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Abstract

We address the problem of estimating the latent image
of a static bilayer scene (consisting of a foreground and a
background at different depths) from motion blurred obser-
vations captured with a handheld camera. The camera mo-
tion is considered to be composed of in-plane rotations and
translations. Since the blur at an image location depends
both on camera motion and depth, deblurring becomes a
difficult task. We initially propose a method to estimate
the transformation spread function (TSF) corresponding to
one of the depth layers. The estimated TSF (which reveals
the camera motion during exposure) is used to segment the
scene into the foreground and background layers and deter-
mine the relative depth value. The deblurred image of the
scene is finally estimated within a regularization framework
by accounting for blur variations due to camera motion as
well as depth.

1. Introduction
A common problem faced while capturing photographs

is the occurrence of motion blur due to camera shake. The

extent of blurring at a point in an image varies according to

the camera motion as well as the depth value resulting in

space-variant blur. This further compounds the inverse and

ill-posed deblurring problem. In this paper, our objective is

to estimate the latent image of a static bilayer scene from its

space-variantly blurred observations.

Traditionally, motion blur due to camera shake is mod-

eled as the convolution of the latent image with a blur ker-

nel. A lot of approaches for deblurring space-invariant blur

exist in the literature [7, 16, 24]. In practical scenarios, blur-

ring due to camera shake is space-variant in nature [14].

Recent techniques model the non-uniformly motion blurred

image by considering the transformations undergone by the

image plane rather than using a point spread function (PSF)

[21, 23]. Tai et al. have proposed a deblurring scheme for

the projective blur model based on Richardson Lucy decon-

volution in [21]. However, they do not address the problem

of determining the blurring function (the TSF). Whyte et al.

[23] propose an image restoration technique for motion blur

arising due to non-uniform camera rotations. For the case of

blind image restoration, the kernel estimation framework in

[7] is employed. When a noisy version of the original image

is available, a least-squares energy minimization approach

is used for finding the blurring function. Another deblur-

ring scheme has been proposed by Gupta et al. in [8]. The

motion blurred image is modeled by considering the cam-

era motion to be comprised of 2D translations and in-plane

rotation. They propose an iterative scheme to recover the

image and the blurring function. Other recent non-uniform

deblurring works include [3, 9, 10, 11, 12, 13, 20].

It must be mentioned that none of the above methods can

deal with changes in blur when there are depth variations.

For the case of pure in-plane translations alone, [17] and

[25] estimate the depth map and the restored image using

two blurred observations.

In this paper, we develop a method to estimate the latent

image of a bilayer scene using two motion blurred obser-

vations. The scene is assumed to consist of two dominant

layers of depth, one corresponding to the foreground and

the other to the background. There are many practical sit-

uations where we encounter this situation [19]. Multiple

observations have been used in other restoration techniques

to reduce ill-posedness [2, 4, 18, 22]. Such an approach

has been followed for the scenario of non-uniform blur as

well [3]. Two blurred observations of the same scene can

be readily obtained when images are captured in the burst

mode of a camera. We relate each of the two blurred ob-

servations with the original image of the scene through a

TSF (which denotes its corresponding camera motion) and

the depth of the scene. According to the blurring model,

the observation is regarded as a weighted average of trans-

formed instances of the original image. The weights denote

the time spent by the camera at each pose and are referred

to as the ‘transformation spread function’ (TSF) or equiva-

lently, the ‘motion density function’ (MDF) [8].

We treat the camera motion to consist of 2D translations

as well as in-plane rotations since this motion is more typi-

cal of camera shakes [8, 14]. Our motion model holds good

in many scenarios due to the fact that the image stabiliz-
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ers present in camera lenses have built-in gyro sensors that

compensate for out-of-plane camera rotations, but not in-

plane translations and rotations [1]. Also, camera transla-

tions along the optical axis is usually ignored because only

large translations cause noticeable blur [8, 12]. When ob-

jects in the scene are near to the camera, the parallax ef-

fect can cause significant variations in blur [17]. Deblurring

cannot be achieved unless the variation of blur due to depth

is accounted for [12, 20]. Hence, knowledge of the depth of

the scene is necessary for deblurring. We initially estimate

the depth values of the two layers and subsequently solve

for the latent image.

