation intro-

duced in [4]. Note that for the task of people detection the

best performing approaches are those which rely on a rep-

resentation that jointly models appearance of multiple body

parts [4, 10]. Yet these models have not been shown to lead

to state-of-the-art performance in human pose estimation,

likely because they rely on a pose representation that is not

fine-grained enough to enable localisation of all body joints.

Related work. Most recent methods for human pose es-

timation are based on the pictorial structures (PS) model

[12, 11] that represents the body configuration as a collec-

tion of rigid parts and a set of pairwise part connections.

The connections between parts are typically assumed to

form a tree structure in order to allow efficient inference

at test time. Yet, several recent approaches considered non-

tree models that allow to capture cues such as appearance

similarity between limbs [22, 23, 20]. With a few excep-
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(a) (b) (c) (d) (e) (f)

Figure 1. Visualisation of our approach. (a) shows the top scoring poselet detections with the corresponding poselet cluster medoids (b).

It is visible that the poselets capture the anatomical configuration of the human in the input image. All poselet detections contribute to a

prediction of the deformable pairwise terms, the outcome of which is shown in (c). Using the PS model with these pair-wise terms achieves

the detection outcome (d). In contrast we show the generic prior [3] (e) and the corresponding pose prediction (f).

tions [21, 25] none of these models consider interactions

between body parts that go beyond simple pairwise rela-

tionships. E.g. [25] proposes an approach that relies on a

complex hierarchical model that requires approximate in-

ference with loopy belief propagation. Our model is related

to recent work aiming to increase the flexibility of the PS

approach by jointly training a mixture of tree-structured PS

models [14, 26, 7]. In particular, our model can be seen as

an exponentially large collection of PS models with a se-

lection function that chooses a suitable model based on the

observed poselet features. Similar to these models, our ap-

proach allows efficient inference at test time, yet we are also

able to incorporate dependencies between parts that go be-

yond pairwise interactions. Those are not captured in the

model structure but in the conditioning step.

Our approach is related to holistic pose estimation ap-
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proaches [1, 24, 18, 13] that aim to directly predict posi-

tions of body joints from image features without relying on

an intermediate part-based representation. These methods

demonstrate excellent performance in laboratory settings

with little background clutter and are capable of recover-

ing poses even in 3D. However, they have not been shown

to perform well on real-world images with cluttered back-

grounds considered in this work. Our approach is also re-

lated to [18] that aims to classify the image as a particular

pose class. However, in our work we perform classification

on the level of each body joint which allows the set of pose

classes to be exponentially large.

In pose estimation literature the method of [19] is prob-

ably the closest to ours. Similar to their work, we define a

PS model where unary and pairwise terms are image condi-

tioned. However, our method is more general as it implicitly

models dependencies between multiple parts by using an in-

termediate poselet-based feature representation. In contrast

they rely on silhouette based similarity cues that are ineffec-

tive in the presence of background clutter, and act relatively

local and thus capture mostly local pairwise part interac-

tions. This makes our method applicable to more challeng-

ing sport images showing highly articulated humans from

different viewpoints, while the method of [19] has been ap-

plied to frontal poses only with a comparatively small de-

gree of articulation.

2. Review of Pictorial Structures
In this section we introduce the Pictorial Structures (PS)

version [2, 3] that we are building on and that will serve

as a baseline in the experiments. This implementation has

been found to be competitive across a range of datasets. Al-

though we focus on this particular incarnation of the PS

model, we believe the extensions are applicable to other

models, such as the one from [26]. The extension of this

model will then be the topic of the next section.

We phrase the PS model as a conditional random field

(CRF), modelling the conditional probability of a body

pose configuration given image evidence. We denote by

L = (l1, . . . , lM ) a full body pose, consisting of M parts. A

part lm = (xm, ym, θm, sm)� is parameterised by its x, y
center position, rotation θ ∈ [0, 360), and scale s ∈ R+.

With D we denote any form of image evidence and with β
the vector of model parameters. For convenience we dis-

tinguish between parameters for unary βu and pairwise βp

factors. The PS model then takes the form

E(L;D,β) =
M∑

m=1

Eu(lm;D,βu) +
∑
n∼m

Ep(ln, lm;βp).

(1)

With n ∼ m we denote the neighbourhood relationship be-

tween the body parts. This typically is restricted to form a

tree in order to enable exact and efficient inference.

