
Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds

Jeremie Papon Alexey Abramov Markus Schoeler
Florentin Wörgötter

Bernstein Center for Computational Neuroscience (BCCN)
III Physikalisches Institut - Biophysik, Georg-August University of Göttingen

{jpapon,abramov,mschoeler,worgott}@physik3.gwdg.de

Abstract

Unsupervised over-segmentation of an image into re-
gions of perceptually similar pixels, known as superpix-
els, is a widely used preprocessing step in segmentation
algorithms. Superpixel methods reduce the number of re-
gions that must be considered later by more computation-
ally expensive algorithms, with a minimal loss of informa-
tion. Nevertheless, as some information is inevitably lost, it
is vital that superpixels not cross object boundaries, as such
errors will propagate through later steps. Existing meth-
ods make use of projected color or depth information, but
do not consider three dimensional geometric relationships
between observed data points which can be used to pre-
vent superpixels from crossing regions of empty space. We
propose a novel over-segmentation algorithm which uses
voxel relationships to produce over-segmentations which
are fully consistent with the spatial geometry of the scene
in three dimensional, rather than projective, space. Enforc-
ing the constraint that segmented regions must have spa-
tial connectivity prevents label flow across semantic object
boundaries which might otherwise be violated. Addition-
ally, as the algorithm works directly in 3D space, observa-
tions from several calibrated RGB+D cameras can be seg-
mented jointly. Experiments on a large data set of human
annotated RGB+D images demonstrate a significant reduc-
tion in occurrence of clusters crossing object boundaries,
while maintaining speeds comparable to state-of-the-art 2D
methods.

1. Introduction
Segmentation algorithms aim to group pixels in images

into perceptually meaningful regions which conform to ob-

ject boundaries. While they initially only considered low-

level information from the image, recent semantic segmen-

tation methods take advantage of high-level object knowl-

edge to help disambiguate object borders. Graph-based ap-

proaches, such as Markov Random Field (MRF) and Condi-

tional Random Field (CRF), have become popular, as they

merge relational low-level context within the image with

object level class knowledge. While the use of such tech-

niques have met with significant success, they have the

drawback that the computational cost of inference on these

graphs generally rises sharply with increasing number of

nodes. This means that solving graphs with a node for every

pixel quickly becomes intractable, which has limited their

use in applications which require real-time segmentation.

The cost of solving pixel-level graphs led to the devel-

opment of mid-level inference schemes which do not use

pixels directly, but rather use groupings of pixels, known

as superpixels, as the base level for nodes [9]. Superpixels

are formed by over-segmenting the image into small regions

based on local low-level features, reducing the number of

nodes which must be considered for inference. While this

scheme has been successfully used in many state-of-the-art

algorithms [4, 15], it suffers from one significant disadvan-

tage; mistakes in the over-segmentation which creates the

superpixels generally cannot be recovered from and will

propagate to later steps in the vision pipeline.

Due to their strong impact on the quality of the even-

tual segmentation [5], it is important that superpixels have

certain characteristics. Of these, avoiding violating object

boundaries is the most vital, as failing to do so will de-

crease the accuracy of classifiers used later - since they will

be forced to consider pixels which belong to more than one

class. Additionally, even if the classifier does manage a cor-

rect output, the final pixel level segmentation will necessar-

ily contain errors. Another useful quality is regular distri-

bution over the area being segmented, as this will produce a

simpler graph for later steps.

In this paper, we present a novel method, Voxel Cloud

Connectivity Segmentation (VCCS), which takes advantage

of 3D geometry provided by RGB+D cameras to gener-

ate superpixels which conform to object boundaries bet-

ter than existing methods, and which are evenly distributed

in the actual observed space, rather than the projected im-

age plane. This is accomplished using a seeding method-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.264

2025

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.264

2025

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.264

2027

ology based in 3D space and a flow-constrained local it-

erative clustering which uses color and geometric features.

In addition to providing superpixels which conform to real

geometric relationships, the method also can be used di-

rectly on point clouds created by combining several cal-

ibrated RGB+D cameras, providing a full 3D supervoxel

(the 3D analogue of superpixels) graph at speeds sufficient

for robotic applications. Additionally, the method source

code is freely distributed as part of the Point Cloud Library

[11] (PCL) 1.

