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Lisboa, Portugal

Gustavo Carneiro
Australian Centre for Visual Technologies

The University of Adelaide
Adelaide, Australia

Abstract

The solution for the top-down segmentation of non-rigid
visual objects using machine learning techniques is gener-
ally regarded as too complex to be solved in its full general-
ity given the large dimensionality of the search space of the
explicit representation of the segmentation contour. In order
to reduce this complexity, the problem is usually divided into
two stages: rigid detection and non-rigid segmentation. The
rationale is based on the fact that the rigid detection can be
run in a lower dimensionality space (i.e., less complex and
faster) than the original contour space, and its result is then
used to constrain the non-rigid segmentation. In this paper,
we propose the use of sparse manifolds to reduce the dimen-
sionality of the rigid detection search space of current state-
of-the-art top-down segmentation methodologies. The main
goals targeted by this smaller dimensionality search space
are the decrease of the search running time complexity and
the reduction of the training complexity of the rigid detec-
tor. These goals are attainable given that both the search
and training complexities are function of the dimensional-
ity of the rigid search space. We test our approach in the
segmentation of the left ventricle from ultrasound images
and lips from frontal face images. Compared to the per-
formance of state-of-the-art non-rigid segmentation system,
our experiments show that the use of sparse manifolds for
the rigid detection leads to the two goals mentioned above.

1. Introduction
The top-down segmentation of non-rigid visual objects

based on machine learning approaches [4, 9, 28, 29, 30, 31]
has been traditionally addressed by dividing it into two pro-
cedures that are run in the following sequence: 1) rigid de-
tection and 2) non-rigid segmentation. The main reason for
the existence of a rigid detection step is the reduction of the
training complexity and the search running time complex-
ity. More specifically, assuming that the explicit represen-
tation of the segmentation contour consists of S 2-D points
(usually, S > 10), the complexity of the exhaustive search

would be O(K2S), where K denotes the number of sam-
ples in each of the 2S dimensions. The introduction of the
rigid detection procedure allows for a significant reduction
of K during the non-rigid segmentation by constraining the
search for the visual object borders within a small window
around the output produced by the rigid detector. Usually,
the rigid detection finds the center, scale and orientation of
the visual object by searching for it in a parameter space of
r dimensions, where r << S (note that throughout the pa-
per, r represents a variable that indicates the dimensionality
of the rigid detection space). As a result, the rigid detec-
tion approach becomes the dominant procedure in terms of
running time complexity, which is function of r.

Another issue addressed by the introduction of a rigid de-
tection approach is the alleviation of the need of a large and
complete training set. Nevertheless, the rigid detector still
runs in an r-dimensional space, which means that the de-
tector complexity is also function of r, and the training set
available rarely provides enough information for a robust
training. The usual solution to get around this issue con-
sists of generating artificial positive and negative training
samples by randomly perturbing the rigid parameters of the
annotated data [25]. This random perturbation is commonly
drawn from some simple probability density function (e.g.,
Gaussian distribution) learned from the annotations. The is-
sue with this approach is that the actual training data distri-
bution is unlikely to follow simple probability density func-
tions, so this process is probably unnecessarily increasing
the complexity of the learning process by adding artificial
samples that may not be plausible in practice.

In this paper, we propose the use of sparse manifolds [18]
with low intrinsic dimensionality for the rigid detection
stage in non-rigid top-down visual segmentation method-
ologies [4, 5, 9, 30, 31]. The intrinsic low dimensional-
ity of sparse manifolds decreases the search running time
complexity of the current state-of-the-art rigid detection
approaches aforementioned. Moreover, by restricting the
positive and negative samples to lie in the learned low-
dimensional sparse manifold, it is possible to reduce sig-
nificantly the need for additional artificial positive and neg-
ative samples during the training process, and at the same
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time guarantee that the additional samples are more likely to
happen in practice. Consequently, this produces less com-
plex and faster training processes. We test our approach
in the challenging problems of left ventricle (LV) endocar-
dial segmentation from ultrasound images and of lip seg-
mentation from frontal face images. In the experiments, we
produce competitive segmentation results with significant
running time complexity reduction using a sparse manifold
of two dimensions, which represents a substantial reduction
from the original five dimensional rigid search space usu-
ally found in current approaches. Furthermore, we show
that the training process is robust to the reduction of the
number of additional artificial positive and negative sam-
ples, which indicates that smaller training sets can be used
in our framework without affecting the segmentation accu-
racy. Also note that these smaller training sets result in less
complex and faster training processes.