Unary potentials We use the following unary potential

functions

Eu(lm;D,βu) = log φu(lm;D), ∀m = 1, . . . ,M, (2)

with pre-trained AdaBoost classifiers as the feature func-

tions

φu(lm;D) = max

(∑
t α

t
iht(lm, D)∑

t α
t
i

, ε0

)
. (3)

A decision stump ht in Eq.(3) is of the following form

ht(lm, D) = sign(ξt(xn(t) − ϕt)), (4)

where x is a feature vector, ϕt ∈ R a threshold, ξt ∈
{−1, 1}, and n(t) is a feature index. The feature vector

is obtained by concatenating the shape context descriptors

computed on a regular grid inside the part bounding box.

We refer the reader to [2, 3] for details on training and de-

scriptors.

Pairwise potentials Pairwise potential functions take the

form

Ep(ln, lm;βp) =
〈
βp
n,m, φp

n,m(ln, lm)
〉
, ∀n ∼ m. (5)

The features for the potential φp
n,m acting on n and m are

computed as follows. First both parts are transformed into

a common reference space, that is the location of the joint

between these parts. We use the transformation

Tmn(ln) =

⎛
⎜⎜⎝

xn + snμ
mn
x cos θn − snμ

mn
y sin θn

yn + snμ
mn
x cos θn − snμ

mn
y sin θn

θn + θ̃mn

sn

⎞
⎟⎟⎠ ,

(6)

where μmn = (μmn
x , μmn

y )T is the mean relative position

of the joint between parts m and n in the coordinate sys-

tem of part n; θ̃mn is the relative angle between parts. The

pairwise term is then a Gaussian on the difference vector

between the two transformations Tmn(ln) − Tnm(lm), as

is standard practice in all PS works [2, 3, 26, 11]. We de-

rive a linear form for the pairwise term in Eq. 5 using the

natural parameterization of the Gaussian as in [10, 26], and

place positivity constraints on those parameters in βp that

correspond to variances.

We learn unary and pairwise terms in a piecewise strat-

egy, unary potentials using AdaBoost and the pairwise

terms using a Maximum-Likelihood estimate.

3. Poselet Conditioned Pictorial Structures
Our approach is based on the following idea: we use a

mid-level representation that captures possible anatomical

configurations of a human pose to predict an image-specific
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pictorial structures (PS) model that in turn is applied to the

image. The representation we are using is inspired by the

work [5, 25] which is why we refer to it as poselets. Poselets

go beyond standard pairwise part-part configurations and

capture the configuration of multiple body parts jointly. As

we still predict a tree connected PS model we retain efficient

and tractable inference.

The idea of our model is visualised in Fig. 1. On the in-

put images we compute poselet responses that capture dif-

ferent portions of the person’s body configuration. Highest

scoring poselet detections are shown in Fig. 1(a), together

with representative examples for them in Fig. 1(b). This

information is then used to augment both unary and pair-

wise terms of the PS model. In Fig. 1(c) we show the de-

formation terms of the resulting PS model that we are able

to predict. Pose of the person estimated with our poselet-

conditioned model is shown in Fig. 1(d). For comparison

we show the deformation model of [3] (a generic pose prior

being the same for all images) along with the corresponding

pose estimate in the last two columns.

The idea of having multiple deformation models is simi-

lar to the idea of encoding body pose configurations through

different mixture components as in [26]. However, in their

work the pairwise mixture components are – in contrast to

our model – not dependent on the image but estimated dur-

ing inference. We experimentally compare to this approach.

This section first describes the feature representation

used to capture human poses. We then present the extension

of the standard PS model outlined in the previous section

and show how both unaries (sec. 3.2) and pairwise terms

(sec. 3.3) can be enhanced using poselet information.

3.1. Poselet Representation

The goal of the mid-level representation is to capture

common dependencies of multiple body parts. We imple-

mented the following strategy to train a set of poselet detec-

tors and compute a feature based on their responses.

For a reference body part, we cluster the relative posi-

tions of a subset of related body parts. For example, when

picking the ‘neck’ part we cluster relative offsets of all up-

per body parts using Euclidean distance and K-means. We

prune clusters that have less than 10 examples and use the

remaining ones as poselets. In this paper we run this pro-

cess multiple times, picking different reference points and

multiple subsets of related parts to obtain a total of P clus-

ters. Together with every poselet p we store its mean offset

from the torso annotation μp.

