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Abstract

Despite the success of recent object class recognition
systems, the long-standing problem of partial occlusion re-
mains a major challenge, and a principled solution is yet to
be found. In this paper we leave the beaten path of meth-
ods that treat occlusion as just another source of noise –
instead, we include the occluder itself into the modelling,
by mining distinctive, reoccurring occlusion patterns from
annotated training data. These patterns are then used as
training data for dedicated detectors of varying sophistica-
tion. In particular, we evaluate and compare models that
range from standard object class detectors to hierarchical,
part-based representations of occluder/occludee pairs. In
an extensive evaluation we derive insights that can aid fur-
ther developments in tackling the occlusion challenge.

1. Introduction

Object class recognition has made remarkable progress

in recent years [6], both on the level of individual classes [4,

7] and on the level of entire visual scenes [22, 2]. Rem-

iniscent of the early days of computer vision, 2D bound-

ing box-based localization has been generalized to more

fine-grained object class representations capable of predict-

ing poses [1, 23], viewpoints [17], 3D parts [15], and fine-

grained categories [18].

Despite these achievements towards more accurate ob-

ject hypotheses, partial occlusion still poses a major chal-

lenge to state-of-the-art detectors [4, 7], as becomes ap-

parent when analyzing the results of current benchmark

datasets [6]. While there have been attempts to tackle

the occlusion problem by integrating detection with seg-

mentation [8] and latent variables for predicting trunca-

tion [20, 21] resulting in improved recognition perfor-

mance, all these attempts have been tailored to specific

kinds of detection models, and not been widely adopted by

the community.

Curiously, what is also common to these approaches is

that they focus entirely on the occluded object – the oc-
cludee – without any explicit notion of the cause of occlu-

Figure 1. Detections on the KITTI dataset [9]. (Left) True positive

detections by our occluded objects detector. Even hard occlusion

cases are detected. (Right) True positives by the DPM [7].

sion. While this approach is more general than assuming

any specific type of occlusion, it also complicates the dis-

tinction between weak, but visible evidence for an object

and an occluder. In this paper we therefore follow a dif-

ferent route, by treating the occluder as a first class citi-

zen in the occlusion problem. In particular, we start from

the observation that certain types of occlusions are more

likely than others: consider a street scene with cars parked

on either side of the road (as in Fig. 1). Clearly, the visible

and occluded portions of cars tend to form patterns that re-

peat numerous times, providing valuable visual cues about

both the presence of individual objects and the layout of the

scene as a whole.

Based on this observation, we chose to explicitly model

these occlusion patterns by leveraging fine-grained, 3D an-

notations of a recent data set of urban street scenes [9]. In

particular, we mine reoccurring spatial arrangements of ob-

jects observed from a specific viewpoint, and model their

distinctive appearance by an array of specialized detectors.

To that end, we evaluate and compare two different models:

i) a single-object class detector specifically trained to detect

occluded objects from multiple viewpoints, occluded by

various occluders, ii) a hierarchical double-object detector

explicitly trained for accurate occluder/occludee bounding

box localization. As baselines we include a standard, state-
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of-the-art object class detector [7] as well as a recently pro-

posed double-person detector [19] in the evaluation, with

sometimes surprising results (Sect. 5).

Our paper makes the following contributions. First, we

approach the challenging problem of partial occlusions in

object class recognition from a different angle than most re-

cent attempts by treating causes of occlusions as first class

citizens in the model. Second, we propose three different

implementations of this notion of varying complexity, rang-

ing from easily implementable out-of-the-box solutions to

powerful, hierarchical models of occluder/occludee pairs.

And third, in an extensive experimental study we evaluate

and compare these different techniques, providing insights

that we believe to be helpful in tackling the partial occlusion

challenge in a principled manner.

2. Related work

Sensitivity to partial occlusion has so far mostly been

considered a lack in robustness, essentially treating occlu-

sion as “noise rather than signal”1. As a result, modelling

has typically focused on different ways of preventing noisy

(i.e. presumably occluded) image evidence from impacting

detection confidence estimates in a negative way. Among

the most successful implementations are integrated models

of detection and segmentation using structured prediction

and branch-and-bound [8], latent occlusion variables in a

max-margin framework [20], and boosting [21].