2. Related Work
The use of machine learning techniques to solve top-

down non-rigid segmentation problems has been intensively
investigated in the past few years. Particularly challeng-
ing problems in this domain are the segmentation of the left
ventricle (LV) of the heart from ultrasound images [20] (see
Figures 1(a) and 5), and the segmentation of the lip bor-
der from frontal face images [24] (see Figures 1(b) and 6).
There have been several approaches to solve this problem
using machine learning techniques, such as the boosting
classifier for rigid detection followed by nearest neighbor
search for the non-rigid segmentation [9, 30, 31], and the
deep belief network approach for the rigid detection and the
non-rigid segmentation [4, 3, 5]. However, none of these
approaches attempt to reduce the dimensionality of the rigid
search space using gradient-based search methods on man-
ifolds.

Gradient-based search methods on manifolds have been
recently investigated by Helmke et al. [11], who propose a
new optimization approach for the essential matrix compu-
tation with the use of Gauss-Newton iterations on a mani-
fold in order to reduce the computational effort. Hüper et al.
[14] also elaborate a numerical optimization of a cost func-
tion defined on a manifold. In the same research line, New-
ton’s method is applied along the geodesics and variants
of projections are proposed where the optimization strate-
gies take advantage of the manifold structure[1, 7, 23]. Our
approach represents an application of such gradient-based
search methods in the problem of top-down non-rigid seg-
mentation with the specific goals of reducing the search run-
ning time and the training complexity.

3. Non-rigid Top-down Segmentation Problem
Definition

Given an image containing the sought visual object, our
goal is to produce a non-rigid segmentation using a matrix

(a) (b)

Figure 1. Application of the transformation At to the window en-
closing the sought segmentation contour for the case of (a) left
ventricle segmentation, and (b) lip segmentation. Both figures de-
pict the explicit segmentation contour with the rectangular window
(left panel) and zoomed in image of the visual information within
the window (right panel). Note that the images on the right panels
are the ones used by the rigid classifier p(t|I,D) in (2).

S ∈ R
2×S of S 2-D points, which is the explicit representa-

tion of the segmentation contour. Assume the availability of

a training set, represented byD = {(I,S)j}|D|j=1, containing

training images Ij : Ω → [0, 255] and the respective man-
ual annotations Sj , where Ω denotes the image lattice. The
segmentation is achieved using the following function:

S∗ =

∫
S

Sp(S|I,D)dS. (1)

The high dimensionality of S makes the computation of (1)
intractable, and the usual solution to alleviate the problem
is the introduction of an intermediate problem that can be
solved in lower dimensionality, where the solution is used
to constrain the optimization (1). This intermediate problem
involves the use of a hidden variable t ∈ R

r, with r <<
(2× S), as follows [4, 9, 30, 31]:

p(S|I,D) =
∫
t

p(t|I,D)p(S|t, I,D)dt. (2)

In practice, the variable t is used to transform linearly
the coordinates of a window that encloses the segmenta-
tion contour (see Fig. 1). This linear transform is obtained
from the variable t as follows: At = f(t), where At ∈
R

3×3 [4, 9, 30, 31]1. Then the term p(t|I,D) in (2) repre-
sents the rigid detection classifier that outputs the probabil-
ity of having the sought visual object within the boundaries
of the window transformed by t. The term p(S|t, I,D) in
(2) is the non-rigid segmentation classifier denoted by the
probability of finding the contour S in image I given the
value of t. That is, t constrains the search space of S to be
within the image window defined by t.