The next step is to learn a detector for each poselet. Fol-

lowing [2, 3], we train AdaBoost detectors on dense shape

context features. A separate detector is trained for every

poselet cluster using all training images that fall within this

cluster. Example outcomes can be seen in Figure 1(a+b)

showing the highest scoring poselets for some sample im-

ages and their medoids.

To form a feature vector f ∈ R
P we first predict the

torso position μtorso in the test image. Given a torso predic-

tion and the relative offset μp of the poselet p, we compute

the maximum poselet response in a small region1 around

μtorso+μp. This corresponds to a max-pooling step in a lo-

cal region for every poselet p. Then we aggregate the max-

imum scores for all p = 1, . . . , P poselets to form a feature

vector f ∈ R
P . Similar to [25], we define 11 body part con-

figurations, namely full body, upper body with arms, torso

and head, right arm and torso, left arm and torso, right arm

alone, left arm alone, torso with legs, legs, right leg alone,

and left leg alone. For each of these configurations we clus-

ter the data as described above and learn poselet detectors.

During test time we additionally run each detector for +/-7.5

degrees to compensate for slight rotations. Torso prediction

is done using the detector from [16] that we augment with a

spatial prior learned on the training set.

Next we present two different ways how the features f
can be used to obtain image conditioned PS models.

3.2. Poselet Dependent Unary Terms

We first use the poselet features to obtain a location and

rotation prediction for each body part separately.

Let us describe the location preference for a single part

m only. During training, for part m, we cluster the relative

distance between the torso and the part into k = 1, . . . ,K
clusters. For each cluster k we compute its mean offset

from the torso μk and the variance of the differences Σk.

This now forms a classification problem, from the pose-

let response f into the set of K clusters. To this end we

train a classifier using sparse linear discriminant analysis

(SLDA) [6] on the training set. We chose a sparse method

since we expect a different set of poselets to be predictive

for different body parts.

During test time we apply the learned classifier to predict

from f the mean μk, and variance Σk that are subsequently

used as a Gaussian unary potential for the part. We proceed

analogously for rotation, that is we learn a classifier that pre-

dicts the absolute rotation of the body part based on poselet

responses. Both unary parts together form a Gaussian po-

tential Eu,poselet, and the complete set of unary terms of

our model then reads

Eu(lm;D) = Eu,boost(lm;D) + wpE
u,poselet(lm;D),

(7)

where Eu,boost is the original term given by Eq. 2 and wp is

the weighting parameter estimated on the validation set.

3.3. Poselet Dependent Pairwise Terms

To extend the pairwise terms we make them image de-

pendent. For each pair of parts ln, lm we cluster their rela-

1The size of the region is set to 20× 20 pixels in our experiments.
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tive rotations into K clusters and obtain the parameters βp,k

independently for each cluster using a maximum likelihood

estimate. Similar to unary terms, we learn a SLDA classi-

fier that predicts, given the feature f , into the set of clusters.

This in turn yields the parameters βp to be used for the im-

age in question. The new pairwise potential that replaces

Ep from Eq. 5 reads

Ep,poselet(ln, lm;D) = 〈βp
n,m(f ;D), φp

n,m(ln, lm)〉. (8)

We wrote β(f) to make explicit its dependency on the pose-

let responses and that this parameter is being predicted.

4. Results
In this section we evaluate the proposed poselet-

conditioned PS model on three well-known pose estima-

tion benchmarks. We demonstrate that our new model

achieves a significant improvement compared to the original

PS model, while performing on par or even outperforming

other competing approaches.

Datasets. For evaluation we use the following publicly

available pose estimation benchmarks exhibiting strong

variations in articulation and viewpoint: the recently pro-

posed “Leeds Sports Poses” (LSP) dataset [14] that includes

1000 images for training and 1000 for testing showing peo-

ple involved in various sports; the “Image Parsing” (IP) [17]

dataset consisting of 100 train images and 205 test images

of fully visible people performing various activities such as

sports, dancing and acrobatics; the “UIUC People” dataset

[23] consisting of 346 training and 247 test images of peo-

ple in highly variable body poses playing different sports

such as Frisbee or badminton. For each dataset we increase

the training set size by adding the mirrored versions of the

training images.

