
Bayesian Grammar Learning for Inverse Procedural Modeling

And̄elo Martinović and Luc Van Gool

Abstract

Within the fields of urban reconstruction and city model-
ing, shape grammars have emerged as a powerful tool for
both synthesizing novel designs and reconstructing build-
ings. Traditionally, a human expert was required to write
grammars for specific building styles, which limited the
scope of method applicability. We present an approach to
automatically learn two-dimensional attributed stochastic
context-free grammars (2D-ASCFGs) from a set of labeled
building facades. To this end, we use Bayesian Model Merg-
ing, a technique originally developed in the field of natu-
ral language processing, which we extend to the domain of
two-dimensional languages. Given a set of labeled positive
examples, we induce a grammar which can be sampled to
create novel instances of the same building style. In ad-
dition, we demonstrate that our learned grammar can be
used for parsing existing facade imagery. Experiments con-
ducted on the dataset of Haussmannian buildings in Paris
show that our parsing with learned grammars not only out-
performs bottom-up classifiers but is also on par with ap-
proaches that use a manually designed style grammar.

1. Introduction

Over the last few years, there has been a flurry of ap-

proaches tackling the problem of urban modeling. Digital

mapping of existing cities is reaching new heights as users

can now browse detailed 3D models of cities instead of flat

maps. In the entertainment industry, particularly for movies

and games, there is an ever rising need for detailed and real-

istic models of virtual cities. Manual modeling of individ-

ual buildings usually provides good results, but the process

is very time consuming and expensive.

Procedural modeling is an efficient way to create 3D

models in a fast and scalable way. There, the structure of

the object is encoded as a set of parametric rules. Models

are generated by iteratively applying the rules on a starting

shape. This approach was successfully applied on various

categories of objects, such as plants, landscapes and archi-

tecture [25]. In urban procedural modeling, the knowledge

of the building style and layout is most commonly encoded

as a shape grammar [17]. A particular type of shape gram-

Figure 1: “Somewhere in Paris”: a street with buildings

sampled from our induced grammar.

mars for architectural modeling, the split grammar, was in-
troduced by [27], and further refined in [11]. A specific

building can then be represented as a particular derivation,

or a parse tree of that grammar.

Some approaches have used shape grammars as higher-

order knowledge models for reconstruction of buildings. In-
verse procedural modeling (IPM) is an umbrella term for

approaches that attempt to discover the parametrized rules

and the parameter values of the procedural model. Vari-

ous methods have specialized this general IPM framework

by assuming that the rules are known in advance, while the

parameters are allowed to vary. This top-down model is

then fitted to bottom-up cues derived from the data. Vane-

gas et al. [24] used a simple grammar for buildings that

follow the Manhattan world assumption. A grammar was

fitted from laser-scan data in [23]. Mathias et al. [10] re-
constructed Greek Doric temples using template procedural

models. An approach using reversible jump Markov Chain

Monte Carlo (rjMCMC) for fitting split grammars to data

was described in [16]. Teboul et al. [21] presented an ef-

ficient parsing scheme for Haussmannian shape grammars

using Reinforcement Learning.

However, all of the methods mentioned above share a

common drawback. They assume that a manually designed

grammar is available from the outset. This is a serious con-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.33

201

straint, as it limits the reconstruction techniques to a hand-

ful of building styles for which pre-written grammars ex-

ist. Creating style-specific grammars is a tedious and time-

consuming process, which is usually performed only by a

few experts in the field. So, a natural question arises: can

we learn procedural grammars from data?

So far, the research in the field of general IPM has been

limited to a small number of approaches. Learning L-

systems from synthetic 2D vector data was tackled in [26].

Applications of general IPM in urban modelling started

with Aliaga et al. [1], who presented an interactive method

for extracting facade patterns from images. Bokeloh et
al. [2] learned deterministic shape grammar rules from tri-

angle meshes and point clouds. Attribute graph gram-

mars [5] were presented as a method of top-down/bottom-

up image parsing, though restricting the detected objects in

scenes to rectangles.

In the field of formal grammar learning, a famous con-

clusion of Gold [3] states that no superfinite family of deter-

ministic languages (including regular and context-free lan-

guages) can be identified in the limit. However, Horning [6]

showed that the picture is not so grim for statistical gram-

mar learning, and demonstrated that stochastic context-free

grammars (SCFGs) can be learned from positive examples.