From the two blurred observations, we initially pro-

pose to determine the TSFs using blur kernels that are es-

timated at randomly chosen points across the image. We

follow the multichannel blind deconvolution technique in

[18] which can accurately determine blur kernels from two

image patches. These blur kernels can be from either of the

two depth layers. We derive a constraint to check whether

any two given blur kernels of an observation are from the

same depth layer. Based on this, we obtain a set of blur ker-

nels corresponding to a depth layer. We relate the PSFs of

one of the layers to the TSF through a linear equation and

solve for the TSF by minimizing the least-squares error. The

TSF is sparse in nature because during image capture, out

of all possible transformations, the reference image would

have undergone very few transformations. Hence, we also

include a sparsity prior in our objective function. The es-

timated TSF corresponds to one of the depth layers of the

scene which we regard as the reference (either foreground

or background). From the blurred observations, and their

reference TSFs we estimate the depth map which enables

us to segment the scene into two layers and estimate the rel-

ative depth of the other layer with respect to the depth of

the reference layer. The depth map is modeled as a Markov

random field (MRF). We define a cost for assigning a depth

label at a pixel. The maximum a posteriori (MAP) value of

the depth label at each pixel is estimated using loopy belief

propagation (BP) [6]. The original image is estimated by

minimizing an energy functional with total variation (TV)

regularization.

Contributions: This work presents significant contribu-

tions over recent works in motion deblurring: i) The perfor-

mance of the state-of-the-art non-uniform deblurring works

[23, 8, 10] is much superior than those that employ con-

volution model for motion blur. However, these methods

ignore the effect of depth variations on blur. In contrast, our

method adequately accounts for parallax effects for the case

of bilayer scenes. ii) Techniques that do consider the effect

of the scene depth [17, 25] restrict the camera motion to

only in-plane translations whereas our model allows for in-

plane rotations in addition to camera translations. iii) The

TSF estimation techniques in [23, 8, 10] are not applicable

when there is parallax. Our approach of using blur kernels

for TSF estimation enables us to address parallax effects

for a bilayer scene. From a set of PSFs estimated at random

points across the image, we develop a method to automati-

cally select the blur kernels from a single depth layer. We

arrive at the TSFs of the two observations that explains the

local blur kernels of one layer.

2. Motion blur model
Initially, we consider the scene to be of constant depth

and relate the blurred observation to the latent image in

terms of a TSF. For a bilayer scene, we subsequently mod-

ify the model to take the parallax effect into account and

relate the blurred image with the depth map and the TSF.

Let f denote the image of the scene captured by a still

camera. Consider that all of the scene points are at a depth

do along the camera’s axis. Then the blurred image g can

be modeled as a weighted average of warped instances of

the original image f [23, 8]. i.e.,

g (x) =

∫
λ∈T

ω (λ) f (Hλ (x)) dλ (1)

where ω : T→R+, is called the transformation spread
function (TSF) and maps the set of all possible transforma-

tions T to non-negative real numbers. Hλ (x) denotes the

image coordinates when a homography Hλ is applied on the

point x. The TSF depicts the camera motion. i.e., for each

transformation λ∈T, the value of the TSF ω (λ) denotes the

fraction of the total exposure duration for which the camera

stayed in the position that caused the transformation Hλ on

the image coordinates.

The blurred image g can also modeled with a space-

variant PSF h as [17]

g (x) = f ∗v h (x) =
∫

f (x− u)h (x− u,u) du (2)

where h (x,u) denotes the blur kernel at the image point

x as a function of the independent variable u. The PSF

h (x,u) represents the displacements undergone by a point

light source at x during the exposure and is weighted ac-

cording to the fraction of the exposure time the light source

stays at the displaced position. It can be written in terms of

the TSF as

h (x,u) =

∫
λ∈T

ω (λ) δ
(
u− (

H−1
λ (x)− x

))
dλ (3)

where δ indicates the 2D Dirac Delta function. Consider

a point light source at x in the reference image f . Due to

the transformation Hλ on the image co-ordinates, the point

light source gets displaced by x̄λ = H−1
λ (x)−x. Substitut-

ing h (x,u) from Eqn. (3) in Eqn. (2) gives us the blurring

model in Eqn. (1). While the PSF h can vary at every image

point, the TSF ω remains the same for whole image.
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3. Bilayer scenes: the parallax effect
When there are depth variations in the scene, the trans-

formation undergone by an image point is not only due to

camera motion but also varies as a function of depth. Con-

sequently, blurring cannot be modeled using Eqn. (1) with

a single TSF. However, note that the camera motion is the

same for all the image points. Hence, if we know the TSF

for points at a specific value of depth, then, given the depth

map of the scene, it should be possible to decipher TSF

corresponding to any other image point. Furthermore, it

is only the translation parameters (and not rotation) that are

affected by depth changes.