The notion that multiple visual entities that occlude each

other can possibly be beneficial for recognition has mostly

arisen from the perspective of context-modelling. Small ob-

jects have been demonstrated to be easier to detect in the

presence of larger ones that are more reliably found [12],

detected musical instruments and sports tools have been

shown to enable easier human pose estimation and vice

versa [24], groups of people hint on the presence of individ-

uals [5, 23], and frequent arrangements of objects have been

shown to support identification of individual objects [13].

Only recently, [19] leveraged the joint appearance of

multiple people for robust people detection and tracking

by training a double-person detector [7] on pairs of people

rather than single humans. While our evaluation includes

their model as a baseline, we systematically evaluate and

contrast different ways of modelling occluders as first class

citizens, and propose a more expressive, hierarchical model

of occluder/occludee pairs that outperforms their model in

certain configurations.

In the realm of deformable part models [10] has consid-

ered part-level occlusion in the form of dedicated “occlu-

sion” candidate parts that represent generic occlusion fea-

tures (such as a visible occlusion edge). In contrast, our

models capture the specific, distinctive appearance of vari-

1J. Malik, invited talk, CVPR’12

ous occluders separately, and also leverage their distinctive

spatial layout w.r.t. the occludee.

On the scene-level occlusion has been tackled with quite

some success in terms of recognition performance by draw-

ing evidence from partial object detections in probabilis-

tic scene models [22, 14]. While these models can rea-

son about occluder/occludee in principle, their level of de-

tail is limited by the chosen object class representation – in

both cases standard 2D bounding box-based detectors are

used [7] which clearly fail to capture interactions between

objects that are not box-shaped.

An entirely different avenue has been taken in the con-

text of robotics applications, where prior distributions over

expected occlusions can be analytically derived for heavily

constrained, indoor scenes [11].

3. Occlusion patterns

Our approach to modelling partial occlusions is based

on the notion of occlusion patterns, i.e., re-occurring ar-

rangements of objects that occlude each other in specific

ways and that are observed from a specific viewpoint. Note

that a similar approach has been taken in the poselet frame-

work [3], but in the context of human body pose estimation

and the resulting problem of dealing with self-occlusion.

Specifically, we limit ourselves to pairs of objects, giv-

ing rise to occlusion patterns on the level of single objects

(occludees) and double objects (occluder-occludee pairs).

3.1. Mining occlusion patterns

We mine occlusion patterns from training data by lever-

aging fine-grained annotations in the form of 3D object

bounding boxes and camera projection matrices that are

readily available as part of the KITTI dataset [9]. We use

these annotations to define a joint feature space that repre-

sents both the relative layout of two objects taking part in an

occlusion and the viewpoint from which this arrangement

is observed by the camera. We then perform clustering on

this joint feature space, resulting in an assignment of object

pairs to clusters that we use as training data for the compo-

nents of mixture models, as detailed in Sec. 4.

Feature representation. We use the following properties

of occlusion patterns as features in our clustering: i) oc-

cluder left/right of occludee in image space, ii) occluder and

occludee orientation in 3D object coordinates, iii) occluder

is/is not itself occluded, iv) degree of occlusion of occludee.

Rule-based clustering. We found that a simple, greedy

clustering scheme based on repeatedly splitting the train-

ing data according to fixed rules (e.g. based on assigning

the viewing angle of the occluder to one of a fixed number

328532853287



Figure 2. Visualization of mined occlusion patterns (occluder-occludee pairs). Top to bottom: 3D bounding box annotations provided by

KITTI [9] for the cluster centroid along with the objects azimuth (row (1)), the corresponding average image over all cluster members

(row (2)), two cluster members with corresponding 2D bounding boxes of occluder, occludee, and their union (rows (3) - (4)). Occlusion

patterns span a wide range of occluder-occludee arrangements: resulting appearance can be well aligned (leftmost columns), or diverging

(rightmost columns) – note that occluders are sometimes themselves occluded.

of predetermined bins) resulted in sufficiently clean clus-

ters. Figure 2 visualizes a selection of occlusion patterns

mined from the KITTI dataset [9]. As shown by the aver-

age images over cluster members (row (2)), some occlusion

patterns are quite well aligned, which is a prerequisite for

learning reliable detectors from them (Sec. 5.2).

