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Abstract

Applications based on stereo vision are becoming in-
creasingly common, ranging from gaming over robotics to
driver assistance. While stereo algorithms have been inves-
tigated heavily both on the pixel and the application level,
far less attention has been dedicated to the use of stereo
confidence cues. Mostly, a threshold is applied to the con-
fidence values for further processing, which is essentially a
sparsified disparity map. This is straightforward but it does
not take full advantage of the available information.

In this paper, we make full use of the stereo confidence
cues by propagating all confidence values along with the
measured disparities in a Bayesian manner. Before using
this information, a mapping from confidence values to dis-
parity outlier probability rate is performed based on gath-
ered disparity statistics from labeled video data.

We present an extension of the so called Stixel World,
a generic 3D intermediate representation that can serve as
input for many of the applications mentioned above. This
scheme is modified to directly exploit stereo confidence cues
in the underlying sensor model during a maximum a poste-
riori estimation process.

The effectiveness of this step is verified in an in-depth
evaluation on a large real-world traffic data base of which
parts are made publicly available. We show that using
stereo confidence cues allows both reducing the number of
false object detections by a factor of six while keeping the
detection rate at a near constant level.

1. Introduction
Stereo vision has been an actively researched area for

decades. In recent years, stereo algorithms and applica-

tions have matured significantly spawning products in fields

ranging from industrial automation over gaming up to driver

assistance systems. The underlying stereo algorithms and

their properties are well understood, at least for the current

real-time algorithms, typically approaches based on correla-

tion [20] or semi-global matching (SGM) [10]. Benchmarks

Figure 1: The Stixel World computed from stereo data. The

scene is segmented into free space and vertical obstacles.

The color (from red to green) represents the object distance.

that compare stereo algorithms on a 100% density level are

available [19], also for the automotive domain [8].

The computation of stereo confidences has only recently

been researched in more detail. Hu and Mordohai [12] per-

formed an excellent review of known stereo confidence met-

rics comparing them to ground truth scenes on a pixel level.

In related work on confidence estimation for stereo or opti-

cal flow computation, the so called sparsification plots are

established as the main method to show the effectiveness

of the considered confidence metric. This procedure gives

a good impression with respect to how well the confidence

helps reducing the average error of the disparity map when

the least confident values are removed. However, no ex-

plicit use of both the disparity map and the confidence map

in further processing has been reported so far.

Our work is centered around the driver assistance sce-

nario. The main objective is to robustly extract free space

and obstacle information from dense disparity maps and to

represent the results in a compact and simple fashion.

The Stixel World, firstly introduced by Badino et al. [2],

is a very suitable representation for this task. Based on

an occupancy map [1, 5], this scheme allows to extract the

closest row of objects for each image column. In a general-

ization of this work, we introduced the multi-layered Stixel

World [17] that allows to detect all objects in a scene. A

result of this scheme is shown in Figure 1.

This paper extends our Bayesian approach [17] to use

stereo confidence cues. The idea is that each disparity mea-
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surement is given an individual probability to be an outlier.

This probability is inferred by using a data base with an-

notated video data of different weather and lighting scenar-

ios. Then, the resulting information is directly taken into

account in the underlying sensor model during the maxi-

mum a posteriori (MAP) estimation. The effectiveness of

this procedure is evaluated on a large sequence data base

containing different adverse scenarios for the stereo sensor

setup. To round things off, the performance is also com-

pared against the straightforward way of using sparsifica-

tion on the disparity map.

The main contribution of this paper is the first-time fully

probabilistic usage of stereo confidences along with the dis-

parity map. Moreover, we introduce modified stereo confi-

dence metrics suited for global stereo algorithms, and link

confidence values to disparity outlier probabilities.

The paper is organized as follows: Section 2 describes

related work to the field of stereo confidence estimation. We

limit ourselves to references that inspired our confidence

metrics. In addition, work that makes use of stereo confi-

dences in subsequent processing is analyzed. Besides stereo

confidence we also review work on 3D intermediate rep-

resentations. Section 3 encourages our selection of stereo

confidence metrics and their modifications for our applica-

tion. The resulting confidence values are mapped to outlier

probabilities which is described in Section 4. In Section 5,

the Stixel World is introduced, followed by the extension

to use stereo confidences, also for further applications, in

the subsequent Sections 6 and 7. Evaluation on large data

sets were conducted for which the results are shown in Sec-

tion 8. We close this paper with conclusions and an outlook.