Currently, one of the popular methods for learning SCFGs

from data is Bayesian Model Merging [18], which makes

the grammar induction problem tractable by introducing a

Minimum Description Length (MDL) prior on the grammar

structure. This approach was recently applied for learning

probabilistic programs [7] and design patterns [20].

2. Our Approach

Inspired by recent successes of Bayesian Model Merg-

ing outside computer vision, we propose a novel approach

of inducing procedural models, particularly split grammars,
from a set of labeled images. We focus our discussion on fa-

cade modeling, since facades are mostly two-dimensional,

and exhibit a logical hierarchy of elements.

The overview of our approach can be seen in Fig. 2. The

input to our system is a set of facade images, which are se-

mantically segmented into classes such as walls, windows,

etc. In the first step we create a stochastic grammar which

generates only the input examples with equal probabilities.

However, we want to find a grammar that can also gener-

alize to create novel designs. We formulate this problem

as a search in the space of grammars, where the quality

of a grammar is defined by its posterior probability given

the data. As described in Sec. 5, this requires an optimal

trade-off between the grammar description length (smaller

grammars are preferred) and the likelihood of the input data.

The latter is obtained by parsing the input examples with the

candidate grammar.

Previous work has shown that image parsing with a

known set of grammar rules is a difficult problem by it-

self [15, 22]. On the other hand, our grammar search pro-

cedure typically needs to evaluate a huge number of candi-

date grammars. This means that we have to parse the in-

put examples in a very short time, lest the grammar search

last indefinitely. Different authors have tackled this curse of
dimensionality during parsing in different ways: assuming

that the building exhibits a highly regular structure [12], us-

ing approximate inference such as MCMC [16], or exploit-

ing grammar factorization [22]. Recent work by Riemen-

schneider et al. [15] has shown that it is possible to perform
exact image parsing using dynamic programming if the im-

age is reduced to an irregular lattice. This approach reduces

the effective dimensionality of the problem, while not sac-

rificing much of the quality.

Following their example, we transform all of our input

images into irregular lattices, casting our grammar search

procedure into a lower dimensional space. In this space

we use our own, modified version of the Earley-Stolcke

parser [18], a technique from natural language processing

adapted to parse 2D lattices instead of 1D strings. This di-

mensionality reduction enables the grammar search proce-

dure to run within a reasonable time. Finally, in order to

perform image parsing, the induced grammar is cast into

the original space. This stochastic, parameterized grammar

can either be used as a graphics tool for sampling building

designs, or as a vision tool to alleviate image parsing of ac-

tual buildings.

Our contributions are: (1) A novel approach for induc-

ing procedural split grammars from data. To the best of our

knowledge, we are the first to present a principled approach

for learning probabilistic two-dimensional split grammars

from labeled images. (2) A generalization of the Earley-

Stolcke SCFG parser to two dimensional lattices. (3) An

adapted rjMCMC parser in the style of [19] for image-

scale parsing. (4) An experimental evaluation suggesting

that learned grammars can be as effective as human-written

grammars for the task of facade parsing.

3. 2D-ASCFGs
We define a two-dimensional attributed stochastic

context-free grammar (2D-ASCFG) as a tuple G =
(N,T , S,R, P,A) , where N is a set of non-terminal sym-

bols, T a set of terminal symbols, S the starting non-

terminal symbol or axiom, R a set of production rules,

{P (r), r ∈ R} a set of rule probabilities and {A(r), r ∈ R}
a set of rule attributes.

Every symbol is associated with the corresponding

shape, representing a rectangular region. Starting from the

axiom, production rules subdivide the starting shape either

in horizontal or vertical directions. We define the set R as a

union of horizontal and vertical productions: R = Rh∪Rv .

202202202

Figure 2: The overview of our approach.

These productions correspond to standard horizontal and

vertical split operators in split grammars. A production is

of the form X → λ, where X ∈ N is called the left-hand-

side (LHS), and λ ∈ (N ∪T)+ is called the right-hand-side

(RHS) of the production.