4. Occlusion pattern detectors
In the following, we introduce three different models for

the detection of occlusion patterns, each based on the well

known and tested deformable part model (DPM [7]) frame-

work. We propose two qualitatively different types of mod-

els. The first type (Section 4.2) focuses on individual oc-

cluded objects, by dedicating distinct mixture components

to different single-object occlusion patterns. The second

type (Section 4.3) models pairs of objects in occlusion in-

teraction, i.e. modelling both occluder and occludee. For

the second model we propose two different variants (a sym-

metric and an a-symmetric one).

4.1. Preliminaries

We briefly recap the basics of the DPM model as imple-

mented in [7]. The DPM is a mixture of C star shaped log-

linear conditional random fields (CRF), all of which have

a root p0 and a number of latent parts pi, i = 1, . . . ,M .

All parts are parameterized through their left, right, top and

bottom extent (l, r, t, b). This defines both position and as-

pect ratio of the bounding box. Root and latent parts are

singly connected through pairwise factors. The energy of a

part configuration p = (p0, . . . , pM ) given image evidence

I for mixture component c is then

Ec(p; I) =

M∑

i=0

〈vci , φ(pi; I)〉+
M∑

i=1

〈wc
i , φ(p0, pi)〉. (1)

Each component has its own set of parameters (vc, wc)
for unary and pairwise factors. The collection of those

c = 1, . . . , C define the set of parameters that are learned

during training. Training data is given as a set of N tu-

ples (In, yn), n = 1, . . . , N of pairs of images I and object

annotations y, consisting of bounding boxes (ln, rn, tn, bn)
and coarse viewpoint estimates.

4.2. Single-object occlusion patterns – OC-DPM

We experiment with the following extension of the

DPM [7]. In addition to the original components c =
1, . . . , Cvisible that represent the appearances of instances

of an object class of interest, we introduce additional mix-

ture components dedicated to representing the distinctive

appearance of occluded instances of that class. In partic-

ular, we reserve a distinct mixture components, for each of

the occludee members of clusters resulting from our occlu-

sion pattern mining step (Sec. 3).

4.3. Double-object occlusion patterns

While the single-object occlusion model of Sec. 4.2 has

the potential to represent distinctive occlusion patterns in
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the data, modelling occluder and corresponding occludee

jointly suggests a potential improvement: intuitively, the

strong evidence of the occluder should provide strong cues

as to where to look for the occludee. In the following we

capture this intuition by designing two variants of a hierar-

chical occlusion model based on the DPM [7] framework.

In these models occluder and occludee are allowed to move

w.r.t. a spatial models much like parts in the DPM [7]. The

two models vary in their choice of topology of the associ-

ated spatial deformations. We note that a similar route has

been explored by [19], but in the context of people tracking.

4.3.1 Double-objects with joint root – Sym-DPM

The first double-object occlusion pattern detector is graphi-

cally depicted in Fig. 3 (b,e). The idea is to join two star

shaped CRFs, one for the occluding object p0, and one

for the occluded object p
0

by an extra common root part

p0 = (l, r, t, b). As training annotation for the root part

we use the tightest rectangle around the union of the two

objects, see the green bounding boxes in Fig. 2. The inclu-

sion of this common root part introduces three new terms

to the energy, an appearance term for the common root

〈vcjoint, φ(p0; I)〉 and two pairwise deformation terms

〈w, φ(p
0
, pjoint)〉+ 〈w, φ(p0, pjoint)〉 (2)

with new parameters w,w. For these pairwise terms we

use the same feature function φ as for all other root-latent

part relations in the DPM, basically a Gaussian factor on the

displacement around an anchor point.

This model retains the properties of being singly con-

nected and thus warrants tractable exact inference. Because

of the form of the pairwise term one can still use the dis-

tance transform for efficient inference. We will refer to this

model as Sym-DPM. During training we have annotations

for three parts p
0
, p0, p0, while all others remain latent.

4.3.2 Double-objects without joint root – Asym-DPM

The second double-object model is a variation of Sym-

DPM, where the common root part is omitted (Fig. 3 (c,f)).

Instead, we directly link occluder and occludee. This re-

lationship is asymmetric – which is why we refer to this

model as Asym-DPM – and follows the intuition that the

occluder can typically be trusted more (because it provides

unhampered image evidence).