Assuming that the original rigid search space represented
by the variable t has dimension r = R, the main objective
of this paper is the introduction of a new space for t with
dimension r = M < R, based on a sparse manifold.

1For example, suppose t = [x, y, ϑ, νx, νy ] denotes
a transformation comprising a translation x and y, rota-
tion ϑ, and non-uniform scaling νx and νy ; then f(t) =⎡
⎣

1 0 x
0 1 y
0 0 1

⎤
⎦
⎡
⎣

cos(ϑ) − sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1

⎤
⎦
⎡
⎣

νx 0 0
0 νy 0
0 0 1

⎤
⎦.
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Figure 2. Partition of the manifold into patches (top) and the corre-
sponding tangent hyperplanes (bottom). The arrows illustrate the
mappings back and forth between the patches and the hyperplanes.
The black dots are the annotations from which a low dimensional
representation is built.

4. Sparse Manifolds
The intuition of using manifolds for reducing the dimen-

sionality of t is centered on the idea that the training annota-
tions Sj can be confidently represented in a manifoldM by
the respective lower dimensional variable tj . For learning
such manifold, we follow the Gaussian Processes Multiple
Dynamical Models (GP-MLM) [18] implementation. GP-
MLM is a local method that finds multiple representations
of the manifold, valid in different regions. The advantages
of GP-MLM compared to other approaches [26, 27] are: 1)
the data partitioning into several local models allows us to
make less restrictive assumptions about the topology of the
manifold; 2) the coordinates of each local model are found
by simply projecting the data onto previously estimated tan-
gent subspaces, instead of performing costly iterative opti-
mizations (e.g., GP-LVM [19]); and 3) it allows for an el-
egant way to perform model selection approaches, which
increases the efficiency of GP-MLM.

The manifold learning strategy consists of the following
input/output (see Fig. 2 for an illustration):

• Input: training samples Sj , j = 1, ..., |D|,

• Output: (i) intrinsic manifold dimension M < R <<
S; (ii) partition the manifold M into overlapping
patches Pi ⊂ M, i ∈ {1, ..., |P|}; (iii) tangent hy-
perplanes TPi

for each patch; and (iv) forward and
backward mappings between patches and tangent hy-
perplanes, i.e. the charts t = ζi(S) and parameteri-
zations S = ξi(t) + ω, in which ω represents a zero
mean Gaussian observation noise.

According to GP-MLM, each patch Pi is represented by
|Pi| samples drawn from the training set D. These samples
are then used to form the matrix Ti = [ti,1, ..., ti,|Pi|] ∈
R

M×|Pi|, where the |Pi| points belonging to patch Pi are
known as the patch member points, and in general |Pi| �=
|Pj | for i �= j.

One of the innovations of this paper is the execution of

the function in (2) directly on the manifold M. This is ac-
complished by performing the optimization process in each
of the low dimensional patches Pi with initial guesses taken
from the patch member points ti,j = ζi(Si,j), for j =
1, ..., |Pi|. The main issue with this approach is that GP-
MLM may provide a relatively large number of patch mem-
bers, especially if the sought object presents significant vari-
ations in terms of location, scale and rotations in the train-
ing image sequence. Consequently, this large number of
patch members results in a large number of initial guesses,
which decreases the efficiency of the search process. In or-
der to reduce the number of initial guesses, we propose a
patch member selection procedure, where the goal is to se-
lect a subset of the columns of Ti = [ti,1, ..., ti,|Pi|] that
preserves enough information about the chart ζi. This se-
lection will provide automatically a set of landmarks. To
solve this problem we start by converting the non-linear re-
gression problem S = ξi(t) + ω into a linear regression by
off-loading the non-linearity onto a kernel [21]. The linear
conversion takes the following matrix form

Θ� = KB+W, (3)

where Θ = [(π1Si,1, π2Si,1)
�, ..., (π1Si,|Pi|, π2Si,|Pi|)

�] ∈
R

2S×|Pi| (with π1 = [1, 0] and π2 = [0, 1]), K is a
|Pi| × |Pi| symmetric positive semi-definite matrix with
elements kij = exp(−‖ti − tj‖2/2σK), W ∈ R

|Pi|×2S

with each row being a realization of ω, and B ∈ R
|Pi|×2S .