For every production we define P (X → λ) as the prob-
ability that the rule is selected in the top-down derivation

from the grammar. For the grammar to be well-formed,

the productions with X as LHS must satisfy the condition∑
λ P (X → λ) = 1. We additionally associate each gram-

mar rule r with a set of attributes A(r) = {αi}. The ele-

ments of a single attribute are the relative sizes of the RHS

shapes in respect to their parent shape, in the splitting di-

rection: αi = {s1, ..., s|λ|},
∑

i si = 1. These relative sizes
sum up to one because RHS shapes always fill the entire

shape of their parent.

We denote by τ a parse tree from the grammar, rooted on

the axiom, its interior nodes corresponding to non-terminal

symbols, and its exterior nodes to terminal symbols. The

parse tree is obtained by applying a sequence of rules on the

axiom and non-terminal nodes. A derivation from the gram-

mar consists of the parse tree and the selected attributes

at each node: δ = (τ, α). The probability of a single

derivation is the product of all rule probabilities selected

at each node s of the parse tree: P (δ) =
∏

s∈δ P (rs).
The set of terminal nodes of a parse tree defines a lattice

over an area. A lattice is a rectangular tesselation of 2D

space, exactly filling the shape of the axiom. We define

the likelihood of the grammar G generating a lattice l as
L(l|G) =

∑
δ⇒l P (δ), where we sum over the probabili-

ties of all derivations that yield a particular lattice.

4. Bayesian Model Merging

To cast our grammar learning as an instance of Bayesian

Model Merging, we need to define several methods:

• Data incorporation: given a body of data, build an

initial grammar which generates only the input examples.

• Model merging: propose a candidate grammar by al-

tering the structure of the currently best grammar.

•Model evaluation: evaluate the fitness of the candidate
grammar compared to the currently best grammar.

• Search: use model merging to explore the grammar

space, searching for the optimal grammar

4.1. Data Incorporation

We start with a set of nf facade images, with each pixel

labeled as one of the nl terminal classes (window, wall, bal-

cony, etc.) As already mentioned in Sec. 1, grammar in-

duction would be infeasible in the image space due to the

curse of dimensionality. To mitigate this issue, all input im-

ages are converted into lattices following an approach sim-

ilar to [15]. Every rectangular region in the resulting two-

dimensional tesselation of the image is labeled with the ma-

jority vote from the corresponding pixel labels.

For each lattice in the input set, we create an instance-

specific split grammar, with terminal symbols correspond-

ing to image labels. Non-terminal productions are cre-

ated by alternatively splitting the image in horizontal and

vertical directions, starting with the latter. All produc-

tion probabilities are set to 1; all attributes are initialized

to the relative sizes of right-hand side elements. For ex-

ample, the first production splits the axiom into horizon-

tal regions represented by newly instantiated non-terminals

and parametrized by their height: S → Xi . . . Xn, p =
1, A = {{h(Xi), . . . , h(Xn)}}, where the rule probabil-

ity p is initialized to 1, but is allowed to change in the

model search. The procedure is stopped at the level of a

single lattice element, where we instantiate lexical produc-

tions, i.e. productions with a single terminal on the RHS:

X → label, p = 1, A = {{1}}. Lexical productions re-

203203203

main deterministic, as they only label the entire shape of

the parent with the given terminal class.

Now we have a set of deterministic grammars Gi, each

producing exactly one input lattice. The next step is to

merge them into a single grammar by setting all of their

axioms to the same symbol and aggregating all symbols

and productions: G0 = (∪Ni,∪Ti, S,∪Ri,∪Pi,∪Ai).
The probabilities of the rules starting from the axiom are

changed to 1/nf , which means that the grammar G0 gener-

ates each of the input examples with the same probability.

4.2. Merging

A new grammar is proposed by selecting two non-

terminalsX1 andX2 from the current grammar and replac-

ing them with a new non-terminal Y . This operation has

two effects on the grammar. First, all the RHS occurrences

of X1 and X2 are replaced by Y :

Z1 → μ1X1λ1 merge
���

Z1 → μ1Y λ1

Z2 → μ2X2λ2 Z2 → μ2Y λ2

where μ, λ ∈ (N ∪ T)+. If Z1 = Z2, μ1 = μ2, λ1 = λ2,

then the two resulting productions are merged in one. In

that case, the attribute set of the new production is defined

as the union of the attributes of the old productions.

