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Abstract

Current object-recognition algorithms use local fea-
tures, such as scale-invariant feature transform (SIFT) and
speeded-up robust features (SURF), for visually learning
to recognize objects. These approaches though cannot ap-
ply to transparent objects made of glass or plastic, as such
objects take on the visual features of background objects,
and the appearance of such objects dramatically varies with
changes in scene background. Indeed, in transmitting light,
transparent objects have the unique characteristic of dis-
torting the background by refraction. In this paper, we use
a single-shot light �eld image as an input and model the dis-
tortion of the light �eld caused by the refractive property of
a transparent object. We propose a new feature, called the
light �eld distortion (LFD) feature, for identifying a trans-
parent object. The proposal incorporates this LFD feature
into the bag-of-features approach for recognizing transpar-
ent objects. We evaluated its performance in laboratory and
real settings.

1. Introduction

Visual object recognition is important to robotics and
computer vision applications. Statistical learning methods
such as bag-of-features (BoF) are currently a very active
area of research for image annotation and object recogni-
tion. These methods commonly use local features, such as
scale-invariant feature transform (SIFT) and speeded-up ro-
bust features (SURF), for visual object recognition. How-
ever, these features and learning algorithms cannot apply to
transparent objects. Our daily environments, kitchen, living
room, and of�ce, are �lled with many transparent objects,
such as glasses, bottles, bowls, jars, vases, and windows, to
name a few. Depending on backgrounds, whether stationary
or moving, the appearance of a transparent object drastically
changes, as such objects do not have features entirely of
their own, but rather transmitted background images. Using
the standard approaches requires modeling local features
not of the transparent object but the background. In this pa-
per, we propose a novel object feature, called the light �eld

distortion (LFD) feature. We discuss how the LFD feature
models and visually recognizes transparent objects, which
to date have been ignored as exceptions in applications of
visual object recognition or annotation.

Transparent objects are made of refractive materials,
such as glass or plastics, and distort rays emanating from the
scene background. Different objects produce different dis-
tortions, each carrying intrinsic characteristics of the trans-
parent object, namely the refractive index of material and
the object’s shape, both of which in�uence the distortion.
The LFD feature is calculated from a light �eld image, a
single shot captured by a light �eld camera, and describes
this distortion of the �eld caused by the refraction in trans-
parent object. Compared with conventional cameras, which
capture 2D photos from a single perspective, light �eld cam-
eras obtain richer 4D images that include multiple 2D view-
points (position resolution) as well as standard 2D image
coordinates (angular resolutions). The LFD feature mod-
els the distortion from differences in corresponding points
between viewpoints including the 4D light �eld, whereas
common features, such as gradients or edges, model the ap-
pearance. This is an entirely original concept for feature
description with the advantage that LFD is less affected by
background changes, as it uses patterns of ray distortions
caused by the object, not patterns from the object’s appear-
ance.

The light �eld camera was originally proposed for
image-based rendering for use in the graphics community,
and has been used for a variety of different visualization ap-
plications, such as generating free-view images, 3D graph-
ics, and digital refocusing. Early light �eld cameras, e.g.
Stanford multi-camera array [1], were huge and quite ex-
pensive systems. However, the latest light �eld cameras
consisting of a micro-lens array between the sensor and
main lens are becoming inexpensive and compact [2, 3],
some of these are available in the product market [4, 5, 6].
Hence, we believe that the light �eld camera is becoming a
popular input device in computer vision applications.

The contribution of this paper is 1) in tackling a dif�-
cult computer vision problem, transparent object recogni-
tion with a single-shot image, 2) in proposing a new feature
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for transparent object recognition, called the LFD feature,
and 3) in applying a light �eld image to recognition ap-
plication. We implemented our method based on the BoF
approach and performed laboratory and real experiments,
using seven objects and different backgrounds, to assess the
effectiveness of the LFD features. Our result shows that the
LFD feature classi�ed transparent objects without explicit
physics-based refraction analysis and refraction models.

2. Related Work

In recent years, the BoF-based approach has been attract-
ing much attention in object recognition research. Local
features such as SIFT are widely used owing to their invari-
ance to scaling, rotation and illumination [7, 8, 9]. Local
features are divided into several clusters and a representa-
tive feature in each cluster is assigned by vector quantiza-
tion. Objects in the same category are expected to have
similar frequency within this representative feature. This
approach implicitly assumes that the majority of local fea-
tures are extracted from an object’s surface rather than the
background. Therefore, if local features are drawn from a
more dominant background than an object’s surface, exist-
ing learning and recognition methods perform poorly. A
transparent object yields less information about its appear-
ance. Its actual appearance depends largely on the visible
background as viewed through the object. In consequence,
extracting scene-independent local features from a transpar-
ent object area is dif�cult.

Thus, these approaches �nd local transparent structure
by applying a latent factor model before quantizing into a
visual word representation [10]. Although such approaches
recognize a transparent object without any knowledge of
background scenes at test time, the learning step requires
many training images in which the transparent object is cap-
tured under various environments.