2. Related Work
Stereo confidence computation has recently attracted ris-

ing attention [4, 9, 12]. So far, most work on stereo con-

fidences focused on local stereo approaches. Haeusler et
al. [9] applied some of these confidence metrics to SGM.

In [12], Hu and Mordohai provide an extensive review of

existing stereo confidence metrics, again using local corre-

lation as the underlying stereo method. Their results are

obtained by analyzing sparsification measures. To this end,

the disparity values are sorted according to their confidence

values. Subsequently, those depth measurements with the

lowest confidence are dropped and a new error metric is cal-

culated for the remaining pixels.

All applications where a left-right consistency check is

applied, e.g. [22], consider stereo confidences implicitly.

Inconsistent matches are ruled out and thus are not consid-

ered any further. Milella and Siegwart [15] explicitly com-

pute stereo confidence and eliminate less confident matches

for the use in an iterated closest point (ICP) algorithm for

ego-motion estimation. Zhang et al. [26] also compute

stereo confidence and eliminate less reliable matches by

thresholding on the confidence. In addition, the confidence

value is used as a weight in plane fitting for 3D reconstruc-

tion. The stereo uncertainty (i.e. the precision of a stereo

measurement) has been incorporated several times into oc-

cupancy grid approaches where obstacles are mapped onto

a grid structure (e.g. [1, 5, 23]).

To describe the relevant information of the scene (free

space and obstacles) in a compact fashion, we rely on the

Stixel World. The first work on this medium-level represen-

tation has been conducted by Badino et al. [2]. This compu-

tation scheme consists of different, independent processing

steps including mapping disparities to an occupancy grid, a

free space computation, a height segmentation and the final

Stixel extraction. A related, yet more run-time optimized

approach has been presented by Benenson et al. [3].

With the goal to minimize the total number of individual

processing steps, we have presented a method to compute

the Stixel World in a global optimization using a probabilis-

tic framework [17]. Also, this work extends the capability

of the Stixel World in order to describe arbitrarily staggered

scenes with more than one object per image column.

Gallup et al. [6] published a probabilistic method for seg-

menting an n-layer height-map (which is basically a three-

dimensional occupancy grid) into box volumes with an al-

ternating state of either ”empty space” or ”occupied”.

While particularly the work of Gallup et al. and our ap-

proach make explicit use of a detailed sensor model by pre-

cisely taking the measurement noise and outlier character-

istic of the particular sensor setup into account, till now, no

approach has taken advantage of stereo confidence cues.

3. Stereo Confidence Metrics

The stereo confidence metrics introduced in [12] have

been investigated in conjunction with a local stereo method.

We use semi-global matching [10] for our work since it

robustly provides real-time and dense disparity estimates

while being almost as computationally efficient as local

methods [7]. Further, we employ the Census metric as in-

vestigated by [11]. For all considered metrics, the cost term

from the local method is replaced with the accumlated costs

of SGM. Those are obtained by traversing multiple paths (in

our case 8). In addition, we perform the well-known left-

right consistency (LRC) check that was shown to be very

effective for high stereo densities [9]. Yet, we apply it less

stringently such that only 5% of the pixels are removed in

typical traffic scenes. Note that an approximate of the LRC

is very efficient to compute [16].

In total, we focus on three confidence metrics. First of

all, we choose two of the most promising metrics from [12],

namely peak-ratio naive (PKRN) and maximum likelihood

metric (MLM). Both metrics performed clearly above aver-

age both indoors and outdoors.
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Figure 2: Two challenging scenarios for stereo computation due to disturbances caused by either strong reflections in the

windshield (left side) and heavy rain (right side). The upper row a) shows the partially erroneous SGM-based depth map.

The color encodes red for close and green for far away. The lower rows visualize the particular stereo confidence cues which

is b) LC, c) PKRN, and d) MLM. The brighter a pixel is, the higher is the confidence that the depth measurement is correct.

The PKRN and MLM metric are modified to become:

PKRN =
C2 + ε

C1 + ε
− 1 and (1)

MLM =
e−C1/2σ

2

∑
e−Ci/2σ

2 , (2)

where C1 is the cost minimum and C2 is the second

smallest cost. We exclude very similar, adjacent costs to

not penalize disparity results around half integer values. For

MLM, σ represents the disparity uncertainty which is cho-

sen conservatively high (i.e. σ = 8), also for a more uniform

distribution. Although the PKRN modifications slightly vi-

olate the confidence ordering of the original metric, they

have the following advantages over the original counterpart:

– The rare case of a singularity with a denominator of

zero is avoided.