Second, all the productions where X1 and X2 appear on

the LHS are replaced with Y , as well:

X1 → λ1 merge
���

Y → λ1

X2 → λ2 Y → λ2

Again, if λ1 = λ2, only one production is created. If we

create a production Y → Y , we delete it from the grammar.

The merging operation basically states that in the result-

ing grammar two previously different symbols may be used

interchangeably, although with different probabilities. The

only restriction that we place on the merging operations is

thatX1 andX2 have to be “label-compatible”, meaning that

the sets of terminal symbols reachable from both nodes have

to be equal. In this way we prevent nonsensical merges,

e.g. merging two non-terminals representing sky and door

regions, respectively. We also improve the speed of the in-

ference procedure by restricting the search space.

4.3. Evaluating Candidate Grammars

Our goal is to find the grammar model G that yields

the best trade-off between the fit to the input data D and

a general preference for simpler models. From a Bayesian

perspective, we want to maximize the posterior P (G|D),
which is proportional to the product of the grammar prior

P (G) and a likelihood term P (D|G). We can decompose

the grammar model into a structure part GS (representing

grammar symbols and rules) and the parameter part θg(rule
probabilities): G = (GS , θg).

The model prior P (G) then factorizes to

P (Gs)P (θg|Gs), the product of priors over structure

and parameters. To define the prior over the grammar

structure we follow a Minimum Description Length (MDL)

principle. The grammar’s description length DL(Gs) is

calculated by a simple encoding of productions, where

every occurrence of a non-terminal in a production con-

tributes with log |N | bits, |N | being the total number of

non-terminals in the grammar. Then, the structure prior

is defined as P (Gs) = e−DL(Gs). We use symmetrical

Dirichlet parameter priors, as all productions with the same

LHS form a multinomial distribution.

In [18] it was shown that in order to calculate the poste-

rior over the model structure P (Gs|D) ∝ P (Gs)P (D|Gs),
one needs to integrate over the parameter prior:

P (D|Gs) =

∫
θg

P (θg|Gs)P (D|Gs, θg)dθg (1)

Fortunately, we can approximate this integral with the

ML estimate of P (D|Gs) by using the Viterbi assumption.

This basically means that we assume that every input sam-

ple is generated by a single derivation tree of the grammar.

The likelihood of a single input example is then the product

of all rule probabilities used in the Viterbi derivation. Since

Viterbi derivations and rule probabilities θg depend on each
other, we use the Expectation-Maximization procedure to

find the optimal values for θg . In the E-step, starting from

an estimate for θg , the expected usage counts ĉ(X → λ) for
each rule are calculated. This is done by finding Viterbi

derivations for all input data and counting the number of

times every rule was used. In the M-step, the rule probabil-

ities θ̂g are re-estimated using the formula:

P̂ (X → λ) =
ĉ(X → λ)∑
μ ĉ(X → μ)

(2)

where μ iterates over all possible LHS choices for X . The

process is iterated until convergence.

4.4. 2D Earley Parsing

In order to find the Viterbi derivations of each input lat-

tice in the E-step, we use a modified version of the Earley-

Stolcke parser [18], which we extended from parsing strings

to parsing 2D lattices. To the best of our knowledge, we

are the first to create an Earley parser for two dimensional

SCFGs. We provide its implementation details in a techni-

cal report [9].

Using Earley’s parser instead of more common CKY

parsing [28] has a number of advantages. Its worst-case

complexity is cubic in the size of the input, but it can per-

form substantially better for many well-known grammar

204204204

classes. Another appealing property is that it places no re-

strictions on the form of the grammar. This sets us apart

from previous work which either requires the grammar to

be in a Chomsky Normal Form [21], or that the rules have

to satisfy optimal substructure property [15].

4.5. Search in Model Space

In order to define a flexible search procedure, we mod-

ify the posterior calculation with a global prior weight w,
which gives us control over the balance between the likeli-

hood and the prior. Utilizing the Boltzmann’s transforma-

tion, we transform the posterior maximization into an en-

ergy minimization:

E(G|D) = −w log P (G)− log P (D|G) (3)

By settingw to a low value, we decrease the influence of the

prior, thereby making the search procedure stop earlier. For

larger values of w, we increase the tendency to generalize

beyond the data. The influence of global prior weight w on

induced grammar size is shown in Table 1.