4.4. Training

All models that we introduced are trained using the struc-

tured SVM formulation as done for the DPM in [16]. To

avoid cluttering the notation we write the problem in the

following general form

min
β,ξ≥0

1

2
‖β‖2 + C

N

N∑

n=1

ξn

sb.t. max
h
〈β, φ(In, yn, hn)〉 −max

h′
〈β, φ(In, y′, h′)〉

. . . ≥ Δ(yn, y
′)− ξn, ∀y′ ∈ Y. (3)

For the models considered here, β refers to all their param-

eters (v, w,w,w) for all components c, y to the bounding

box annotations per example (can be 1 or 2), and h to the

latent part placements. For simplicity we will use y as the

bounding box annotation that could comprise one or two

annotations/detections. This problem is a quadratic prob-

lem and can be solved using the CCCP algorithm, alter-

nating between fixing the latent part assignments h′, and

updating the parameters. The latter step involves detect-

ing high scoring bounding boxes and latent part assign-

ments (y′, h′) using loss-augmented inference (y′, h′) =
argmaxy,h〈β, φ(In, y′, h′)〉+Δ(yn, y

′).
The most important change w.r.t. learning a DPM

through SSVM compared to [16] is that the loss now has

to take into account the possibility of multiple annotations

and predictions. We use the standard intersection over union

loss ΔV OC for a pair of bounding boxes y, y′

ΔV OC (y, y′) = (1− y ∩ y′

y ∪ y′
). (4)

and modify it in the following way. There are four different

cases that have to be distinguished, 1 or 2 objects in the

annotation and 1 or 2 objects that are being predicted.

In case the model predicts a single bounding box y only

(decided through the choice of the component) the loss is

the intersection over union loss between Δ(yn, y) in case

there is one annotation and Δ(yn, y) in case of an occlusion

annotation. This of course is not ideal, since in case there

is a second occluded object that is not being predicted, this

will result in a false negative detection.

When two bounding boxes are predicted y, y the loss is

computed as either Δ(yn, y) in case there is a single anno-

tation or as the average 0.5Δ(yn, y)+0.5Δ(y
n
, y) between

occluding and occcluded object. Again this is a proxy only,

since the case of two detections but only one present in the

annotation would result in a false positive.

As explained, our loss is not a perfect match since it does

not penalize all false positives/negatives. We still believe it

is a better proxy than the Hinge loss and found while ex-

perimenting with different implementations of Δ that the

choice of Δ has only a small influence on the test time

performance. This is consistent with the findings of [16]

who report that the “correct” structured loss function for

the DPM that takes into account the bounding box predic-

tion rather than using the Hinge loss for classification [7]
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Figure 3. Visualization of a single component of the three different occlusion models. (a) OC-DPM, (b) the Sym-DPM with root component

for each object p0, p0 and a joint root variable p0, (c) Asym-DPM as Sym-DPM but without a joint root variable. All models are shown

with only three latent parts to avoid overloading the figure. The bottom row (d),(e),(f) show the learnt filters for the respective models.

Note that for the Sym-DPM we place the joint root p0 at half the resolution in the pyramid.

gives a consistent but rather small improvement. Our im-

plementation of the loss function is capturing both single

and double object detections simultaneously.

Detection and non-maximum suppression Test time in-

ference in all mentioned models is tractable and efficient be-

cause they still are singly connected and allow the use of the

distance transform. As usual we compute the max-marginal

scores for the root components, p0, and p
0
, p0 resp. Non-

maximum suppression is done in the standard way.

5. Experimental evaluation

In the following, we give a detailed analysis of the vari-

ous methods based on the notion of occlusion patterns that

we introduced in Sect. 3. In a series of experiments we

consider both results according to classical 2D bounding

box-based localization measures, as well as a closer look at

specific occlusion cases. We commence by confirming the

ability of our models to detect occlusion patterns in isola-

tion 5.2, and then move on the task of object class detection

in an unconstrained setting, comprising both un-occluded

and occluded objects of varying difficulty 5.3.

5.1. Data set

We chose the recently proposed KITTI data set [9] as

the testbed for our evaluation, since it provides a large vari-

ety of challenging, real-world imagery of occlusion cases of

different complexity, and comes with fine-grained annota-

tions (manual 3D BBs of Lidar scans)that support a detailed

analysis. It contains 7481 images of street scenes with ac-

companying Lidar scans, acquired from a moving vehicle.