This is however, difficult to solve since it leads to a multiple
measurement vectors (MMV) problem [6], where it is
difficult to impose sparsity in all columns simultane-
ously. To tackle this issue we re-formulate (3) as a single
measurement vector problem (SMV) [22] leading to

θ = Kβ + η, (4)

where θ,β, η ∈ R
|Pi| are column vectors, from which it is

possible to use model selection based procedures. In this
work, the jth element θj of the vector θ, is the maximum
principal angle between the tangent bundles TSi,j

and TPi
,

where TSi,j
is the tangent subspace of Si,j and TPi

is the
tangent subspace of Pi found by agglomerative soft cluster-
ing [18]. In effect, notice that this reformulation allows the
representation of each annotation Si,j by the element θj of
the vector θ.

The model selection (to find the set of landmarks) is then
achieved by finding a sparse solution to (4). The idea is
to estimate β with the minimization of the following cost
function: ∥∥θ −Kβ

∥∥+ α
∥∥β∥∥

q
, (5)

where ‖β‖q is the 	q norm of β, and α controls the regu-
larization term. To minimize (5), we follow the least angle
regression (LARS) procedure [8], where the risk is a func-
tion of the number Li of non-zero values in β, forming the
vector βLi

(note that Li denotes the number of landmarks
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Figure 3. Manifold learning algorithm for the LV segmentation
problem. The graph on the left shows the annotation points in blue
and landmarks in red. From our experiments, a total of 1158 patch
member points (blue dots) and 63 landmark points (circle red) are
estimated. On the right graph, each annotation point is colored
according to which patch it belongs, where from the experiments,
14 patches are estimated.

per patch Pi). This risk minimization problem forms the set

of landmarks for the ith patch T̃i = [t1, ..., tLi
] ∈ R

M×Li

with Li << |Pi|, where the columns of T̃i ⊆ Ti are the
landmarks, which have the same indexes as the non-zero el-
ements of βLi

. These landmarks will be the points used for
initial guesses in the segmentation procedure, and in general
we have Li �= Lj for i �= j.

Fig. 3 illustrates the result of our manifold learning al-
gorithm on the LV segmentation problem (see Section 8),
where each patchPi contains a set of the patch-member and
landmark points. On the left, the blue dots are the annota-
tions after PCA reduction (the first three components are
shown), and the red circles indicate the landmarks. On the
right we can see the patches, where each color represents a
different patch.

5. Training and Inference on the Sparse Mani-
fold

The rigid detection classifier in (2) is modeled by the pa-
rameter vector γMAP (learned with a maximum a posteriori
learning algorithm), which means that p(t|I,D) is repre-
sented by p(t|I, γMAP). The estimation of γMAP is based on
a set of training samples taken from the set of patch member
points ti,j = ζi(Si,j) (for j ∈ {1, ..., |Pi|}) of each learned
patch Pi (for i ∈ {1, ..., |P|}) estimated by the manifold
learning algorithm. Specifically, the generation of positive
and negative samples involves the following steps: 1) esti-
mate the contour in the original image space from the land-

mark, Ŝi,j = ζ−1
i (ti,j); 2) find the transformation matrix

Ati,j of the image window enclosing the segmentation con-

tour Ŝi,j produced in step (1).
For training the classifier, the sets of positives and neg-

atives are formed by sampling a distribution of the patch
members ti,j . The distribution in patch Pi is defined by

Dist(Pi) = U(range(Ti)), (6)

where U(range(Ti)) is the uniform distribution such that

range(Ti) = [maxrow(Ti)−minrow(Ti)] ∈ R
M with

Ti defined in Sec. 4, denoting a matrix with the patch
members ti,j ∈ Pi in its columns and the functions
maxrow(Ti) ∈ R