The organization of the paper is as follows: first, in Sec-

tion 2 we give an overview of existing methods. In Sec-

tion 3 we present the 3D supervoxel segmentation algo-

rithm. In Section 4 we present a qualitative evaluation of

the method segmenting 3D point clouds created by merging

several cameras. In Section 5 we use standard quantitative

measures on results from a large RGB+D semantic segmen-

tation dataset to demonstrate that our algorithm conforms

to real object boundaries better than other state-of-the-art

methods. Additionally, we present run-time performance

results to substantiate the claim that our method is able to

offer performance equivalent to the fastest 2D methods. Fi-

nally, in Section 6 we discuss the results and conclude.

2. Related Work

There are many existing methods for over-segmenting

images into superpixels. These can be generally classified

into two subsets - graph-based and gradient ascent meth-

ods. In this section, we shall briefly review recent top-

performing methods.

Graph-based superpixel methods, similar to graph-based

full segmentation methods, consider each pixel as a node in

a graph, with edges connecting to neighboring pixels. Edge

weights are used to characterize similarity between pixels,

and superpixel labels are solved for by minimizing a cost

function over the graph. Moore et al. [8] produce superpix-

els which conform to a regular lattice structure by seeking

optimal paths horizontally and vertically across a bound-

ary image. This is done using either a graph cuts or dy-

namic programming method which seeks to minimize the

cost of edges and nodes in the paths. While this method

does have the advantage of producing superpixels in a reg-

ular grid, it sacrifices boundary adherence to so, and fur-

thermore, is heavily dependent on the quality of the pre-

computed boundary image.

The Turbopixels [7] method of Levinshtein et al. uses a

geometric flow-based algorithm based on level-set, and en-

forces a compactness constraint to ensure that superpixels

have regular shape. Unfortunately, it is too slow for use

in many applications; while the authors claim complexity

linear in image size, in practice we experienced run times

1https://github.com/PointCloudLibrary/pcl/

over 10 seconds for VGA-sized images. Veksler et al. [13],

inspired by Turbopixels, use an energy minimization frame-

work to stitch together image patches, using graph-cuts to

optimize an explicit energy function. Their method (re-

ferred to here as GCb10) is considerably faster than Tur-

bopixels, but still requires several seconds even for small

images.

Recently, a significantly faster class of superpixel meth-

ods has emerged - Simple Linear Iterative Clustering[1]

(SLIC). This is an iterative gradient ascent algorithm

which uses a local k-means clustering approach to effi-

ciently find superpixels, clustering pixels in the five dimen-

sional space of color and pixel location. Depth-Adaptive

Superpixels[14] recently extended this idea to use depth im-

ages, expanding the clustering space with the added dimen-

sions of depth and point normal angles. While DASP is

efficient and gives promising results, it does not take full

advantage of RGB+D data, remaining in the class of 2.5D

methods, as it does not explicitly consider 3D connectivity

or geometric flow.

For the sake of clarity, we should emphasize that our

method is not related to existing “supervoxel” methods

[1, 8, 13], which are simple extensions of 2D algorithms

to 3D volumes. In such methods, video frames are stacked

to produce a structured, regular, and solid volume with time

as the depth dimension. In contrast, our method is intended

to segment actual volumes in space, and makes heavy use

of the fact that such volumes are not regular or solid (most

of the volume is empty space) to aid segmentation. Existing

“supervoxel” methods cannot work in such a space, as they

generally only function on a structured lattice.

3. Geometrically Constrained Supervoxels
In this Section we present Voxel Cloud Connectivity

Segmentation (VCCS), a new method for generating super-

pixels and supervoxels from 3D point cloud data. The su-

pervoxels produced by VCCS adhere to object boundaries

better than state-of-the-art methods while the method re-

mains efficient enough to use in online applications. VCCS

uses a variant of k-means clustering for generating its label-

ing of points, with two important constraints:

1. The seeding of supervoxel clusters is done by par-

titioning 3D space, rather than the projected image plane.