#objects #occluded objects %

Car 28521 15231 53.4
Pedest. 4445 1805 40.6
Cycles 1612 772 44.5

Table 1. KITTI dataset statistics on objects and occlusions

It is divided into 151 distinct sequences with varying du-

ration. The sequences mostly depict inner-city scenes, but

also contain rural and highway passages. In all experiments

we limit ourselves to a thorough evaluation of the Car ob-

ject class (since it occurs most often), but give additional re-

sults on the Pedestrian class, highlighting that our approach

generalizes to non-rigid objects.

Protocol. In all experiments we perform k-fold cross-

validation on the publicly available data set portion in all

experiments (k = 3). We successively train models on two

folds, evaluate them on the other fold, and afterwards ag-

gregate the per-fold results on the level of detections.

Occlusion statistics. The KITTI dataset [9] is a rich

source of challenging occlusion cases, as shown in Tab. 1.

It contains thousands of objects of which almost half are oc-

cluded, e.g. 53.4% of 28521 Car objects). From Fig. 4 (a),

we see that many of these are occluded to a substantial de-

gree (the mode is around 60% occlusion). Further, Fig. 4 (b)

confirms our intuition that occlusions tend to form pat-

terns: the distribution over relative orientations of occluder-

occludee pairs of cars is highly peaked around two modes.

In all our experiments on Car (Pedestrian) we train our

occlusion models with 6 (6) components for visible objects

and 16 (15)2 components for occlusion patterns. We obtain

these numbers after keeping the occlusion pattern clusters

which have at least 30 positive training examples.

2The numbers vary for different folds
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5.2. Detecting occlusion patterns

We commence by evaluating the ability of our models

to reliably detect occlusion patterns in isolation, since this

constitutes the basis for handling occlusion cases in a real-

istic detection setting (Sect. 5.3). In particular, we contrast

the performance of our models (OC-DPM, Sym-DPM, and

Asym-DPM) with two baselines, the standard deformable

part model [7], unaware of occlusions, and our implemen-

tation of the recently proposed double-person detector [19],

which we adapt to the Car setting.

Double-object occlusion patterns. We first consider the

joint detection of occlusion patterns in the form of object

pairs (occluder and occludee). For that purpose, we limit

our evaluation to a corresponding subset of the test data, i.e.

images that contain occlusion pairs, which we determine

from the available fine-grained annotations (we run the oc-

clusion pattern mining of Sect. 3 with parameters that yield

a single cluster). This targeted evaluation is essential in or-

der to separate concerns, and to draw meaningful conclu-

sions about the role of different variants of occlusion mod-

elling from the results. Fig. 5 (left) gives the correspond-

ing results, comparing the performance of two variants of

our Sym-DPM model (normal, in black, and a variant with

object-level templates at doubled HOG resolution, red) to

the double-person detector of [19] (magenta). We make the

following observations: first, we observe that all detectors

achieve a relatively high recall of over 90% – note that this

can not be trivially achieved by lower detection thresholds,

since different occlusion patterns result in largely different

aspect ratios, which our models counter by dedicating a dis-

crete set of distinct components to them. Second, we ob-

serve that our Sym-DPM performs on a comparable level to

the baseline [19] (55.9% vs. 58.5% AP), and dominates in

its double-resolution variant (60.6% AP).

Single-object occlusion patterns. Based on the setup of

the previous experiment we turn to evaluating our occlu-

sion pattern detectors on the level of individual objects (this

comprises both occluders and occludees from the double-

object occlusion patterns). To that end, we add our single-

object detectors to the comparison, namely, our Asym-DPM

(orange), our OC-DPM (cyan), and the deformable part

model [7] baseline (green). Fig. 5 (right) gives the corre-

sponding results. Clearly, all explicit means of modelling

occlusion improve over the DPM [7] baseline (53.7% AP)

by up to a striking 20.3% AP (OC-DPM, cyan, 74% AP).