4.1. Results on LSP dataset

As in [14] we allocate 500 training images for the val-

idation set and use it to estimate the weighting parameter

in Eq. 7 and the number K of unary and pairwise clusters

via grid search. The estimated values are wp = 0.05 and

K = 12. The poselets are trained as described in Sec-

tion 3.1, which results in P = 1036 poselets. We follow

[9] and use the observer-centric annotations provided by

the authors of [9], which allows us to directly compare to

their work. In the following we evaluate different model

components and compare our approach to the best results in

literature.

Using an oracle to select components. First we show the

performance of our model assuming that the correct com-

ponent for every potential is chosen by an oracle. This is

the best case scenario that provides an upper bound on the

performance our proposed model can achieve. We experi-

mented with the number of components and found that 12

components per potential perform best. Increasing the num-

ber of components did not lead to improved results because

of the limited number of training images available for pa-

rameter estimation for each component.

Results are shown in Tab. 1. It can be seen that adding

poselet dependent terms improves the performance w.r.t.

the baseline PS model [3]. Large improvements are con-

sistently observed for all body parts. Correct predictions

of unary rotation components improve the localisation of

lower arms and legs most. This is explained by the fact

that the rotation of these body parts is far less constrained

compared to the rest of the limbs. Constraining part rota-

tions to small ranges around the correct rotations reduces

the uncertainty and steers the pose estimation towards the

correct body pose. Similar effects can be seen when con-

straining positions of the unary potentials and learning the

pairwise parameters from correct components, as this fur-

ther constrains the predicted pose. The results show that

using the parameters from correctly predicted components

dramatically improves the localisation of all body parts in

each particular setting. At the same time, the combination

of all settings produces the best results which indicates that

the constraints coming from different settings are comple-

mentary to each other. Note that even the model with ora-

cle component prediction does not achieve values close to

100% because of test examples with extremely foreshort-

ened or occluded body parts.

Evaluation of poselet-conditioned potentials. We eval-

uate each of the poselet-conditioned potentials described in

Sec. 3 by plugging them one by one into our model. As

each potential includes a classifier that maps poselet fea-

tures to one of the components, we also evaluate the perfor-

mance of these classifiers. The results are shown in Tab. 2.

It can be seen that using PS + torso prediction improves

the results compared to PS alone (56.2% vs. 55.7% PCP).

Interestingly, when predicting the unary position parame-

ters even despite the somewhat low component prediction

accuracy of 43.9% we are able to improve the pose esti-

mation result from 56.2% to 59.3% PCP. Similar results

are obtained when predicting the unary rotation parame-

ters (60.3% PCP). Combination of both further improves

the performance to 60.8% PCP, as both potentials are com-

plementary to each other.

We also analyse how prediction of pairwise parameters

affects pose estimation. The prediction scores of pairwise

components are generally lower than the absolute unary

ones. A possible explanation is that the classification prob-

lem becomes harder because several rather different pose-

lets might still correspond to the same relative angle be-

tween the two body parts. However, the final pose estima-
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Setting Torso Upper leg Lower leg Upper arm Forearm Head Total

Andriluka et al., [3] 80.9 67.1 60.7 46.5 26.4 74.9 55.7

+ predict unary rotation (ur) 96.4 91.1 86.1 76.6 60.2 88.5 81.3

+ predict unary position (up) 97.1 91.4 80.7 80.2 49.5 90.1 79.1

+ predict pairwise (p/wise) 93.2 88.5 81.6 73.6 58.0 87.6 78.4

+ ur + up + p/wise 98.3 96.0 89.4 87.0 71.8 94.0 88.1

Table 1. Pose estimation results (PCP) on the “Leeds Sport Poses” (LSP) dataset by our method when using an oracle to choose the correct

component for every potential out of 12 possible values. This confirms the intuition that predicting the correct PS model directly translates

to better PCP performance.

tion result is again improved (60.9% PCP). The combina-

tion of all three types of poselet-dependent potentials leads

to further improvement and achieves 62.9% PCP. This in-

dicates that the information provided by each type of po-

tentials is complementary. Overall, our method achieves an

improvement of 7.2% PCP over the original PS model that

uses a generic pose prior. It shows that incorporating long

range dependencies via mid-level feature representation can

significantly boost the performance while keeping the infer-

ence efficient.