Starting from the initial grammar, we follow a greedy

best-first approach: in each iteration, every pair of non-

terminals is considered for merging, and all of the candidate

grammars are evaluated. The candidate with the minimum

energy is accepted if it has lower energy than the current

grammar. The rule probabilities are learned in each step

using the EM procedure presented in 4.3.

The described method produced satisfactory results in

our experiments. Of course, one may imagine more intri-

cate ways of searching through the grammar space, e.g. by

using a beam search or a random walk algorithm. We leave

this for future work.

4.6. Final Model

The grammar resulting from the search procedure is still

limited to the lattice space. To cast the grammar back in the

image space, we perform two post-processing steps.

First, we collapse sequences of the same non-terminal

symbol in a production to a single symbol with correspond-

ingly modified attributes, for example:

X → λY Y μ Collapse
���

X → λY μ

A = {{s1, y1, y2, s2}} A = {{s1, y1+y2, s2}}
Second, for every production p = (X → λ1 . . . λk), we

fit a (k− 1)-variate Gaussian distribution φ(A) = N (μ̄, Σ̂)
to the set of its attributes A(p) = {α1 . . . αn}:

μ̄ =
1

n

n∑
j=1

αj (4)

Σ̂ =
1

n− 1

n∑
j=1

(αj − μ̄)(αj − μ̄)T (5)

Initial

grammar G0

Induced,

w = 0.3
Induced,

w = 1.0

|N | 126.8± 6.61 26.6± 0.89 14± 0.0
|Rh| 121.8± 6.61 65± 6.70 27.8± 2.68
|Rv| 33± 0.0 15.6± 2.60 11± 1.41

Table 1: Size comparison: initial grammar created by gram-

mar incorporation, and two inferred grammars with prior

weights of w = 0.3 and w = 1.0.

This enables us to sample productions with continuous at-

tributes, by sampling directly from the estimated size distri-

bution. Note that every production with the RHS size of k
has k− 1 degrees of freedom. If k = 1, we are dealing with
a lexical production, for which no distribution is estimated

since they have the relative size of 1 by definition.

5. Parsing in Image Space

The grammar induced in the previous section is now

amenable for image-scale parsing. However, two main

problems arise when trying to design an efficient optimiza-

tion method. First, we cannot use exact methods such as

dynamic programming as we allow our attributes to take

on continuous values. Second, due to the stochastic na-

ture of the grammar, the number of attributes can change.

In order to tackle the first issue, we use a Markov Chain

Monte Carlo approach, which reduces the optimization to

sampling. However, as the MCMC operates over a fixed-

dimensional space, we must consider its extension in the

form of Reversible jump MCMC (rjMCMC). Talton [19]

presented a rjMCMC-based method to parse parametric,

stochastic, context-free grammars, given a high-level spec-

ification of the desired model. However, their method re-

quires that only terminal symbols of the grammar contain

descriptive continuous parameters. In contrast, we present

a modified version of [19] that lifts this constraint. We also

use a different likelihood computation, utilizing a pixel-

based classifier to calculate the terminal merit.

5.1. Grammar Parsing via rjMCMC

For a given test image, our task is to find the derivation

from the grammar that has the best fit to the image. Sim-

ilarly to Sec. 4.3, we define a posterior of the derivation δ
given the image:

P (δ|I) ∝ P (I|δ)
∏
s∈δ

P (rs)
∏
s∈δ

φ(A(rs))

︸ ︷︷ ︸
P (δ)

(6)

where φ is defined in Sec. 4.6. Note that we have factorized

the prior into a rule and attribute term over all non-terminal

205205205

nodes s of the derivation tree. We can ignore the normal-

izing constant for the purposes of maximization and define

the energy through Boltzmann’s transformation:

E(δ|I) = −log P (I|δ)−
∑
s∈δ

log P (rs)−
∑
s∈δ

log φ(A(rs))

Eδ = Eimage
δ + Erule

δ + Eattribute
δ (7)

The energy that we want to minimize is composed of

three terms. The rule term is calculated by summing up

the negative log probabilities of all rules rs selected in the

derivation. The attribute term measures the discrepancy be-

tween the proposed attributes and the expected values of

attribute distributions estimated in Sec. 4.6. To calculate

the image term, we use the Random Forest pixel classi-

fier of [22], which outputs the label probability distribution

PRF for each pixel in the image.