Equally, the recall improves drastically from approx. 70%
to over 80%. As concerns the relative performance of the

different occlusion models, we observe a different order-

ing compared to the double-object occlusion pattern case:

the double-object baseline [19] (blue, 61% AP) performs

slightly better than our double-resolution Sym-DPM (red,

57.9% AP), followed by our Asym-DPM (orange, 56.4%
AP), and our normal Sym-DPM (black, 54.0 AP). Curi-

ously, the arguably simplest model, our OC-DPM, outper-

forms all other models by at least to 13% AP.

Summary. To summarize, we conclude that detecting oc-

clusion patterns in images is in fact feasible, achieving

both sufficiently high recall (over 90% for both single- and

double-object occlusion patterns) and reasonable AP (up

to 74% for single-object occlusion patterns). We consider

this result viable evidence that occlusion pattern detectors

have the potential to aid recognition in the case of occlusion

(which we examine and verify in Sect. 5.3). Furthermore,

careful and explicit modelling of occluder and occludee

characteristics helps for the joint detection of double-object

patterns (our hierarchical Sym-DPM model outperforms the

flat baseline [19]). For the single-object case, however, the

simplest model OC-DPM outperforms all others by a sig-

nificant margin.

5.3. Occlusion patterns for object class detection

In this section we apply our findings from the isolated

evaluation of occlusion pattern detectors to the more real-

istic setting of unconstrained object class detection, again

considering the KITTI dataset [9] as a testbed. Since the

focus is again on occlusion, we consider a series of in-

creasingly difficult scenarios for comparing performance,

corresponding to increasing levels of occlusion (which we

measure based on 3D annotations and the given camera

parameters). Specifically, we consider the following six

scenarios: the full, unconstrained data set (Fig. 8 (a)),

the data set restricted to at most 20% occluded objects

(Fig. 8 (b)), restricted to objects occluded between 20 and

40% (Fig. 8 (c)), between 40 and 60% (Fig. 8 (d)), between

60 and 80% (Fig. 8 (e)), and beyond 80% (Fig. 8 (f)).

Modeling unoccluded objects. In order to enable detec-

tion of occluded as well as unoccluded object instances, we

augment our various occlusion pattern detectors by addi-

tional mixture components for unoccluded objects.

Results - full dataset. On the full data set (Fig. 8 (a))

we observe that the trends from the isolated evaluation of

occlusion patterns (Sect. 5.2) transfer to the more realis-

tic object class detection setting: while the double-object

occlusion pattern detectors are comparable in terms of AP

(Asym-DPM, orange, 52.3%; Sym-DPM, blue, 53.7%), our

OC-DPM achieves the best performance (64.4%), improv-

ing over the next best double-object occlusion pattern de-

tector Sym-DPM by a significant margin of 10.7%.

Surprisingly, the DPM [7] baseline (green, 62.8% AP)

beats all double-object occlusion pattern detectors, but is in

turn outperformed by our OC-DPM (cyan, 64.4%). While

the latter improvement seems modest at first glance, we
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point out that this corresponds to obtaining 1000 more true

positive detections, which is approximately the number of

cars (1250) in the entire Pascal VOC 2007 trainval set.

In comparison to [19] (53.9%), Sym-DPM and Asym-

DPM provide similar performance. All double-object de-

tectors have proven to be very sensitive to the non-maxima

supression scheme used and suffer from score incompara-

bility among the double and single object components. We

intend to address this issue in future work.

On the Pedestrian class (Fig. 8 (g)) OC-DPM (37.2%)

outperform the DPM (36.2%), confirming the benefit of

our occlusion modelling, while Sym-DPM (31.4%) outper-

forms the Asym-DPM (29.4%).

Results - occlusion. We proceed by examining the results

for increasing levels of occlusion (Fig. 8 (b-f)), making the

following observations. First, we observe that the relative

ordering among double-object and single-object occlusion

pattern detectors is stable across occlusion levels: our OC-

DPM (cyan) outperforms all double-object occlusion pat-

tern detectors, namely, Sym-DPM (blue) and Asym-DPM

(orange).Second, the DPM [7] baseline (green) excels at

low levels of occlusion (77.2% AP for up to 20% occlusion,

37% AP for 20 to 40% occlusion), performing better than

the double-object occlusion pattern detectors for all occlu-

sion levels. But third, the DPM [7] is outperformed by our

OC-DPM for all occlusion levels above 40% by significant

margins (12.9%, 21.5%, and 4.4% AP, respectively).