Comparison to the state of the art. We compare our

method to competing approaches in Tab. 3. Interestingly,

our method outperforms not only the baseline PS model

(62.9% vs. 55.7% PCP), but also the state-of-the-art pose

estimation model [26] which we downloaded from the au-

thors’ web page and retrained on the LSP dataset for fair

comparison (62.9% vs. 60.8% PCP). The improvement is

most prominent in case of localising upper legs (+6.2%

PCP) whose configurations can be reliably captured by the

legs- and torso-legs-poselets. The improvement is also pro-

nounced for the lower legs which profit a lot from the im-

proved upper legs localisation and for the upper arms (both

+2.4% PCP). This result is very interesting since the method

of [26] is a mixture of parts model that is quite different

from ours, as it uses multiple unary templates for every part

and image-independent pairwise potentials that do not al-

low to model long range part dependencies. In contrast,

our model uses generic templates for each part, but incor-

porates a wide range of part unary terms by conditioning on

poselet-representation. We also compare our method to the

recent work [9], that extends the model of Yang&Ramanan

by using additional background/foreground colour informa-

tion across images of the same dataset and modify the hard

negative mining procedure. Therefore, when comparing the

numbers one has to bear in mind that the reported num-

bers of [9] are based on additional information about the

dataset statistics. Compared to our method the difference is

most pronounced in case of forearms where the skin colour

information could be particularly helpful. Overall we con-

clude that both competing methods are orthogonal to our

approach and are likely to improve when using multiple

Setting Avg. prediction PCP, [%]

accuracy, [%]

Andriluka et al., [3] - 55.7

+ torso prediction - 56.2

+ predict unary position (up) 43.0 59.3

+ predict unary rotation (ur) 37.4 60.3

+ ur + up - 60.8

+ predict pairwise (p/wise) 30.8 60.9

+ up + ur + p/wise - 62.9

Table 2. Accuracy of predicting a correct component for each

unary and pairwise potential and corresponding pose estimation

results (PCP) on the “Leeds Sport Poses” (LSP) dataset.

Method Torso Upper Lower Upper Fore Head Total

leg leg arm arm

ours 87.5 75.7 68.0 54.2 33.9 78.1 62.9

Andriluka et al., [3] 80.9 67.1 60.7 46.5 26.4 74.9 55.7

Yang&Ramanan [26] 84.1 69.5 65.6 52.5 35.9 77.1 60.8

Eichner&

Ferrari [9] 86.2 74.3 69.3 56.5 37.4 80.1 64.3

Table 3. Pose estimation results on the “Leeds Sport Poses” (LSP)

dataset with observer-centric annotations.

specific part templates and incorporating a colour model.

In Fig. 2 we show example pose estimation results us-

ing our method (row 1) and comparison to both [3] (row 2)

and [26] (row 3). Our method is able to exploit long-range

dependencies between parts accross a variety of activities

such as tennis serve (columns 1 and 2), climbing (column

3) and running (column 4). In Fig. 3 (top row) we also show

several examples of failure cases. The failure cases often

correspond to images of people in poses that are underrep-

resented in the training set, and for which the prediction of

unary and pairwise components is not accurate enough.

4.2. Results on IP dataset.

We now show the performance of our method on the

“Image Parse” (IP) dataset. For evaluation we reuse the

model learned on the LSP train set, but estimate the param-

eters wp and K on the training set of the IP dataset. The
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Figure 2. Sample pose estimation results on the LSP dataset ob-

tained by our method (row 1), PS [3] and the method of [26] (row

3). Modelling long-range part dependencies by our method results

in better performance on highly articulated people.

Figure 3. Typical failure cases on the LSP dataset. Shown are the

results by our method (row 1) and PS [3] (row 2).

estimated values are wp = 0.1 and K = 12. Note that the

value of wp increased with respect to the LSP dataset, which

results in a stronger influence of the poselet features on the

final solution. This could be due to a larger variability of

people poses on the LSP dataset compared to IP (see [15]

for the discussion and comparison of the two datasets).

The results are shown in Tab. 4. It can be seen that

our method outperforms the baseline PS model (62.9% vs.