When the camera intrinsics are fixed, the set of allowable

transformations T is 6D due to the six degrees of freedom of

camera motion. However, as discussed in section 1, in this

work, we model the camera motion as translations along

the image plane and in-plane rotations. The homography

Hλ then simplifies to the following 2D transformation

Hλ (x) =

[
cos θλ − sin θλ
sin θλ cos θλ

] [
x
y

]
+

[
txλ

tyλ

]

where [txλ
tyλ

]
T

and θλ represent the translation and rota-

tion parameters of Hλ, respectively. The set of transforma-

tions T becomes a 3D space defined by axes tx, ty and θ.

Let ωo denote the TSF corresponding to a depth of do.

The TSF ωo defines the weight for a transformation λ∈T
(parameterized by txλ

, tyλ
and θλ) for points at depth

do. We express the transformation undergone by a point

(i, j) (having depth d (i, j)) in terms of the relative depth
k (i, j) = d(i,j)

do
and the parameters of the transformation λ.

The rotation parameter θλ is not affected by depth changes.

However, the translation parameters get scaled according to

the depth and are given by

txλij
=

txλ

k (i, j)
, tyλij

=
tyλ

k (i, j)
(4)

Let Hλd(i,j)
denote the transformation with the parame-

ters txλij
, tyλij

and θλ. The PSF at a point x = (i, j) is

h (x,u) =

∫
λ∈T

ωo (λ) δ
(
u−

(
H−1

λd(i,j)
(x)− x

))
dλ (5)

Ignoring the effects of occlusion, the blurred image of the

3D scene can be related to the original image f through the

space variant blurring operation (Eqn. (2)), wherein the PSF

h depends on the camera motion (denoted by the TSF ωo)

and the depth map d (according to Eqn. (5)).

For bilayered scenes, the relative depth k takes only two

distinct values. Thus, rather than evaluating PSF at every

point, the blurred image can be obtained from the original

using the TSF ωo itself with the modifications in Eqn. (4).

Let h (i, j, ; ) denote the discrete blur kernel at a pixel

p = (i, j). For practical implementation, the set T is dis-

cretized to get NT different transformations [23, 8]. For

l = 1. . .NT , let ωo (l) denote the weight corresponding

to the lth transformation of T and (il, jl) denote the co-

ordinates of the point when a transformation H−1
ld(i,j)

is ap-

plied on p (translations scaled according to Eqn. (4)). The

discrete form of the relationship in Eqn. (5) is given by

h (i, j; s, t) =

NT∑
l=1

ωo (l) δd (s− (il − i) , t− (jl − j))

(6)

where δd denotes the 2D Kronecker delta function. When

(il, jl) take non-integer values, we assign values to the pix-

els neighboring (il, jl) by bilinear interpolation principle.

From the discrete PSF, we can write the blurred image in

terms of the latent image f as

g (i, j) =
∑
s,t

f (i− s, j − t)h (i− s, j − t; s, t) (7)

4. Image deblurring
Consider two blurred observations g1 and g2 of a bilayer

scene which are related to the original image f through the

TSFs ω1o and ω2o, respectively, and the depth map d. The

objective is to estimate f from g1 and g2. We devise a

method which uses blur kernels estimated at different points

in the image in order to determine the TSFs. Based on the

estimated TSFs ω1o and ω2o, and the blurred observations,

we determine the relative depth map k. Finally, we solve

for the original image f . The details of these steps are ex-

plained in the following subsections.