This ensures that supervoxels are evenly distributed accord-

ing to the geometry of the scene.

2. The iterative clustering algorithm enforces strict

spatial connectivity of occupied voxels when considering

points for clusters. This means that supervoxels strictly can-

not flow across boundaries which are disjoint in 3D space,

even though they are connected in the projected plane.

First, in 3.1 we shall describe how neighbor voxels are

calculated efficiently, then in 3.2 how seeds are generated

and filtered, in 3.3 the features and distance measure used

202620262028

for clustering, and finally in 3.4 how the iterative clustering

algorithm enforces spatial connectivity. Unless otherwise

noted, all processing is being performed in the 3D point-

cloud space constructed from one or more RGB+D cameras

(or any other source of point-cloud data). Furthermore, be-

cause we work exclusively in a voxel-cloud space (rather

than the continuous point-cloud space), we shall adopt the

following notation to refer to voxel at index i within voxel-

cloud V of voxel resolution r:

Vr(i) = F1..n, (1)

where F specifies a feature vector which contains n point

features (e.g. color, location, normals).

3.1. Adjacency Graph

Adjacency is a key element of the proposed method, as

it ensures that supervoxels do not flow across object bound-

aries which are disconnected in space. There are three def-

initions of adjacency in a voxelized 3D space; 6-,18-, or

26-adjacent. These share a face, faces or edges, and faces,

edges, or vertices, respectively. In this work, whenever we

refer to adjacent voxels, we are speaking of 26-adjacency.

As a preliminary step, we construct the adjacency graph

for the voxel-cloud. This can be done efficiently by search-

ing the voxel kd-tree, as for a given voxel, the centers of

all 26-adjacent voxels are contained within
√
3 ∗ Rvoxel.

Rvoxel specifies the voxel resolution which will be used for

the segmentation (for clarity, we shall simply refer to dis-

crete elements at this resolution as voxels). The adjacency

graph thus constructed is used extensively throughout the

rest of the algorithm.

3.2. Spatial Seeding

The algorithm begins by selecting a number of seed

points which will be used to initialize the supervoxels. In

order to do this, we first divide the space into a voxelized

grid with a chosen resolution Rseed, which is significantly

higher than Rvoxel. The effect of increasing the seed res-

olution Rseed can be seen in Figure 2. Initial candidates

for seeding are chosen by selecting the voxel in the cloud

nearest to the center of each occupied seeding voxel.

Once we have candidates for seeding, we must filter out

seeds caused by noise in the depth image. This means that

we must remove seeds which are points isolated in space

(which are likely due to noise), while leaving those which

exist on surfaces. To do this, we establish a small search

radius Rsearch around each seed, and delete seeds which do

not have at least as many voxels as would be occupied by

a planar surface intersecting with half of the search volume

(this is shown by the green plane in Figure 1). Once filtered,

we shift the remaining seeds to the connected voxel within

the search volume which has the smallest gradient in the

�����

���������	

������	

�
���

�������
�������������	

Figure 1. Seeding parameters and filtering criteria. Rseed deter-

mines the distance between supervoxels, while Rvoxel determines

the resolution to which the cloud is quantized. Rsearch is used to

determine if there are a sufficient number of occupied voxels to

necessitate a seed.

search volume. Gradient is computed as

G(i) =
∑

k∈Vadj

‖ V (i)− V (k) ‖ CIELab

Nadj
; (2)

we use sum of distances in CIELAB space from neighbor-

ing voxels, requiring us to normalize the gradient measure

by number of connected adjacent voxels Nadj . Figure 1

gives an overview of the different distances and parameters

involved in seeding.

Once the seed voxels have been selected, we initialize the

supervoxel feature vector by finding the center (in feature

space) of the seed voxel and connected neighbors within 2

voxels.