– Small changes in costs due to noise at low cost levels

do not impact the resulting metric heavily.

– By choosing ε = 128, the dynamic range of this met-

ric is limited and the distribution is rather uniform be-

tween zero and one for typical scenes.

As the third metric the local curve (LC) information [24] of

the equiangular fit is used. It is very similar to the curvature

fit of parabola interpolation schemes [20] and it comes with

no additional computation as it is a by-product of the sub-

pixel interpolation step. LC is computed as

LC =
max(C+, C−)− Cmin

γ
. (3)

The costs C+ and C− are adjacent to the optimal dispar-

ity Cmin. To obtain a nicely spread distribution, we choose

γ = 480.

The results of both the stereo matching and the confi-

dence metrics are illustrated in Figure 2. For this purpose,

two different situations are shown that pose quite a chal-

lenge for the stereo matching. The first one exhibits strong

textural patterns caused by scattered sunlight in the wind-

shield which clearly misleads the stereo estimation. The

second features heavy rain which results in a blurred vision

and strong reflections on the road surface.

For practical reasons, all confidence metrics are scaled

and bound to the interval [0 . . . 1]. However, they are not to

be mistaken as a probabilistic measure.
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4. Using Confidences as Outlier Probabilities
Before turning to the core topic of this section it is impor-

tant to establish a common conception of confidence met-

rics as discussed in this work.

Instead of simply computing the disparity measure-

ment d for a pixel, we assume the used stereo scheme to

output pairs of values (d, c), with d ∈ D and c ∈ [0, 1].
The term D denotes the set of valid disparity values, i.e.

D = [0, 127], and c is the corresponding confidence value

of d. According to their construction in the previous section,

the interpretation of c is as follows: c → 1 if the measured

disparity is rated as “rather good” and c → 0 in case it is

rated ”rather bad”, c.f . Figure 2.
It is to be expected that this value c strongly depends

on various aspects: Foremost the confidence metric itself

(i.e. PKRN, LC, or MLM), the used stereo scheme (in our

case SGM), and the corresponding parameter choice for that

particular stereo scheme.

Since we intend to use confidences in a probabilistic

framework for Stixel computation, a mapping from the par-

ticular confidence metric to an actual outlier probability is

required. This mapping p(c) → p ∈ [0, 1] is constructed in

a way that p (c) = p (o | c) = p (”d is an outlier” | c).
Thus, the central question is how this mapping p (o | c)

is obtained. A possible method for inference is to use

ground truth data from rendered scenes. Such a mapping

was implicitly obtained for optical flow estimates in the

work of Mac Aodha et al. [14]. However, it has been

shown that artificially creating realistic ground truth sensor

data (as it would be obtained in adverse outdoor environ-

ments) is an utterly complex and rather unsolved challenge,

c.f . [13, 19, 20].

For this reason, a training-based approach is used. It

works with the same type of sensor data and stereo algo-

rithm that we later run our vision algorithms on. Simi-

lar to using the ground truth data, the underlying idea is

straightforward: a human inspector annotates regions in the

stereo map using the binary labels “inlier” and ”outlier”.

The resulting data set is used to infer the proper mapping

function p (o | c). Note that this step has to be done only

once per stereo scheme (or stereo parameter choice) but is

independent of the used confidence metric. Subsequently,

p (o | c) is obtained:

p (o | c) =p (c | o) · p (o)
p (c)

(4)

=
p (c | o) · p (o)

p (c | o) · p (o) + p (c | i) · (1− p (o))

At first sight this might seem trivial, but it puts us in a

quite comfortable position: By using the labeled data it is

straightforward to extract p (c | o) as well as p (c | i). The

parameter p (o) can be obtained the same way. Alterna-

tively, this term can also be taken as an additional parame-

ter to gain influence on the performance of the subsequently

used algorithms. Thus, since we seek for maximum robust-

ness of our vision system, a comparatively high but safe

outlier rate of p (o) = 0.4 is chosen.