4.1. Reference TSF estimation

Our initial step is to estimate blur kernels at different im-

age points. Following [24], we determine a subset of image

points which are suitable for blur kernel estimation (regions

with wide edges). Within this subset, Ns point locations are

selected at random, and blurred image patches from both the

observations (denoted by g11 g21 . . .g
Ns
1 and g12 g22 . . .g

Ns
2 ) are

cropped around these points. Within each pair of patches

(gi1 and gi2), we assume the blur to be space-invariant and

use the blind deconvolution technique in [18] (which uses

two blurred observations) to get the blur kernels hi
1 and hi

2.

We found in our experiments that the estimates of blur ker-

nels from the method in [18] are quite accurate.

4.1.1 Kernel segmentation

The blur kernels h1
b h2

b . . .h
Ns

b can be either from the fore-

ground or the background layers (for b = 1 and 2). Out of

the Ns kernels of an observation, given any two PSFs, we
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compare the possible transformations of the kernels and de-

termine whether the two kernels belong to the same depth

layer. Thence, we segment the Ns kernels into two groups

depending on the layer to which they belong. The TSF is

determined for the layer that has more number of PSFs.

Consider a point p1 = (i, j). We refer to a set of

transformations Λ1
b as the support of the blur kernel h1

b .

The set Λ1
b is a subset of T and is defined as Λ1

b ={
λ : h1

b (i, j; iλ − i, jλ − j) > 0
}

, where (iλ, jλ) denotes

the co-ordinates of the point when H−1
λ is applied on p1. In

other words, Λ1
b contains all possible transformations from

T that shift the point p1 to a position at which the blur

kernel h1
b has a positive entry. Since T contains in-plane

rotations as well as translations, many transformations can

cause the same displacement. Consequently, Λ1
b will be a

much larger set than the number of transformation present

in the true TSF. However, the cardinality of Λ1
b is limited

because a motion blur kernel is sparse.

Given two blur kernels, h1
b and h2

b corresponding to lo-

cations p1 and p2, respectively, we determine the supports

of the blur kernels Λ1
b and Λ2

b . If p1 and p2 were at the

same depth layer, the blur kernels h1
b and h2

b would be re-

lated to a single TSF, and there would be a common set of

transformations between Λ1
b and Λ2

b that would include the

support of the TSF. In contrast, if p1 and p2 were at dif-

ferent layers, the transformations in Λ1
b and Λ2

b would be

different. We evaluate the intersection of the two supports

Λ12
b = Λ1

b∩Λ2
b . We apply the transformations in Λ12

b on

p1 and p2 to get two sets of displacements ĥ1
b and ĥ2

b , re-

spectively. If h1
b has positive entries at locations other than

those in ĥ1
b , or h2

b has positive entries at locations other than

those in ĥ2
b , then we can conclude that there are no common

transformations between Λ1
b and Λ2

b that can generate both

the blur kernels. This would imply that p1 and p2 cannot

be at the same depth. It must be noted that, only when the

effect of parallax is significant, the transformations in the

supports of the two blur kernels would be different.

4.1.2 TSF from PSFs

Using our method, out of Ns blur kernels, we select Np

kernels that are at the same depth. Our objective is to esti-

mate the TSF ωbo that concurs with the Np observed blur

kernels h1
b h2

b . . .h
Np

b and their locations for b = 1 and 2.

The TSF defined on the discrete transformation space T
can be considered as a vector in R

NT where NT is the to-

tal number of transformations present in T. In practice, the

TSF ωbo∈RNT will be a sparse vector because the camera

motion during exposure would result in very few transfor-

mations out of all possible elements of T. Hence, while

solving for ωbo we impose a sparsity constraint for regular-

ization. In Eqn. (6), we see that at a pixel (i, j), each com-

ponent of the blur kernel h (i, j;m,n), is a weighted sum of

the components of the TSF ω. Consequently, the blur kernel

hi
b can be expressed as hi

b = M i
bωbo for i = 1 . . . Np, where

M i
b is a matrix whose entries are determined by the location

of the blur kernel and the bilinear interpolation coefficients.