3.3. Features and Distance Measure

VCCS supervoxels are clusters in a 39 dimensional

space, given as

F = [x, y, z, L, a, b, FPFH1..33], (3)

where x, y, z are spatial coordinates, L, a, b are color in

CIELab space, and FPFH1..33 are the 33 elements of Fast

Point Feature Histograms (FPFH), a local geometrical fea-

ture proposed by Rusu et al. [10]. FPFH are pose-invariant

features which describe the local surface model properties

of points using combinations of their k nearest neighbors.

They are an extension of the older Point Feature Histograms

optimized for speed, and have a computational complexity

of O(n · k).
In order to calculate distances in this space, we must

first normalize the spatial component, as distances, and thus

their relative importance, will vary depending on the seed

resolution Rseed. Similar to the work of Achanta et al., [1]

we have limited the search space for each cluster so that it

202720272029

����� ����� �����
�����

Figure 2. Image segmented using VCCS with seed resolutions of 0.1, 0.15 and 0.2 meters.

ends at the neighboring cluster centers. This means that we

can normalize our spatial distance Ds using the maximally

distant point considered for clustering, which will lie at a

distance of
√
3Rseed. Color distance Dc, is the euclidean

distance in CIELab space, normalized by a constant m. Dis-

tance in FPFH space, Df , is calculated using the Histogram

Intersection Kernel [2]. This leads us to a equation for nor-

malized distance D:

D =

√
λD2

c

m2
+

μD2
s

3R2
seed

+ εD2
HiK , (4)

where λ, μ, and ε control the influence of color, spatial dis-

tance, and geometric similarity, respectively, in the cluster-

ing. In practice we keep the spatial distance constant rela-

tive to the other two so that supervoxels occupy a relatively

spherical space, but this is not strictly necessary. For the

experiments in this paper we have color weighted equally

with geometric similarity.

3.4. Flow Constrained Clustering

Assigning voxels to supervoxels is done iteratively, using

a local k-means clustering related to [1, 14], with the signifi-

cant difference that we consider connectivity and flow when

assigning pixels to a cluster. The general process is as fol-

lows: beginning at the voxel nearest the cluster center, we

flow outward to adjacent voxels and compute the distance

from each of these to the supervoxel center using Equation

4. If the distance is the smallest this voxel has seen, its la-

bel is set, and using the adjacency graph, we add its neigh-

bors which are further from the center to our search queue

for this label. We then proceed to the next supervoxel, so

that each level outwards from the center is considered at the

same time for all supervoxels. We proceed iteratively out-

wards until we have reached the edge of the search volume

for each supervoxel (or have no more neighbors to check).

This amounts to a breadth-first search of the adjacency

graph, where we check the same level for all supervoxels

before we proceed down the graphs in depth. Importantly,

we avoid edges to adjacent voxels which we have already

checked this iteration. The search concludes for a super-

voxel when we have reached all the leaf nodes of its adja-

cency graph or none of the nodes searched in the current

level were set to its label. This search procedure, illus-

trated in Figure 3, has two important advantages over ex-

isting methods:

1. Supervoxel labels cannot cross over object boundaries

that are not actually touching in 3D space, since we only

consider adjacent voxels, and

2. Supervoxel labels will tend to be continuous in 3D

space, since labels flow outward from the center of each

supervoxel, expanding in space at the same rate.

Once the search of all supervoxel adjacency graphs has

concluded, we update the centers of each supervoxel clus-

ter by taking the mean of all its constituents. This is done

iteratively; either until the cluster centers stabilize, or for a

fixed number of iterations. For this work we found that the

supervoxels were stable within a few iterations, and so have

simply used five iterations for all presented results.

4. Three Dimensional Voxel Segments
The proposed method works directly on voxelized point

clouds, which has advantages over existing methods which

operate in the projected image plane. The most important

of these is the ability to segment clouds coming from many

sensor observations - either using multiple cameras [3] or

accumulated clouds from one [6]. Computationally, this is

advantageous, as the speed of our method is dependent on

the number of occupied voxels in the scene2, and not the

number of observed pixels. As observations will have sig-

nificant overlap, this means that it is cheaper to segment

the overall voxel cloud than the individual 2D observations.

For instance, the scene in Figure 5 comes from 180 Kinect

observations (640x480), and yet the final voxel cloud (with

Rvoxel = 0.01m) only contains 450k voxels.