M and minrow(Ti) ∈ R
M representing,

respectively, the maximum and minimum row elements of
the matrix Ti. The positive and negative sets are respec-
tively generated as follows:

T+(i, j) = {t|t ∼ Dist(Pi), d(t, ti,j) ≺mi}
T−(i) = {t|t ∼ Dist(Pi), d(t, ti,j) 
 2×mi

∀j ∈ {1, ..., |Pi|}
, (7)

where

mi = range(Ti)× κ (8)

represents the margin between positive and negative cases
with κ ∈ (0, 1) defined as a constant, the ≺ and 
 are
the element wise “less than” or “greater than” operators be-
tween two vectors, and d(t, ti,j) = |t − ti,j | ∈ R

M is the
dissimilarity function in (7), where |.| returns the absolute
value of the vector t − ti,j . Note that the randomly gener-
ated parameter t in (7) is projected to the patch Pi in order
to guarantee that it belongs to the manifold. Basically, (7)
generates positive samples that are relatively close to patch
member points and negative samples that are sufficiently far
to all patch members.

Finally, the discriminative learning of the rigid classifier
is achieved with the maximization of the following objec-
tive function [12]:

γMAP = argmax
γ

|P|∏
i=1

|Pi|∏
j=1

⎡
⎣ ∏
t∈T+(i,j)

p(t|I, γ)

⎤
⎦

×

⎡
⎣ ∏
t∈T−(i)

(1− p(t|I, γ))

⎤
⎦ .

(9)

Fig.4(a) displays the training process explained in this sec-
tion, where the positive samples are extracted from the
green region, and the negative samples are drawn from the
yellow region. The parameters λ of the non-rigid classifier
in (2) are learned similarly with the following optimization:

λMAP = argmax
λ

|P|∏
i=1

|Pi|∏
j=1

p(Si,j |ti,j , I, λ), (10)

where p(S|t, I,D) in (2) is represented by p(S|t, I, λMAP).
The inference procedure to generate the segmentation

contour takes a test image represented by I , and uses the
sparse manifold to produce the contour S∗ ∈ R

2×S in (1).
It is important to mention that this inference procedure uses
each landmark ti,j (for j ∈ {1, ..., Li}) from each learned
patch Pi as initial guesses for a gradient ascent (GA) pro-
cedure [2] on the output of the classifier p(t|I, γMAP) over
the search parameter space on the manifold M. Given
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(a) Training

(b) Inference

Figure 4. Training (top) and inference (bottom) procedures (please
see text for details).

that the initial guesses of the GA procedure come from the

landmarks, we have t
(0)
i,j = ti,j (the superscript (n) for

n ∈ {0..N} represents the GA iteration index, with N de-
noting the maximum number of GA steps), and after N GA

iterations, the final value for the search parameter is t
(N)
i,j .

Assuming that p(t) = p(t|I, γMAP ), the GA algorithm uses

the Jacobian ∇p(t) =
[

∂p(t)
∂t(1) ... ∂p(t)

∂t(M)

]�
, which is

computed numerically using central difference, with step
size mi (8), as follows:

∂p(t)

∂t(1)
=

p(t+ [mi(1)/2, ..., 0]
�)− p(t− [mi(1)/2, ..., 0]

�)

mi(1)
(11)

where the parameter for t(.) indicates the dimensionality
index (i.e., t(1) denotes the first dimension of t), and simi-
larly for mi(.). In (11), the parameter t± [mi(1)/2, ..., 0]

�

is projected to the patch Pi (i.e., Si,j = ξi(ti,j)) in order to
guarantee that it belongs to the manifold M. Once the GA

process is over and the parameter t
(N)
i,j is reached for each

landmark ti,j of each patch Pi

, and the contour S∗ is estimated with a Monte-Carlo
approximation of (1) as follows:

S∗ =
1

Z

|P|∑
i=1

Li∑
j=1

Sp(t
(N)
i,j |I, γMAP)× p(S|t(N)

i,j , I, λMAP),

(12)
where Z is a normalization factor. Figure 4(b) shows

the setting of the segmentation procedure, with the
level sets representing the results of the rigid classifier
p(ti,j |I, γMAP). Notice that the rigid search procedure is
performed only in the low dimensional space of t.