If the number of elements in the blur kernel is Nh, then the

size of the matrix M i
b will be Nh ×NT . By stacking all the

Np blur kernels as a vector hb, and suitably concatenating

the matrices M i
b for i = 1 . . . Np, the blur kernels can be

related to the TSF as

hb = Mbωbo (8)

The matrix Mb is of size NpNh × NT . To get an estimate

of the TSF that is consistent with the observed blur kernels

and is sparse as well, we minimize the following cost (sep-

arately for b = 1 and 2) using the toolbox available at [15].

argmin
ωbo

{∥∥hb −Mbωbo

∥∥2

2
+ λs ‖ωbo‖1

}
(9)

4.1.3 Alignment of PSFs

The blurred image patch gib which is given by gib = f i ∗ hi
b

would also be equal to S−1
i

(
f i

) ∗ Si

(
hi
b

)
where ∗ denotes

convolution and the term Si (·) denotes a translation shift.

Consequently, while solving for the local PSFs (hi
b), there

can be incidental shifts of small magnitude in the estimated

blur kernels with respect to the ‘true’ blur kernels (which

are induced at a point as a result of blurring the latent image

with the true TSF). Since the translation for each patch may

differ, the estimation of ωbo will not be possible from the

kernels unless the shifts in the PSFs are compensated. The

shift remains the same for both b = 1 and 2. Hence, we

need to determine the shifts of blur kernels corresponding

to only one of the two observations. The TSF ω1o estimated

from the aligned blur kernels should have a low value of

the error
∥∥h1 −M1ω1o

∥∥2

2
. We consider that one of the blur

kernels, say h1
1 does not undergo any shift and align the

other kernels with respect to this. We need to determine

two translation parameters for each of the other blur kernels.

For all possible combination of the translations, we shift the

blur kernels h2
1, h3

1, . . .h
Np

1 , and evaluate the solution of the

Eqn. (9). Since the magnitude of the shifts are generally

small, and the number of blur kernels used is typically low

(around 4), finding the optimum shifts (that minimize the

error
∥∥h1 −M1ω1o

∥∥2

2
) is computationally quite feasible.

In the case of convolution, a set of blur kernels (which

are translated versions of each other) and correspondingly

shifted latent images can lead to the same blurred observa-

tion. In the scenario of TSF model, there can be multiple

solutions for the latent image and the TSF such that the im-

ages are rotated and translated versions of one-another. The

alignment step provides one possible solution to the shifts

of the blur kernels that leads to a TSF.
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Even in the kernel segmentation step (section 4.1.1), the

shift in the estimated blur kernels needs to be accounted for.

Given two blur kernel h1
b and h2

b , we verify the condition

discussed in section 4.1.1 for all possible shifted versions

of one of the blur kernels.

4.2. Depth estimation and segmentation

We determine the relative depth k (i, j) at every pixel

from the blurred observations g1 and g2, and the TSFs ω1o

and ω2o through a MAP-MRF framework. We segment this

depth map into two levels corresponding to the foreground

and background. We follow the efficient implementation of

the loopy belief propagation (BP) algorithm proposed in [6]

to obtain the MAP estimate.

The blur kernel hb (i, j, ; ) at a point (i, j) is given by

hb (i, j;m,n) =

NT∑
l=1

ωbo (l) δd (m− (il − i) , n− (jl − j))

(10)

where (il, jl) denotes the co-ordinates of the point when a

transformation H−1
l is applied on (i, j) by accounting for

the parallax effect (Eqn. (4)). Then, the blurred image in-

tensity at a point (i, j) can be approximately written as

gb (i, j) =
∑
m,n

f (i−m, j − n)hb (i, j;m,n) for b = 1, 2

Consider the blur kernel hc (i, j; ) which is defined as the

convolution of h1 (i, j; ) and h2 (i, j; ). i.e., hc (i, j; ) =
h1 (i, j; ) ∗ h2 (i, j; ). Then, using commutativity

∑
m,n

f (i−m, j − n)hc (i, j;m,n)

=
∑
m,n

g1 (i−m, j − n)h2 (i, j;m,n)

=
∑
m,n

g2 (i−m, j − n)h1 (i, j;m,n) (11)

Let hbk (i, j;m,n) denote the blur kernel generated from

the reference TSF ωbo by assuming the relative depth at

(i, j) to be k (according to Eqn. (10)). Based on the re-

lationship in Eqn. (11), we define the data cost of assigning

a label k at a pixel (i, j) as

D(i,j) (k) =

∣∣∣∣∣
∑
m,n

g1 (i−m, j − n)h2k (i, j;m,n)