Additionally, while VCCS will become more accurate as

cloud information is filled in by additional observations, 2D

methods must necessarily segment them independently and

therefore cannot make use of the added information. Most

2 We should note that while the initial voxelization of the cloud does

take more time with a larger cloud, it remains insignificant overall

202820282030

�������
	�
��

���
������

�

�

� � � �

�

�

�
�

�

�

� � �� �

�

� � �

� �

� �

�

�

�

�

�

�

� � � � � � � �

�

 �! "

�

� � ! "

#

$

$

#

�����%�&�'(

Figure 3. Search order for the flow constrained clustering algorithm (shown in 2D for clarity). Dotted edges in the adjacency graph are not

searched, as the nodes have already been added to the search queue.

importantly, even with methods that use depth information,

such as that of Weikersdorfer et al. [14], it is not clear how

one would combine the multiple segmented 2d images, as

superpixels from sequential observations will have no rela-

tion to each other and will have conflicting partitionings of

space in the merged cloud.

5. Experimental Evaluation
In order to evaluate the quality of supervoxels gener-

ated by VCCS, we performed a quantitative comparison

with three state-of-the-art superpixel methods using pub-

licly available source code. We selected the two 2D tech-

niques with the highest published performance from a re-

cent review [1]: a graph based method, GCb10 [13]3, and

a gradient ascent local clustering method, SLIC [1]4. Ad-

ditionally, we selected another method which uses depth

images, DASP[14]5. Examples of over-segmentations pro-

duced by the methods are given in Figure 6.

5.1. Dataset

For testing, we used the recently created NYU Depth

Dataset V2 semantic segmentation dataset of Silberman

et al. [12]6. This contains 1449 pairs of aligned RGB

and depth images, with human annotated densely labeled

ground truth. The images were captured in diverse cluttered

indoor scenes, and present many difficulties for segmenta-

tion algorithms such as varied illumination and many small

similarly colored objects. Examples of typical scenes are

shown in Figure 6.

5.2. Returning to the Projected Plane

RGB+D sensors produce what is known as an organized

point cloud- a cloud where every point corresponds to a

pixel in the original RGB and depth images. When such a

3http://www.csd.uwo.ca/˜olga/Projects/
superpixels.html

4http://ivrg.epfl.ch/supplementary_material/RK_
SLICSuperpixels/index.html

5https://github.com/Danvil/dasp
6http://cs.nyu.edu/˜silberman/datasets/nyu_

depth_v2.html

Figure 4. Example of hole-filling for images after returning from

voxel-cloud to the projected image plane. Depth data, shown in

the top left, has holes in it, shown as dark blue areas (here, due

to the lamp interfering with the Kinect). The resulting supervox-

els do not cover these holes as shown in the bottom left, since the

cloud has no points in them. To generate a complete 2D segmen-

tation, we fill these holes in using the SLIC algorithm, resulting in

a complete segmentation, seen in the top right. The bottom right

shows human annotated ground truth for the scene.

cloud is voxelized, it necessarily loses this correspondence,

and becomes an unstructured cloud which no longer has any

direct relationship back to the 2D projected plane. As such,

in order to compare results with existing 2D methods we

were forced to devise a scheme to apply supervoxel labels

to the original image.

To do this, we take every point in the original organized

cloud and search for the nearest voxel in the voxelized rep-

resentation. Unfortunately, since there are blank areas in

the original depth image due to such factors as reflective

surfaces, noise, and limited sensor range, this leaves us with

some blank areas in the output labeled images. To overcome

this, we fill in any large unlabeled areas using the SLIC al-

gorithm. This is not a significant drawback, as the purpose

of the algorithm is to form supervoxels in 3D space, not su-

perpixels in the projected plane, and this hole-filling is only

needed for comparison purposes. Additionally, the hole fill-

202920292031

Figure 5. Over-segmentation of a cloud from the RGB-D scenes dataset[6]. The cloud is created by aligning 180 kinect frames, examples

of which are seen on the left side. The resulting cloud has over 3 million points, which reduces to 450k points at Rvoxel = 0.01m and

100k points with Rvoxel = 0.02m. Over-segmentation of these take 6 and 1.5 seconds, respectively (including voxelization).