In other directions, there has been much research on
measuring refraction responses in transparent objects using
cameras to obtain physical parameters, such as surface cur-
vature or refractive index. It is well known that refraction
polarizes light. Miyazaki et al. measured light intensities
from transparent objects through polarizing �lters [11, 12].
Schlieren photography [13, 14] has also been used for �uid,
gas �ows, and shock wave analysis. This method visual-
izes the refraction response in a scene as a gray-scale or
color image by using special optics, although it requires
high-quality optics and precise alignment. Hence, its ap-
plicability is restricted to laboratory environments, and not
for common practical use. Wetzstein et al. [15] proposed
light-�eld background-oriented Schlieren photography that
obtains Schlieren photos using a common hand-held cam-
era and a special-purpose optical sheet. Although this tech-
nique recovers the transparent surface [16], it also has re-
stricted practical use as the special sheet is always required

Figure 1. Background distortion from different objects

Figure 2. Background distortion from changing viewpoints

as a background object.
Approaches, similar to our own, obtain shape from opti-

cal �ow caused by refraction. In particular, Ben-Ezra et al.
[17] proposed a model-based method to recover shape and
pose from video taken with known camera motions. Sim-
ilarly, Aagrwal et al. [18] recovered shape from video ac-
quired while the background behind the object moves. Mor-
ris et al. [19] used two calibrated cameras to estimate the re-
fractive indices over time-varying liquid surfaces from dis-
tortions of known grid patterns at the bottom of a tank. In
contrast to these approaches, the novelty of our work is to
apply refraction to transparent object recognition, realized
from a single shot image, using a light �eld camera as an
input device. Unlike previous methods, there are no con-
straints on background texture, camera motion or known
parameters.

3. Light Field Distortion Feature

By refraction, a transparent object deforms the back-
ground scene. Different objects produce different images
of the same scene (Figure 1), because refraction by objects
is affected by shape and refractive index. Using the back-
ground distortion caused by refraction is our means to rec-
ognize transparent objects. In fact, we modeled the back-
ground distortion to the appearance difference from differ-
ent perspectives (Figure 2). In theory, the modeled distor-
tion itself is independent of background texture, although
the background determines image appearance, the distor-
tion for corresponding points from different viewpoints is
maintained. Therefore, our proposal is to model the ob-
ject’s refraction as a distortion of multiple viewpoints cap-
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Figure 3. De�nition of light �eld representation L(s, t, u, v).
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Figure 4. Light �eld propagation

tured by the light �eld camera. In this section, we de�ne the
LFD feature and outline its use in transparent object recog-
nition. The light �eld is a function that describes the amount
of light emitting in every direction from every point in a
scene. Conventional cameras only record that part of the
light �eld passing through a single viewpoint of a 2D im-
age. In contrast, a light �eld camera obtains a 4D light �eld
image which has multiple viewpoints. There are various
representations of the light �eld. Here, we use the 4D-ray
representation of the light �eld L(s, t, u, v) determined by
the intersection of a plane (s, t) and a slant of ray (u, v) (see
Figure 3). Figure 4(a) illustrates the functioning of a camera
array and shows the relation between light �eld and phase
space representations. Figure 4(a) shows only a 2D slice of
the light �eld and phase space for ease in understanding.

Figure 4(a) depicts a scene where there is no object be-
tween background and camera; i.e., light propagates in free-
space with no refraction, re�ection, scattering, or absorp-
tion. As illustrated, if rays emitted from a point in the back-
ground are straight, the observed light �eld has constant dis-

parities over the images for the different viewpoints. The
rays from the same point are distributed on a line in the su-
phase space (Figure 4(a)), and the slope of the line depends
upon the distance between camera and background. In fact,
these rays are distributed on a hyperplane in stuv-space be-
cause the actual light �eld and phase space is a 4D function.
In contrast, if a transparent object intervenes between back-
ground and camera, the ray distribution deviates from the
line or the hyperplane (Figure 4(b)). This LFD is caused
by refraction occurring within the object, which is charac-
terized by the material (refractive index) and shape of the
transparent object. We call this the LDF feature that is to be
used as a feature in transparent object recognition.

Here, we denote an arbitrary point in the image taken
from the center of the viewpoints (0, 0) as p0,0 = (u, v)
and the corresponding point in the image taken from another
viewpoint (s, t) as ps,t = (u′, v′). Actually, we denote the
i-th feature point (i = 0, . . . , N − 1) and the correspond-
ing points as p0,0(i) and ps,t(i) respectively, with the image
having N feature points. To make the LFD feature inde-
pendent of the position of the point (u, v), we use relative
differences de�ned by the following expression,

Δps,t(i) = ps,t(i)− p0,0(i), (s, t) /∈ (0, 0). (1)

Finally, the i-th LFD feature is de�ned as the set of relative
differences,

LFD(i) = {Δps,t(i) | −m ≤ s ≤ m,−n ≤ t ≤ n}, (2)

where 2m + 1 and 2n + 1 are the numbers of viewpoints.