−
∑
m,n

g2 (i−m, j − n)h1k (i, j;m,n)

∣∣∣∣∣ (12)

Note that although space-variant blurring is not commuta-

tive in general, the data cost in Eqn. (12) gets minimized

only for the correct depth label at a pixel. For other depth

labels, the difference between the two terms on the RHS of

Eqn. (12) would be significantly large due to incorrect scal-

ing of the blur kernels h1k (i, j; ) and h2k (i, j; ). A similar

cost has been used to get an initial estimate of the depth map

from blurred images in [17] for the case of translational blur.

In order to ensure smoothness, the smoothness cost is

defined to penalize the difference in the labels of neighbor-

ing pixels. To allow for discontinuities, the cost function

should take a constant value when the difference becomes

large. A commonly used prior is the truncated linear model

[6] which is defined as

V (kp, kq) = min (μp |kp − kq| , λth) (13)

where μp is a weighting parameter and the threshold λth de-

termines when the cost stops increasing.

Based on the data cost and the smoothness cost, we ob-

tain the MAP estimate of the relative depth through the mes-

sage passing scheme [6]. On the relative depth map, we

apply segmentation using the technique in [5] to obtain Nd

distinct values. The algorithm in [5] captures perceptually

important non-local properties. This helps us in arriving at

a reasonably accurate segmentation despite isolated errors

in the estimated depth map. We further partition the seg-

mented depth map which contains Nd different depth lay-

ers into two segments using k-means clustering. Thus, we

arrive at a relative depth map with two distinct depth values.

4.3. Restoration

Once the TSFs ω1o and ω2o and the relative depth k are

known, to estimate f , we formulate a regularized energy

functional based on the observation error as

E (f) =
1

2

2∑
b=1

‖f ∗v hb − gb‖2 + λ

∫
|∇f | (14)

where ∗v denotes the space-variant blurring operation of

Eqn. (2) and
∫ |∇f | is the total variation norm. We fol-

low the half-quadratic scheme to enforce the total variation

prior [18]. For minimization of the cost in Eqn. (14), similar

to the approach in [18], we follow preconditioned conjugate

gradient method. The gradient of the energy functional is

∂E (f) =
2∑

b=1

(f ∗v hb − gb)�vhb − λdiv

( ∇f

|∇f |
)

(15)

where �v denotes the adjoint of ∗v and is defined [17] as

f�vh (x) =

∫
f (x− u)h (x,−u) du (16)

Substituting the expression for h (x,u) from Eqn. (5) in

Eqn. (16), we get the result of the adjoint operation g̃b as

g̃b (x) =

∫
λ∈T

ωbo (λ) f
(
H−1

λd(i,j)
(x)

)
dλ (17)
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i.e., the adjoint operation is equivalent to blurring through

a TSF except for the fact that the warping to be applied is

H−1
λd(i,j)

instead of Hλd(i,j)
.

Performing the operations ∗v and �v through the space-

variant PSFs h1 and h2 would be computationally very in-

tensive as compared to blurring through TSFs. Hence, we

segment the depth map to two layers so that within each

depth layer, the TSF model can be used.

5. Experimental results
We performed synthetic as well as real experiments to

test the proposed deblurring algorithm. In the real experi-

ments, the objects in the scene were within a range of 1.5
metres so that the variation of blur with respect to depth due

to camera translations is perceivable. The camera used was

Canon EOS 60D. The lens used in our camera EF-S 18-135

mm has the option of image stabilization which reduces the

effect of out-of-plane camera rotations [1]. We captured two

blurred observations of the scene in burst mode with image

stabilization enabled. In all our experiments, the exposure

time was around one second. Due to camera shake in this

duration, there was appreciable blurring in the observations.