Figure 6. Examples of under-segmentation output. From left to right- ground truth annotation, SLIC, GCb10, DASP, and VCCS. Each is

shown with two different superpixel densities.

203020302032

��� ���� ���� ����

���

���

���

��	

��

���

�

����� �� ��������

��
�
��
��
��
��
��

�� !
 "#$
%$$
&$���

��� ���� ���� ����
0.1

0.2

��'

���

���

���

��	

��

����� �� ��������

(�
��
�)
��
��
��
��
�*�
�
��
��
�

�� !
 "#$
%$$
&$���

Figure 7. Boundary recall and under-segmentation error for SLIC,

GCb10, DASP, and VCCS.

ing actually makes our results worse, since it does not con-

sider depth, and therefore tends to bleed over some object

boundaries that were correctly maintained in the supervoxel

representation. An example of what the resulting segments

look like before and after this procedure are shown in Fig-

ure 4.

5.3. Evaluation Metrics

The most important property for superpixels is the abil-

ity to adhere to, and not cross, object boundaries. To mea-

sure this quantitatively, we have used two standard met-

rics for boundary adherence- boundary recall and under-

segmentation error[7, 13]. Boundary recall measures what

fraction of the ground truth edges fall within at least two

pixels of a superpixel boundary. High boundary recall indi-

cates that the superpixels properly follow the edges of ob-

jects in the ground truth labeling. The results for bound-

ary recall are given in Figure 7. As can be seen, VCCS

and SLIC have the best boundary recall performance, giv-

ing similar results as the number of superpixels in the seg-

mentation varies.

Under-segmentation error measures the amount of leak-

age across object boundaries. For a ground truth segmenta-

tion with regions g1, ..., gM , and the set of superpixels from

an over-segmentation, s1, ...sK , under-segmentation error

is defined as

Euseg =
1

N

⎡
⎣ M∑

i=1

⎛
⎝ ∑

sj |sj∩gi

|sj |
⎞
⎠−N

⎤
⎦ , (5)

where sj | sj∩gi is the set of superpixels required to cover a

ground truth label gi, and N is the number of labeled ground

truth pixels. A lower value means that less superpixels vio-

lated ground truth borders by crossing over them. Figure 7

compares the four algorithms, giving under-segmentation

error for increasing superpixel counts. VCCS outperforms

existing methods for all superpixel densities.

5.4. Time Performance

As superpixels are used as a preprocessing step to re-

duce the complexity of segmentation, they should be com-

putationally efficient so that they do not negatively impact

overall performance. To quantify segmentation speed, we

measured the time required for the methods on images of

increasing size (for the 2D methods) and increasing number

of voxels (for VCCS). All measurements were recorded on

an Intel Core i7 3.2Ghz processor, and are shown in Fig-

ure 8. VCCS shows performance competitive with SLIC

and DASP (the two fastest superpixel methods in the litera-

ture) for voxel clouds of sizes which are typical for Kinect

data at Rvoxel = 0.008m (20-40k voxels). It should be

noted that only VCCS takes advantage of multi-threading

(for octree, kd-tree, and FPFH computation), as there are

no publicly available multi-threaded implementations of the

other algorithms.

6. Discussion and Conclusions
We have presented VCCS, a novel over-segmentation al-

gorithm for point-clouds. In contrast to existing approaches,

it works on a voxelized cloud, using spatial connectivity

and geometric features to help superpixels conform better

to object boundaries. Results demonstrated that VCCS pro-

duces over-segmentations which perform significantly bet-

ter than the state-of-the-art in terms of under-segmentation

error, and equal to the top performing method in boundary

recall. This is fortunate, as we consider under-segmentation

error to be the more important of the two measures, as

boundary recall does not penalize for crossing ground truth

boundaries- meaning that even with a high boundary recall

score, superpixels might perform poorly in actual segmenta-

tion. We have also presented timing results which show that

VCCS has run time comparable to the fastest existing meth-

ods, and is fast enough for use as a pre-processing step in

online semantic segmentation applications such as robotics.