Eimage =
∑
t∈δ

∑
xi∈t

−log PRF (lt|xi) (8)

The sum is defined over all terminals t in the derivation tree.
Integral images are used to rapidly calculate the inner sum-

mation of pixel energies over the rectangular region of each

terminal symbol. By making this choice of image support,

we can make a direct comparison to the approach of [21].

5.1.1 Search

We utilize the standard rjMCMC formulation with

Metropolis-Hastings (MH) update from [4]. The chain is

initialized with a random derivation δ = (τ, α) from the

grammar. We define α as a concatenation of all selected

attribute elements (i.e. relative RHS sizes) in a pre-order

traversal of tree τ . To ease the discussion, we will refer to

α as the parameter vector.
In every MH iteration, the chain is evolved by perform-

ing either a dimension-preserving “diffusion” move, or a

dimension-altering “jump” move [19]. In the diffusion

move, a random node is selected in the derivation tree, and

its corresponding parameters are resampled from a Gaus-

sian proposal distribution, centered on the current parame-

ters. Since the proposal function is symmetric, the accep-

tance probability for the move reduces to:

ρδ→δ′ = min{1, p(δ
′ |I)

p(δ|I) } = min{1, e−(Eδ′−Eδ)} (9)

In the jump move, again a random node h is selected in the

derivation tree, and a new rule is sampled from all rules ap-

plicable to the current LHS. If the RHS size of the new pro-

duction is different from the old one, we have to re-derive

the entire tree under h. This changes not only the topology

of the derivation tree τ , but also the parameter vector from

some n-dimensional α to m-dimensional α′. In order for

the jump move to be reversible, we need to define a dimen-

sion matching function, which casts both chain states into a

common space. This can be done by supplementing the α
and α′ with additional parameter vectors u and u′, such that
n+ |u| = m+ |u′|.

We shall now define this mapping. Let k be the index

of the first parameter of node h in the concatenated vector

α, d1 the number of parameters in the subtree underneath

the node h, and d2 the number of parameters in the subtree

after resampling the rule at h. Let us also define u and u′

as vectors of d1 and d2 uniformly sampled numbers in the

interval [0, 1], respectively. We can now write the mapping

as follows:

α′i =

⎧⎪⎨
⎪⎩
αi , i ∈ [1, l]

ui−l , i ∈ [l + 1, l + d2]

αi−d2+d1
, i ∈ [l + d2 + 1,m]

u′i = αi+l , i ∈ [1, d2] (10)

The reverse mapping is obtained from Eq. 10 by swap-

ping (α, u,m, d2) with (α′, u′, n, d1). This choice of di-

mension function allows us to express the acceptance prob-

ability of the jump move in a simple way1:

ρδ→δ′ = min{1, qτ ′(h)

qτ (h)
e−[(Eimg

δ′ +Eattr
δ′)−(Eimg

δ +Eattr
δ)]}

(11)

where qτ (h) is the probability of choosing a non-terminal h
in a tree τ .

The chain is guaranteed to converge to the true posterior

as the number of iterations goes to infinity. In practice, the

random walk is stopped after a certain number of iterations.

Similar to [19], we use parallel tempering to improve the

speed of convergence. Eight chains are run in parallel, with

temperature quotient between chains set to 1.3. For jump

moves, we employ the technique of delayed rejection: a

diffusion move is attempted immediately after a jumpmove,

and two moves are accepted or rejected in unison.

6. Results

In all grammar learning experiments, the training set was

limited to 30 images to keep the induction time within rea-

sonable bounds. In image parsing experiments, w is set to

0.3, and rjMCMC search is run for 100k iterations. The

process is repeated 5 times, and the minimum energy chain

state is selected as the result.

1The proof of Eq. 11 is given in the supplementary material.