The same trend can be observed for the Pedestrian class:

for occlusions between 60 and 80% OC-DPM (5.7%) out-

performs DPM (5.0%) (Fig. 8 (h)). Asym-DPM (3.0%) out-

performs the Sym-DPM (2.7%).

Summary. We conclude that occlusion pattern detectors

can in fact aid detection in presence of occlusion, and the

benefit increases with increasing occlusion level. While, to

our surprise, we found that double-object occlusion pattern

detectors were not competitive with [7], our simpler, single-

object occlusion pattern detector (OC-DPM) improved per-

formance for occlusion by a significant margin.

5.4. Discussion

In the course of our evaluation, we have gained a number

of insights which we discuss in the following.

Biased occlusion statistics. From our experience, the

poor performance of double-object occlusion detectors on

the KITTI dataset [9] (Sect. 5.3), which is in contrast to

[19]’s findings for people detection, can be explained by

the distribution over occlusion patterns: it seems biased

towards extremely challenging “occluded occluder” cases.

We found a large fraction of examples in which double-

objects appear in arrangements of a larger number of ob-

jects (e.g. row of cars parked on the side of the road), where

the occluder is itself occluded – these cases are not cor-

rectly represented by occluder-occludee models. In these

(a) Occlusion histogram

orientation

occluder occluded

(b) Orientation histogram

Figure 4. Occlusion (a), orientation (b) histogram

(a) Double object detec-

tion

(b) Single object detection

Figure 5. (a) Joint , (b) single Car detection results

Figure 6. Examples of non tight BB annotations

cases it proves less robust to combine possibly conflicting

pairwise detections (Asym-DPM, Sym-DPM) into a consis-

tent interpretation than aggregating single-object occlusion

patterns (OC-DPM). As a result, single-object models ([7],

OC-DPM) tend to be more robust against this bias, resulting

in improved performance.

Annotation noise. We also found that the KITTI

dataset [9] contains a significant number of occluded ob-

jects that are not annotated, supposingly due to being in

the Lidar shadow, and hence missing 3D ground truth evi-

dence for annotation. While there is a reserved “don’t care”

region label for these cases, this seldomly overlaps suffi-

ciently with the object bounding box in question. This is

particularly true for our best performing OC-DPM model,

for which the first ≈ 70 false positive detections are of that

nature, resulting in a severe under-estimation of its perfor-

mance in Sect. 5.3 (Fig.7 shows examples).

Overlap criterion. In line with the previous argument

we believe the overlap threshold of 70% intersection-over-

union [6] proposed by the KITTI dataset [9] is hardly com-

patible with the accuracy of the annotations in many cases

(Fig. 6 gives examples), which is why we report results for

the less challenging but more robust overlap of 50%.

6. Conclusions
We have considered the long-standing problem of partial

occlusion by making occluders first class citizens in mod-

elling. In particular, we have proposed two different mod-
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(a) Car: Full dataset
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(b) Car: Occlusion level 1
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(c) Car: Occlusion level 2
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(d) Car: Occlusion level 3
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(e) Car: Occlusion level 4
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(f) Car: Occlusion level 5
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(g) Pedestrian: Full dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − precision

re
ca

ll

(60−80)% OCCLUSION

 

 

OC−DPM (AP = 5.7)
DPM (AP = 5.0)
Sym−DPM (AP = 2.7)
Asym−DPM (AP = 3.0)

(h) Pedestrian: Occlusion level 4

Figure 8. Detection performance for class Car on (a) the full dataset, (b)-(f) increasing occlusion levels from [0 − 20]% to [80 − 100]%.

Detection performance on class Pedestrian, (g) full set, (h) [60− 80]% occlusion.

Figure 7. Valid detections on unannotated objects

els for detecting distinctive, reoccurring occlusion patterns,

mined from annotated training data. Using these detectors

we could improve over the performance of a current, state-

of-the-art object class detector over an entire dataset of chal-

lenging urban street scenes, but even more so for increas-

ingly difficult cases in terms of occlusion. Our most impor-

tant findings are: i) reoccurring occlusion patterns can be

automatically mined and reliably detected, ii) they can aid

object detection, and iii) occlusion is still challenging also

in terms of dataset annotation.
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