59.2% PCP), which is in line with the results on the larger

LSP dataset. Our approach favourably compares to [26],

outperforming it on all body parts apart from the lower

arms. The most prominent improvement is observed for the

torso, but the improvement for upper/lower legs is also pro-

nounced. Our method is slightly better than the multi-layer

Method Torso Upper Lower Upper Fore Head Total

leg leg arm arm

ours 92.2 74.6 63.7 54.9 39.8 70.7 62.9

ours + [16] 90.7 80.0 70.0 59.3 37.1 77.6 66.1

Andriluka et al. [3] 86.3 66.3 60.0 54.6 35.6 72.7 59.2

Yang&Ramanan, [26] 82.9 69.0 63.9 55.1 35.4 77.6 60.7

Duan et al., [8] 85.6 71.7 65.6 57.1 36.6 80.4 62.8

Pishchulin et al., [16] 88.8 77.3 67.1 53.7 36.1 73.7 63.1

Johnson&

Everingham, [15] 87.6 74.7 67.1 67.3 45.8 76.8 67.4

Table 4. Pose estimation results (PCP) on “Image Parse” (IP).

composite model of [8]. Their approach aims to capture

non-tree dependencies between the parts by decomposing

the model into multiple layers and performing dual decom-

position to cope with cycles in the part graph. In contrast

to their method, which incorporates multiple layers directly

into the inference procedure making it infeasible without

relaxations, our method implicitly models long-range de-

pendencies between the parts and allows exact and efficient

inference.

Our approach performs slightly worse compared to our

approach [16], where we extended the tree-structured pic-

torial structures model with additional repulsive factors be-

tween non-adjacent parts and a stronger torso detector. We

extend the approach in this paper with the repulsive factors

and employ the same two-stage inference procedure as in

[16]. The results are shown in Tab. 4. The extended model

corresponds to “ours + [16]” and achieves 66.1% PCP, im-

proving over all other models in the literature trained on the

LSP dataset. Our result is only slightly worse than the result

of the model from [15] that was trained on a significantly

larger training set of 10000 images.

4.3. Results on UIUC People dataset.

For complete evaluation of our method we finally present

results on the “UIUC People” dataset. We reuse the setting

from the LSP dataset. We cluster the data into 20 clusters,

again preserving only those containing at least 10 exam-

ples and learn poselet detectors on both UIUC+LSP data.

The results are shown in Tab. 5. It can be seen that using

only dataset-specific poselets already improves the results

over the baseline PS model. This finding is consistent for

all three datasets, we always improved when using poselet

conditioned features. Interestingly, our method performs

better than the approach of [25] that also falls behind the

baseline PS model. This method is based on hierarchical

poselets which intend to capture the non-tree dependencies

between the parts via multiple layers. Such a model struc-

ture inevitably introduces cycles and requires an approxi-

mate inference.
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Method Torso Upper Lower Upper Fore Head Total

arm arm arm arm

ours 91.5 66.8 54.7 38.3 23.9 85.0 54.4

Andriluka et al. [3] 88.3 64.0 50.6 42.3 21.3 81.8 52.6

Wang et al., [25] 86.6 56.3 50.2 30.8 20.3 68.8 47.0

Table 5. Pose estimation results (PCP) on the “UIUC People”.

5. Conclusion

Pose estimation is often addressed with pictorial struc-

tures (PS) models based on a tree-structured graph leading

to efficient and exact inference. However, tree-structured

models fail to capture important dependencies between non-

connected body parts leading to estimation failures. This

work proposes to capture such dependencies using poselets

that serve as a mid-level representation that jointly encodes

articulation of several body parts. We show how an exist-

ing PS model for human pose estimation can be improved

using a poselet representation. The resulting model is as

efficient as the original tree-structured PS model, and is at

the same time capable of representing complex dependen-

cies between multiple parts. Experimental results show that

a better prediction of human body layout using poselets im-

proves body part estimation. We observe a consistent im-

provement on all of the considered datasets.

We believe that the components of our model could be

further improved. In particular, future work should ex-

plore more robust and versatile mid-level features and other

methods to condition the model on the image observations.

For example, in addition to poselets a variety of other cues

based on image motion, disparity and foreground segmen-

tation could be use to adapt the model to the image at hand.

One of the important limitations our current mid-level rep-

resentation is its dependence of the torso detector, which

could be a bottleneck in cases when the torso is obstructed

by other body parts or scene objects. In the future we

plan to explore representations that are more local and in

addition to torso rely on a variety of other anchor points

to establish the spatial correspondence between poselets.

In the future we also plan to attend the most problematic

cases of the current approach that are (self-)occlusion of

body parts and fore-shortening. Finally, we envision that

image-conditioned models based on mid-level representa-

tions could have applications beyond pose estimation, for

example in activity recognition or object class detection.
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