206206206

6.1. Parsing Existing Facades

To show that our grammar learning is usable on real-

world examples, we use the well-established Ecole Centrale

Paris (ECP) facade parsing dataset [13], which contains 104
images of Haussmannian-style buildings. We use the 5-fold
cross-validation experimental setup from [8].

In Table 2 we compare the accuracies achieved by four

different semantic facade segmentation methods. Each

method was evaluated on the ground truth annotations

from [8]. We evaluate the accuracy in terms of class-wise

and total pixel averages. As a baseline, we use the MAP es-

timation of the Random Forest classifier, provided by [22].

Our approach clearly outperforms the baseline in the total

pixel accuracy and all but one class. Since the RF classifier

output is used in both our method and the RL-based ap-

proach of [21], our methods are directly comparable. The

results that we obtain show that learned grammars can be

just as effective in facade parsing as their manually written

counterparts, even outperforming them in some cases.

To put the results in context, we also show the perfor-

mance of the state of the art (SOA) method in facade pars-

ing [8]. However, as the SOA method uses segment clas-

sification and object detectors, it is not strictly comparable,

since we use pixel classification cues. A promising direc-

tion for future work would be to learn grammars from the

output of methods such as [8], eliminating the need for la-

beled ground truth images.

6.2. Generating Novel Designs

The advantage of having a grammar for a certain style of

buildings is that we can easily sample new designs from it.

In this scenario, we generate a random derivation from the

grammar by starting from the grammar axiom as the first

node of the tree. At each node, we sample a rule based on

its probability in the grammar. The relative sizes of the RHS

are sampled from the estimated Gaussian distribution φ. Fi-
nally, the terminal symbols are replaced with instances of

Class RF[22] RL[21] Ours SOA[8]

Window 29 62 66 75

Wall 58 82 80 88

Balcony 35 58 49 70

Door 79 47 50 67

Roof 51 66 71 74

Sky 73 95 91 97

Shop 20 88 81 93

Overall 48.55 74.71 74.82 84.17

Table 2: Per-class and overall pixel accuracy (in percent)

on the ECP dataset: RF - Random Forest. RL - Manually

designed grammar. SOA - State of the art.

Figure 3: Example images from the ECP dataset parsed

with our induced grammar. Note that the output is not re-

stricted to a grid as in [21].

architectural elements from a 3D shape and texture library.

We rendered a whole street of buildings sampled from our

induced grammar in CityEngine [14]. The results are shown

in Fig. 4, where we also demonstrate the effect of the prior

weight parameter w on the generalization capabilities of

the grammar. In Fig. 4b, we had intentionally set the prior

weight too high, hence all compatible non-terminal symbols

were merged, leading to an excessively general grammar.

With the proper choice of w, we can find a good trade-off

between the data fit and generalization, as shown in Fig. 4a.

7. Conclusion and Future Work

In this work we introduced a principled way of learning

procedural split grammars from labeled data. The validity

of our approach is demonstrated using an example of ur-

ban modeling. Our induced procedural grammar not only

generates new buildings of the same style, but also achieves

exceptional results in facade parsing, outperforming similar

approaches which require a manually designed set of gram-

mar rules.

In future work, other strategies for the design of grammar

merging operators will be explored, undoubtedly requiring

elaborate search strategies. Furthermore, more complex

shape grammars could be inferred by extending the Earley

parser, which is currently limited to grid-like designs. We

will also investigate the feasibility of designing an iterative

approach for image parsing. In each step of this approach,

a more refined grammar is inferred through initial labeling,

augmenting in turn the labeling in subsequent iterations.

Acknowledgement. This work was supported by ERC

Advanced Grant VarCity and Research Programme of the

Fund for Scientific Research - Flanders (Belgium) (FWO -

G.0004.08).

207207207

(a) w=0.3 (b) w=1.0

Figure 4: Generating a scene with different grammars. (a)

Samples from the Bayes-optimal grammar. (b) The gram-

mar is over-generalizing due to high prior weight.

References
[1] D. G. Aliaga, P. A. Rosen, and D. R. Bekins. Style

grammars for interactive visualization of architecture.