When applying this procedure to the labeled training

data set that contains about 40 scenarios featuring differ-

ent weather and lighting conditions, the results shown in

Figure 3 are obtained. Hereby, the MLM metric appears to

separate best into inliers and outliers. This impression is

confirmed when looking at the overlap of the inlier and out-

lier distribution: LC yields 55.3%, PKRN has 52.3%, and

MLM achieves the best result with only 40.5% overlap.

The right side of Figure 3 shows the obtained confidence

mapping p (o | c). In accordance with the separation plots,

the MLM curve shows the sharpest distinction.

5. The Stixel World
Modern stereo-based vision systems, like those deployed

in the field of driver assistance and many robotic applica-

tions, feature an increasing complexity. This refers to both

the number of executed vision tasks and the large amount

of measurement data that has to be processed in real-time.

In most cases, those systems have to comply with a shear

number of external requirements, e.g. limited CPU-power,

low memory, a small I/O-bandwidth, or the crucial need for

energy efficiency [21, 25].

In order to tackle this challenge, we have proposed the

multi-layered Stixel World [17] that provides the most task

relevant scene information from large amounts of three-

dimensional point-cloud data in an utterly compact, robust,

and easy-to-use medium-level representation.

The basic idea for the Stixel World is that man-made en-

vironments are dominated by either horizontal or vertical

planar surfaces. While horizontal surfaces typically corre-

spond to the ground, the vertical ones relate to objects, for

instance solid infrastructure, pedestrians, or cars.

Following this model of perception, each Stixel approx-
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Figure 4: The blue line marks the column for segmentation.

Red and green denote the ideal segmentation into object and

ground. The dashed line is the expected ground profile and

the disparity measurement vector is marked using purple.
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Figure 3: The left figure shows the confidence distribution with respect to the manual labeling of the disparity values (training

data) into “inlier” and ”outlier”. All three metrics spread well across the considered interval of [0 . . . 1]. According to the

visual impression, the separation of inliers and outliers seems to be achieved best by the MLM-metric. For values close to 1
the histograms are sparsely filled. As a result, the extracted mapping becomes meaningless (indicated by the dashed line).

imates a certain part of an upright oriented object that is

located somewhere in the scene together with its distance

and height. Regions in the image containing no Stixels are

implicitly understood as free space.

The Stixel computation is formulated as a MAP estima-

tion problem, this way ensuring to obtain the best segmen-

tation result for the given stereo input. An example result

for this method is shown in Figure 1.

Given the disparity image D of size w × h ∈ N
2, the

multi-layered Stixel World corresponds to a column-wise

segmentation L ∈ L of D into the classes C = {o, g} (”ob-
ject” and ”ground /road”) of the following form:

L = {Lu} , with 0 ≤ u < w (5)

Lu = {sn} , with 1 ≤ n ≤ Nu ≤ h

sn =
{
vbn, v

t
n, cn, fn(v)

}
, with 0 ≤ vbn ≤ vtn < h , cn ∈ C

The total number of segments sn for each column u is

given by Nu. The image row coordinates vbn (base point)

and vtn (top point) mark the beginning and end of each seg-

ment. The term fn(v) is a function providing the depth of

that segment at row position v (with vbn ≤ v ≤ vtn). All seg-

ments sn−1 and sn are adjacent which implicitly guarantees

that every image point is assigned to exactly one label.

Modeling all segments as piecewise planar surfaces sim-

plifies the function set fn to linear functions: object seg-

ments are assumed to have a constant disparity while

ground segments follow the disparity gradient of the ground

surface. This idea is illustrated in Figure 4.

Searching for the best Stixel segmentation L∗ leads to a

MAP estimation problem, such that:

L∗ = argmax
L∈L

P (L | D) . (6)

Applying Bayes’ theorem allows to rewrite the posterior

P (L | D) as P (L | D) ∼ P (D | L) · P (L). The term

P (D | L) rates the probability of the input D given a label-

ing L and serves as the data term for the optimization. The

second term P (L) describes the overall probability for a

possible labeling L and thus is the lever to incorporate prior

world knowledge, e.g. ordering and gravity constraints. We

discussed details on the latter term in [17].