6. Search Complexity Reduction
The bottleneck of current top-down non-rigid segmenta-

tion methods based on machine learning techniques lies in
the number of executions of the rigid classifier p(t|I, γMAP)
that runs in the intermediate space represented by the vari-
able t ∈ R

r. For the complexity analysis below, assume
that K = O(103) denotes the number of samples used in
each dimension of this intermediate space. An exhaustive
search in this r-dimensional space represents a running time
complexity of O(Kr), which is in general intractable for
relatively small values of r = R (note that R ∈ {4, 5} in
state-of-the-art approaches). The reduction of this running
time complexity has been studied by Lampert et al. [15],
who proposed a branch-and-bound approach that can find
a global optimum in this rigid search space in O(Kr/2).
Zheng et al. [30] proposed the marginal space learning that
finds local optima using a coarse-to-fine approach, where
the search space is recursively broken into spaces of increas-
ing dimensionality (i.e., the search begins with one of the
r dimensions, whose result is used to constrain the search
in the space of two dimensions, until arriving at the space
of r dimensions). Carneiro et al. [4] also proposed a local
optima approach based on a coarse-to-fine derivative-based
search that uses a gradient ascent approach in the space of
r dimensions. In general, these last two methods provide a
search complexity of O(K + T ×Kfine × r), where T is
the number of scales (for the methods above, T = 3), and
Kfine << K (commonly, Kfine = O(101)). Notice that
our proposal has the potential to increase the efficiency of
all approaches above because we reduce r from R to M .
Moreover, with the use of Li landmarks per patch Pi, we
avoid the expensive initial search of K points in the coarsest
scale. Taking all this together, we have a final complexity of
O((

∑
i Li)×T × r). Typically, we have

∑
i Li = O(101),

so our approach leads to a complexity of O(10 × 3 × r),
which compares favorably to O(103 + 3 × 10 × r) [4, 30]
and O((103)r/2) [15].

7. Databases and Implementation Details
Two databases are used in the experiments. For the LV

segmentation problem, we use the database proposed by
Nascimento et al. [17]. In this database, the training set con-
tains 400 ultrasound images of the left ventricle of the heart
(using the apical two and four-chamber views), which have
been taken from 12 sequences (12 subjects with no over-
lap), where each sequence contains an average of 34 anno-
tated frames. The test set contains two sequences, where
each sequence has 40 annotated images (two subjects with
no overlap). Note that all images in the training and test sets

196519651967



have been annotated by a cardiologist. For the lip segmenta-
tion problem, we use the CohnKanade (CK+) database [16]
of emotion sequences, where manual annotation is avail-
able. Among several emotions, we select the “surprise”
sequences since they exhibit challenging lip boundary de-
formations. The training set has four sequences (four sub-
jects with no overlap), consisting of 103 annotated train-
ing images, and the test set contains 10 sequences (ten sub-
jects with no overlap), comprising 171 images. For both
databases, the intersection between training and test sets is
empty and the test set is used exclusively for testing. Fi-
nally, the dimensionality of the explicit representation for
the LV contour is S = 21, and for the lip segmentation con-
tour is S = 40.