203120312033

�

����

����

����

����

10000

�����

�	
������

��
	
�
�	

��

����
����
�����

� ��� � ��� � ���
� ��5

�

���

����

����

����

����

� 	��! "# $"��%�

��
	
�
�	

��

&���

���
���

�

'�
��
(�
�

��
��
�'
��

��
��
��
��
�

�'
��
��
��
�

��
��
��
'�
�

Figure 8. Speed of segmentation for increasing image size and

number of voxels. Use of GCb10 rapidly becomes unfeasible for

larger image sizes, and so we do not adjust the axes to show its run-

time. The variation seen in VCCS run-time is due to dependence

on other factors, such as Rseed and overall amount of connectivity

in the adjacency graphs.

We have made the code publicly available as part of the

popular Point Cloud Library, and intend for VCCS to be-

come an important step in future graph-based 3D semantic

segmentation methods.

Acknowledgements

The research leading to these results has received fund-

ing from the European Community’s Seventh Framework

Programme FP7/2007-2013 (Specific Programme Coopera-

tion, Theme 3, Information and Communication Technolo-

gies) under grant agreement no. 270273, Xperience and

grant agreement no. 269959, Intellact.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE Trans. Pattern Anal. Machine In-
tell., 34(11):2274 –2282, nov. 2012. 2, 3, 4, 5

[2] A. Barla, F. Odone, and A. Verri. Histogram intersection

kernel for image classification. In Image Processing, 2003.
ICIP 2003. Proceedings. 2003 International Conference on,

pages III – 513–16 vol.2, sept. 2003. 4

[3] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges,

and D. Kim. Shake’n’sense: reducing interference for over-

lapping structured light depth cameras. In Proceedings of the
2012 ACM annual conference on Human Factors in Comput-
ing Systems, CHI ’12, pages 1933–1936, New York, USA,

2012. 4

[4] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation

and object localization with superpixel neighborhoods. In

Computer Vision, 2009 IEEE 12th International Conference
on, pages 670 –677, oct. 2009. 1

[5] A. Hanbury. How do superpixels affect image segmentation?

In Progress in Pattern Recognition, Image Analysis and Ap-
plications, Lecture Notes in Computer Science, pages 178–

186. 2008. 1

[6] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical

multi-view rgb-d object dataset. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1817

–1824, may 2011. 4, 6

[7] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dick-

inson, and K. Siddiqi. Turbopixels: Fast superpixels using

geometric flows. IEEE Trans. Pattern Anal. Machine Intell.,
31(12):2290 –2297, dec. 2009. 2, 7

[8] A. Moore, S. Prince, J. Warrell, U. Mohammed, and

G. Jones. Superpixel lattices. In Computer Vision and Pat-
tern Recognition, 2008 (CVPR). IEEE Conference on, pages

1 –8, june 2008. 2

[9] X. Ren and J. Malik. Learning a classification model for

segmentation. In Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on, pages 10 –17 vol.1, oct.

2003. 1

[10] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature

histograms (fpfh) for 3d registration. In Robotics and Au-
tomation, 2009 (ICRA). IEEE International Conference on,

pages 3212 –3217, may 2009. 3

[11] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library

(PCL). In Robotics and Automation, 2011 (ICRA). IEEE In-
ternational Conference on, Shanghai, China, may 2011. 2

[12] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

Computer Vision ECCV 2012, volume 7576 of Lecture Notes
in Computer Science, pages 746–760. 2012. 5

[13] O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and su-

pervoxels in an energy optimization framework. In Com-
puter Vision ECCV 2010, volume 6315, pages 211–224.

2010. 2, 5, 7

[14] D. Weikersdorfer, D. Gossow, and M. Beetz. Depth-adaptive

superpixels. In Pattern Recognition (ICPR), 2012 21st Inter-
national Conference on, pages 2087–2090, 2012. 2, 4, 5

[15] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered

object detection for multi-class segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 3113 –3120, june 2010. 1

203220322034