Since this paper discusses how to efficiently take confi-

dence cues into account, particular emphasis is put on the

data term. P (L | D) is written as the column-wise product

P (L | D) ∼
w−1∏
u=0

P (Du | Lu)︸ ︷︷ ︸
data term

· P (Lu)︸ ︷︷ ︸
prior

. (7)

Next, the column-wise term P (Du | Lu) factorizes to

P (Du | Lu) =

Nu∏
n=1

vt
n∏

v=vb
n

PD (dv | sn, v)︸ ︷︷ ︸
sensor model

. (8)

Here, PD (dv | sn, v) represents the probability for a sin-

gle disparity measurement dv at image row coordinate v to

belong to a possible Stixel segment sn. To yield a robust

estimation, PD is defined as a mixture model composed of

a Gaussian and a uniform distribution:

PD (dv | sn, v) = pout

dmax − dmin

(9)

+
1− pout

Anorm

e−
1
2 (

dv−fn(v)
σcn (fn,v) )

2

By using the pout parameter this forward sensor

model [23] allows to consider that a disparity value might

be an outlier. Originally, we modeled this eventuality as

a global and thus measurement independent property. Al-

though this seems applicable for most visual conditions, we

know that in case of errors in the disparity estimation out-

liers do not just occur randomly. As shown in Figure 2, out-

liers often affect relatively large connected regions of the

image. Accordingly, by not accurately modeling this char-

acteristic, one runs the risk to have false object detections in

these areas. Using the proposed method, the Stixel results

for the scenarios shown in Figure 2 are given in Figure 5.
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Figure 5: Stixel results for two visually challenging situations are using the approach of Pfeiffer et al. One can clearly see

numerous false positives (mostly red) on the ground surface caused by stereo matching.

6. Using Confidences for Stixel Computation
For obtaining a more measurement specific outlier

model, stereo confidence cues are used. As discussed in

Section 4, these confidence cues are not used directly but

are mapped to an outlier probability.

Once this step is carried out, the integration of the pixel-

specific outlier probability into the original sensor model

(c.f . Equation 9) is straightforward: Instead of processing

the plain disparity measurement dv in PD, the tuple (dv, pv)
is used which is the disparity measurement dv along with

the corresponding outlier probability pv . The term pout is

replaced with p∗out such that:

p∗out = pv
(
1− pmin

out

)
+ pmin

out (10)

As can be seen, the global outlier model parameter pout

is not just substituted by pv . Instead, we ensure a lower

bound, i.e. a minimum outlier probability pmin
out .

That decision is for two reasons: Firstly, when not pro-

viding stereo confidence cues, using pv = 0 yields the orig-

inal sensor model of Equation 9. Secondly and more crucial

for our application, in awareness that the stereo confidence

cue might not always be correct (i.e. pv → 0 even though

dv in fact is an outlier), this approach still enables to model

a minimum outlier rate pmin
out .

This procedure is confirmed by our experiments. These

show that modeling a rather defensive (and thus higher) out-

lier rate pmin
out does not cause to miss objects in case the visual

conditions are good. Thus, when striving for a system with

maximum robustness, this certainly is a safe choice.

The results of using this extended sensor model for the

scenarios in Figure 2 are given in Figure 6. The differ-

ence to the base line results obtained in Figure 5 is strik-

ing. No false positives are visible for the confidence ver-

sion whereas many false positives occurred in the original

version.

7. Using Confidences for Other Applications
Confidences are helpful for further applications driven

by stereo vision. The following popular stereo-based tasks

are easily extended to use confidence cues:

– Occupancy map generation: The disparities are tri-

angulated and registered in a map. In addition to

weighting a depth measurements with the sensor un-

certainty [1], it can also be weighted with the inlier

probability computed in Section 4.

– Ego-motion estimation / Registration: In extension

to [15], a weighted ICP [18] can be used. The reg-

istration is performed using all triangulated disparities

weighted with their inlier probabilities.

8. Evaluation on Real-World Traffic Data
Two types of data sets are used for evaluating the ef-

fectiveness of our approach. The first one is large: 308
sequences with more than 76, 000 frames in total. Those

contain a mixture of 50% normal daytime scenes and

50% challenging scenes (rain, snow, night, reflections) thus

overemphasizing sophisticated scenarios.

For this data set we rely on “weak” ground truth to mea-

sure the false positive rate: We assume that in all scenarios

the driver maintains at least a one second time-gap to pre-

ceding vehicles or other objects. This should be true for all

normal driving conditions. For all frames the driven cor-

ridor is projected one second ahead. All Stixels residing

in that area are considered as false positives. In addition,

RADAR data is used for reducing the driven corridor in

those rare cases where the one second gap is under-run.