TVCG, 13(4), 2007. 2

[2] M. Bokeloh, M. Wand, and H.-P. Seidel. A connec-

tion between partial symmetry and inverse procedural

modeling. SIGGRAPH, 29(4), 2010. 2

[3] E. M. Gold. Language identification in the limit. In-
formation and Control, 10(5), 1967. 2

[4] P. J. Green. Reversible jump markov chain monte

carlo computation and bayesian model determination.

Biometrika, 82(4), 1995. 6
[5] F. Han and S.-C. Zhu. Bottom-up/top-down image

parsing with attribute grammar. IEEE TPAMI, 31(1),
2009. 2

[6] J. J. Horning. A study of grammatical inference. PhD
thesis, Stanford, CA, USA, 1969. AAI7010465. 2

[7] I. Hwang, A. Stuhlmüller, and N. D. Goodman. Induc-

ing probabilistic programs by bayesian programmerg-

ing. CoRR, arXiv:1110.5667, 2011. 2
[8] A. Martinović, M. Mathias, J. Weissenberg, and

L. Van Gool. A three-layered approach to facade pars-

ing. In ECCV, 2012. 7
[9] A. Martinović and L. Van Gool. Earley parsing for 2D

stochastic context free grammars. Technical Report

KUL/ESAT/PSI/1301, KU Leuven, 2013. 4

[10] M. Mathias, A. Martinović, J. Weissenberg, and

L. Van Gool. Procedural 3D building reconstruction

using shape grammars and detectors. In 3DIMPVT,
2011. 1

[11] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van

Gool. Procedural modeling of buildings. SIGGRAPH,

25(3), 2006. 1

[12] P. Muller, G. Zeng, P. Wonka, and L. Van Gool.

Image-based procedural modeling of facades. SIG-
GRAPH, 26(3), 2007. 2

[13] Olivier Teboul. Ecole Centrale Paris Facades

Database. http://www.mas.ecp.fr/vision/
Personnel/teboul/data.php, 2010. 7

[14] Procedural. CityEngine. http://www.
procedural.com/, 2010. 7

[15] H. Riemenschneider, U. Krispel, W. Thaller,

M. Donoser, S. Havemann, D. W. Fellner, and

H. Bischof. Irregular lattices for complex shape

grammar facade parsing. In CVPR, 2012. 2, 3, 5

[16] N. Ripperda and C. Brenner. Reconstruction of façade

structures using a formal grammar and rjmcmc. In

DAGM, 2006. 1, 2

[17] G. Stiny. Pictorial and formal aspects of shape and

shape grammars, 1975. Birkhauser Verlag, Basel. 1

[18] A. Stolcke. Bayesian Learning of Probabilistic Lan-
guage Models. PhD thesis, University of California at

Berkeley, 1994. 2, 4

[19] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch,

and V. Koltun. Metropolis procedural modeling. SIG-
GRAPH, 30(2), 2011. 2, 5, 6

[20] J. O. Talton, L. Yang, R. Kumar, M. Lim, N. D. Good-

man, and R. Měch. Learning design patterns with

bayesian grammar induction. In UIST, 2012. 2

[21] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis,

and N. Paragios. Shape grammar parsing via rein-

forcement learning. In CVPR, 2011. 1, 5, 6, 7

[22] O. Teboul, L. Simon, P. Koutsourakis, and N. Para-

gios. Segmentation of building facades using proce-

dural shape priors. In CVPR, 2010. 2, 6, 7

[23] A. Toshev, P. Mordohai, and B. Taskar. Detecting and

parsing architecture at city scale from range data. In

CVPR, 2010. 1

[24] C. Vanegas, D. Aliaga, and B. Beneš. Building recon-

struction using manhattan-world grammars. In CVPR,
2010. 1

[25] C. A. Vanegas, D. G. Aliaga, P. Wonka, P. Müller,

P. Waddell, and B. Watson. Modelling the appearance

and behaviour of urban spaces. Comput. Graph. Fo-
rum, 29(1), 2010. 1

[26] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and

P. Krištof. Inverse procedural modeling by automatic

generation of l-systems. Computer Graphics Forum,

29(2), 2010. 2

[27] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky.

Instant architecture. SIGGRAPH, 22(3), 2003. 1

[28] D. H. Younger. Recognition and parsing of context-

free languages in time n3. Information and Control,
10(2), 1967. 4

208208208