The demonstration of the proposed derivative-based
search on sparse manifolds is conducted using an exten-
sion of the method proposed by Carneiro et al. [4], where
the coarse-to-fine rigid detector p(t|I, γMAP) and non-rigid
classifier p(S|t, I, λMAP) are based on deep belief networks
(DBN) [12]. The extension consists of training and running
the rigid classifier in the space defined by the sparse man-
ifold described in Sec. 4. The parameter κ in (8), defining
the training grid for sampling positive and negative exam-
ples, is set to 1/200, similarly to [4]. For the LV segmen-
tation problem, the manifold learning algorithm produces:
(i) |P| = 14 patches, with a total of 1158 patch mem-
ber points and 63 landmark points, and (ii) M = 2 for
the dimensionality of the rigid search space (i.e., this rep-
resents the intrinsic dimensionality of the manifold) . For
the lip segmentation, the manifold learning produces: (i)
|P| = 1 patch with 120 patch member points and 3 land-
mark points, and (ii) M = 2 for the dimensionality of the
rigid search space. It is worth mentioning that the origi-
nal dimensionality of the rigid search space for current ap-
proaches is R = 5 (representing two translation, one rota-
tion and two scale parameters) [4, 9, 31]. Finally, in order
to estimate the robustness of our approach to small training
sets we conduct an experiment on the LV database, where
we vary the size of the set of positive samples as follows
|T+(i, j)| ∈ {1, 5, 10}, and the size of negative samples as
|T−(i)| ∈ {10, 50, 100} × |Pi| (we added more additional
negative samples due to the larger area occupied by the neg-
ative region). Our goal with this experiment is to study how
the accuracy of the methodology varies with the size of the
database. Note that for both databases, the training of the
original algorithm in [4] used |T+| = 10, and |T−| = 100
per each image in the training set (i.e., 10 additional pos-
itive samples and 100 negative samples per training im-
age), which corresponds to the largest size of |T+(i, j)| and
|T−(i)|, defined in (7).

8. Experimental Setup and Results
In this section we present segmentation results of the

proposed approach in the problems of LV and lip segmen-
tation. The performance is evaluated in terms of contour

accuracy (using several metrics commonly adopted in the
literature), running time spent to perform the object seg-
mentation, and the performance of the classifier as a func-
tion of |T+(i, j)| and |T−(i)|, as described in Sec. 7.

The performance of the segmentation is assessed us-
ing the following error measures proposed in the litera-
ture for assessing the accuracy of segmentation approaches:
(i) Hausdorff (HDF) [13], (ii) mean absolute distance
(MAD) [31], (iii) Jaccard (JCD) [10], and (iv) average
(AV) [17]. The performance of our approach is assessed
by a quantitative comparison over the test sets with the fol-
lowing state-of-the-art methods (based on machine learning
techniques) proposed in the literature for the LV segmen-
tation problem: COM [9, 31], CAR1 [4], CAR2 [5]. For
the lip segmentation, we compare the performance of our
approach only with CAR1 [4] because that was the only
one available for comparison in this problem. For both seg-
mentation problems, we also compare the running times be-
tween our approach and CAR1 [4] (recall that our approach
is an extension of CAR1).

Table 1 shows the quantitative comparison for the two
test sequences of the LV segmentation problem, where the
best values in each row are highlighted. Moreover, Table 1
shows how the performance of our approach is affected with
the varying sizes of T+(i, j) and T−(i). For illustration pur-
poses, Fig. 5 shows the best and worst segmentation results
(using the segmentation method described in this paper) in
the two test sequences with the corresponding Jaccard error
and mean running time (in seconds) per sequence. Finally,
we compare the running time figures of our approach with
CAR1 [4]. The mean running time of our approach for both
sequences is 2.37 seconds, while for CAR1 is 7.4 seconds.
It is important to mention that these running time figures
were obtained with unoptimized Matlab implementations.

For the lip segmentation, Tab. 2 shows a comparison be-
tween our approach and CAR1 [4], where the best values in
each cell are highlighted. In these experiments, the training
sets are fixed at |T+(i, j)| = 10 and |T−(i)| = 100. Fig. 6
shows a subset of the lip segmentation results produced by
our approach, where each image corresponds to a different
test sequence and the segmentation results (in red color) are
superimposed with the ground truth (in green color). At
the bottom of each image, it is displayed the error measure
between the estimated and manual contours using Jaccard
(JCD) [10] metric, and the running time spent in seconds (in
parenthesis). The mean running time of our approach for all
lip sequences is 2.62 seconds, while for the method in [4]
is 11.8 seconds. Similarly to the LV segmentation problem,
these running time figures were obtained using unoptimized
Matlab implementations.