The second data set is much smaller and consists of 10
sequences with a total of 2, 500 frames. The particularity

of this data set is that all 3D structures limiting the avail-

able free space are manually labeled thus allowing to obtain

about 200, 000 ground truth Stixel measurements. This in-

formation allows to compute the detection rate which, of

course, is an important aspect since minimizing the false

positive rate can be achieved by simply not detecting any

objects. Hence, the second data set helps to counterbalance

this effect. For putting things into perspective, we also com-

pute the false positive rate for the smaller data set. This

ground truth data set is publicly available 1.

For the evaluation we work with three configurations:

1http://www.6d-vision.com/ground-truth-stixel-dataset
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Figure 6: Results of our extensions to the Stixel computation of Pfeiffer et al. The difference to Figure 5 is striking. Using

stereo confidence cues in the sensor model allows to remove nearly all false positives while the detection rate is kept high.

– Base line: SGM stereo and Stixels are computed ac-

cording to [17]. No confidence information is used.

– Sparsification: SGM and the proposed confidence met-

rics are computed. A manually optimized confidence

threshold is applied for discarding all depth measure-

ments with a lower confidence from the disparity map.

Then, this map is fed into the same Stixel engine.

– Stixels with confidences: SGM and the proposed con-

fidence metrics are computed. Subsequently, we trans-

fer both the disparity and the confidence map to the

Stixel engine as described in Section 6.

The findings of these tests are summarized in Table 1.

During evaluation the parameter configuration of the Stixel

scheme was not altered. Any differences purely result from

using the confidence metrics and the way how they are taken

into account. The thresholds for sparsification have been

chosen to optimize the trade-off between the false positive

and detection rate which is cLC
min = 0.1, cPKRN

min = 0.15,

and cMLM
min = 0.2.

We obtain 2, 055 frames containing false positives in the

base line approach. When using sparsification on the dis-

parity input, the number of false positives is reduced to 637
with LC, 758 with PKRN, and 648 with MLM.

In comparison, the ground truth data set shows very simi-

lar results. The format is: frames with false positives (detec-

tion rate). The base line approach reaches 200 (0.815), LC

yields 73 (0.801), PKRN has 83 (0.797), and MLM reaches

79 (0.804). Altogether, the three metrics enable to reduce

the number of frames showing false positives roughly by a

factor of three. LC and MLM operate on quite a similar

performance level while PKRN is falling slightly behind.

The results when using confidence cues as suggested are

as follows: On the large data set we obtain 360 frames with

false positives when using LC, 719 with PKRN, and 301 in

case of MLM. Respectively, for the ground truth data set

the numbers are 45 (0.802) for LC, 94 (0.807) for PKRN,

and 48 (0.792) for MLM. Note that the detection rate im-

proves by about 5% for all experiments if frames showing

windshield wipers are ignored. According to the findings of

Section 4, the good performance of LC despite its simplicity

is partly surprising. Our explanation is that most matching

errors occur in low-textured areas where LC is most effec-

tive. Problems with repetitive structures, a known short-

coming of local stereo methods that is detected with PKRN

and MLM, are rarely observed when using SGM.

In conclusion, exploiting stereo confidences throughout

the whole processing chain clearly proves to have a positive

effect. Compared to the base line, we yield a factor of up

to six less false detections. Compared to sparsification the

results still improve by a factor of two.

9. Conclusions and Outlook

In this contribution, we presented an improvement of

the state-of-the-art 3D Stixel intermediate representation by

exploiting stereo confidence information in a probabilistic

fashion. It is shown that the intuitive approach to sparsify

the disparity maps based on confidence allows to reduce the

false positive rate by a factor of three. Instead of simply ap-

plying such a threshold, using confidences in a Bayesian

manner yields an additional improvement by a factor of

two while maintaining the same detection rate. These find-

ings have been obtained from an extensive evaluation over

a large data base containing more than 76, 000 frames of

mostly challenging video material. A subset of this data

base containing 3D ground truth object data is considered

to be made publicly available.

The best performing metric “Local Curve”, a quality

measure for the sub-pixel curve fit, comes at no extra com-

putational cost. The same holds true for integrating con-

fidence information into the subsequent Stixel processing

step. We are convinced that similar improvements can be

achieved in other stereo-driven tasks.

Future work will further extend the usage of the aggre-

gated confidences up to the object level. Also, when using

Stixels with motion information, the identical concept can

be applied for using optical flow confidence information.
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