In our synthetic experiment, the latent image and the

scene depth were assumed to be as shown in Figs. 1 (a)

and (e), respectively. We considered two different realis-

tic TSFs to generate the observations. From the depth map

and the TSFs, we calculated the two PSFs at every pixel ac-

cording to Eqns. (4) and (5). The observations generated

using the space-variant blur model of Eqn. (7) are shown

in Figs. 1 (b) and (c). For deblurring, blur kernels were

estimated using image patches that were randomly selected

across the image (marked in Figs. 1 (b) and (c)). Out of six

blur kernels of an observation, we found that two of the blur

kernels were from one of the layers and the remaining four

kernels were from the other layer (please refer to the sup-

plementary material). The layer with the four blur kernels

was chosen as the reference. The TSFs of the two observa-

tions were determined from the corresponding blur kernels

after alignment step. To verify our estimate of the TSFs, we

generated blur kernels at the image points from where the

patches were cropped and found that they were close to the

true blur kernels. We show the blur kernels of the patches

in the supplementary material.

Based on the estimated reference TSFs, we arrived at the

depth map as shown in Fig. 1 (f) by applying the proposed

BP-based method. The segmented depth map shown in Fig.

1 (g) is similar to the true depth map of Fig. 1 (e). We then

applied our TV regularization-based method to arrive at the

latent image of the scene from the estimated reference TSFs

and the segmented depth map of Fig. 1 (g). The deblurred

image shown in Fig. 1 (d), is quite sharp and is close to the

original image of Fig. 1 (a). The third and fourth rows of

Fig. 1 show three sets of zoomed-in patches. In each set,

the first patch is from the original, the next two are from

the observations, and the fourth patch is from the restored

image. In the fourth row, the last patch shows the result of

deblurring when depth variations were ignored. Note that

the original image has very sharp intensity variations which

is hard to recover. Our method (fourth patch) is able to re-

store the image quite well even in the presence of parallax.

We show the performance of our method on two real ex-

amples (Fig. 2). While the first scene consisted of two wall-

papers at different depths, the second scene was of a person

standing against a background. The blurred observations

are shown in the first and second columns of first and third

rows. The result of our bilayer scene deblurring technique

is shown in the third column. The zoomed-in patches of the

observations and the deblurred image are shown below their

respective images (rows 2 and 4). The patches indicate that

even though the extent of blurring is significantly large, our

algorithm estimates the latent image quite well. While the

patches in rows 2 and 4 were from the reference depth layer,

the fifth row shows patches from the other layer. In each set

of patches of the fifth row, the first two patches are from the

observations and the third patch is from the proposed de-

blurring algorithm. The result of deblurring when parallax

was ignored is shown in the fourth patch, wherein we see

that deblurring is far from perfect. This serves to highlight

the importance of accounting for depth changes. In our re-

sults, we observe that at the object boundaries, there could

be some isolated artifacts due to incorrect depth estimates.

The blur kernels and the depth maps of the real experiments

are shown in the supplementary material.

All the image files corresponding to our dataset and the

outputs are included in the supplementary material. For pur-

pose of comparison, we applied the single image deblurring

techniques in [10] and [23] on the images of our dataset.

We found that the results are not satisfactory as shown in

the sixth row of Fig. 2. The zoomed-in regions are included

in the supplementary material. This could be due to fact

that in these methods a single image was used and parallax

effect was not accounted for. It must be mentioned that this

is not a fair comparison because the algorithms in [10, 23]

take only one observation as input.

6. Conclusions
We addressed the problem of restoring a bilayered scene

when the captured observations are space-variantly motion

blurred due to incidental camera shake. Through the notion

of TSF, we were able to effectively model blurring due to

camera motion. For estimating the TSF corresponding to

either the foreground or background, we proposed to use

local blur kernels. We developed a method to automatically

group the blur kernels corresponding to their depth layers.

This enables us to estimate a sparse TSF that is consistent

with the observed blur kernels of a depth layer. Based on
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(a) (b) (c) (d)
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Figure 1. (a) Original image. (b) and (c) Blurred observations. (d) Restored image. (e) True depth map. (f) Estimated depth map. (g)

Segmented depth map. Third and fourth rows: zoomed-in regions from the original image, blurred observations, and restored image (in

the three sets of patches). Fourth row, last image: result of deblurring when depth changes were ignored.

the reference TSFs and the multilayered depth map, we fi-

nally arrived at the deblurred image within a regularization

framework. When tested on different synthetic and real ex-

periments, our results reveal that the proposed non-uniform

motion deblurring scheme is quite effective in accounting

for parallax effects in bilayered scenes. Our method can be

extended to scenes with multiple depth layers.
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