9. Discussion and Conclusions
The main conclusion that can be drawn from the exper-

iments above is that the derivative-based search on sparse
manifolds enables a significant improvement in terms of ef-
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Table 1. Quantitative comparison in the test sequences of the LV segmentation problem. Each cell shows the mean and standard deviation
of the respective error measure.

Test set 1
measures COM [9, 31] CAR1 [4] CAR2 [5] |T+(i, j)| = 1 |T+(i, j)| = 5 |T+(i, j)| = 10

|T−(i)| = 10 |T−(i)| = 50 |T−(i)| = 100
HDF 20.48(1.19) 19.18(2.28) 20.60(2.60) 19.39(1.54) 20.15(1.83) 19.94(1.60)

MAD 11.40(3.19) 9.92(3.33) 9.43(2.09) 9.82(2.71) 10.39(2.99) 11.05(3.34)

JCD 0.21(0.04) 0.17(0.05) 0.18(0.06) 0.19(0.03) 0.21(0.03) 0.23(0.06)

AV 3.89(0.56) 3.33(0.86) 3.28(0.84) 3.88(0.70) 4.38(0.84) 4.85(1.46)

Test set 2

HDF 17.21(1.37) 19.43(1.48) 19.88(1.88) 19.25(1.72) 19.39(2.47) 18.90(2.23)

MAD 18.16(6.08) 15.71(5.66) 17.74(5.50) 16.63(6.31) 16.17(6.72) 15.53(6.17)
JCD 0.19(0.03) 0.16(0.04) 0.17(0.02) 0.19(0.03) 0.20(0.04) 0.20(0.03)

AV 3.37(0.6) 2.93(0.55) 3.08(0.58) 3.76(0.66) 4.00(0.78) 3.82(0.60)

Test set 1 Test set 2

0.13 0.17 0.24 0.28 0.13 0.14 0.19 0.22

2 .28sec . 2 .45sec .

Figure 5. LV segmentation results on the test set. Left panel: best (two left snapshots) and worst (two right snapshots) segmentation results
in the test sequence 1 with the correspondent Jaccard index and mean running time for each sequence. Right panel: the same for the test
sequence 2. The ground-truth is in blue, and the segmentation estimated by our approach is in green.

ficiency without a negative impact in terms of non-rigid seg-
mentation accuracy. Specifically, the proposed approach is
around 3 to 4 times faster than the method CAR1 [4]. It
is conceivable that similar efficiency improvements can be
achieved in other similarly designed non-rigid segmentation
approaches [9, 30, 31]. Also, we can see that for the prob-
lem of lip segmentation the use of sparse manifolds actually
improves the accuracy. We believe that this improvement
can be explained by the reduction of the noise that is gener-
ally achieved in spaces of smaller dimensionality. Finally,
Tab. 1 also shows that our approach does not present statis-
tically significantly different segmentation results with re-
spect to training sets of varying sizes, which means that we
can have fewer additional training samples and still obtain
competitive results. The main advantage of this last obser-
vation is the fact that the training can be a lot faster with the
use of fewer training samples.

The main open issues in this work are with respect to
the model selection problem in the manifold learning al-
gorithm, and the need of the intermediate space for the
top-down segmentation methodology. Specifically, finding
an optimal number of patches in the manifold represents
a model selection problem, which we intend to investigate
with the goal of selecting a parsimonious model that is ca-
pable of describing the observed data and generalizing to
unobserved data. Finally, the need of computing the rigid
transform A after finding S from the variable t can be ques-

tioned. We plan to extend this work by avoiding the com-
putation of A altogether and use a non-rigid deformation to
produce the input for the classifier directly.
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