4. Transparent object recognition

In this section, we describe an algorithm of our transpar-
ent object recognition. Figure 5 shows the overview of the
algorithm.

We used a commercial light �eld camera, Pro Fusion
25(ViewPlus Inc.). This camera system has 25 VGA res-
olution (640×480 pixels) cameras and can simultaneously
capture images from 25 viewpoints (5 horizontal viewpoints
× 5 vertical viewpoints). We transformed the 25 captured
images to a recti�ed light �eld image (s, t, u, v) as shown
in Figure 6 by Xu’s calibration method [21].

In the LFD feature acquisition, we obtain correspon-
dences between the image of the center view and those of
the other viewpoints. A disparity Δps,t(i) can be calculated
from p0,0(i) and its corresponding point ps,t(i). An LFD
feature is composed of these disparities, which are repre-
sented by equation 2. Figure 7-top shows examples of the
correspondences between the center of three views. We de-
scribes the 2D disparity vectors to color representations, in
which hue and saturation indicate direction and length of
the vector respectively as shown in Figure 7-bottom, and
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Figure 6. Light �eld image

we uses the colors for indicating LFD patterns in this pa-
per. We estimated the disparities between the center and the
other 24 viewpoints by the optical �ow method proposed by
Farneback et al. [20]. The LFD feature is obtained by a 48-
dimensional vector which describes the disparities between
the center view and the other views. The LFD features are
extracted at pixel by pixel in an image. The LFD features

Figure 7. LFD feature and corresponding points. This is an en-
largement of the central images of �gure 6. The LFD is also an
example of 3 × 3 case; these images are actually taken from a
25-viewpoint light �eld image. Hue and saturation of the color
represent direction and length of the Δps,t vectors.

coming from the transparent object has a larger distortion
than these from background, since the disparities contain
refraction effect and deviate from hyperplane assumed as
Lambertian re�ection in phase space as described in Figure
4. We �ltered out the background LFD features by thresh-
olding of the deviation. As a result, we can obtain a set of
N ′ LFD features from the single light �eld image.

Learning and recognition processes are performed by a
typical BoF approach. We use the LFD features as visual
words. In the training phase, the LFD features are quan-
tized by k-means clustering for obtaining visual words. We
represent classes of transparent objects as patterns of his-
tograms of the visual words. In the testing phase, we ex-
tracted LFD features from input image as a similar manner,
and calculate the similarities of the distances by histogram
matching for classi�cation. Finally, we determine the class
of the object as a minimum distance of the matching.

5. Experiment

5.1. Assumption

We evaluated our proposed method by classi�cation of
transparent objects in a laboratory setting and real environ-
ments under following assumptions;

• There is one transparent object as a recognition target
in a scene.

• The target object appears in all of the viewpoints of the
light �eld camera.

• Relative positions and poses of the camera and target
object are almost same between a training and testings.

• Background is reasonably far away from the object.

• Background scenes have suf�cient texture.
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(a) Object A (b) Object B (c) Object C (d) Object D

(e) Object E (f) Object F (g) Object G

Figure 8. Target transparent objects

(a) Background A (b) Background B (c) Background C

Figure 9. Three of the �ve background patterns

We performed some experiments in a laboratory and real
setting to evaluate robustness and limitations of our pro-
posed method.

5.2. Experimental Results

We performed some recognition experiments in a labora-
tory setting. We used �ve printed images for a backdrop of
a scene, three of them are depicted as examples in Figure 9.
We used as a reference position for LFD learning a setting
where camera position was 40 cm in front and background
was 150 cm behind the object position. The optimal num-
bers of clusters K for the BoF approach was determined
based on the preliminary experiments and set K = 500
for the LFD feature. Our task is classifying seven various
shapes of the objects (Figure 8) into the seven classes un-
der the various background textures. We calculated avarage
recognition ratio amaung the 7 objects using leave-one-out
cross validation for scenes, one scene is used for training
and the other for testing.

Figure 10 shows difference of the 4 of 500 (K = 500)
frequent visual words as primal LFD features described by
color representation. Figure 10(a) shows the frequent LFD
features obtained by different objects with the same back-
ground. The patterns of the LFD features are different for
the different objects, despite these objects looking similar
visually and being placed in front of the same background.
Also the LFDs came from the different regions of the ob-

Object C

Object B

Object A

(a) Different objects with same background

Background A

Background B

Background C

(b) Same object with different backgrounds

Figure 10. Examples of primal LFD features by color representa-
tion. Each row shows the different object or different background.
The 1st column shows the objects and regions of the pixels where
the primal LFD come form. The 2-5 columns indicate frequent
LFDs describing the objects. The colors of the bounding box of the
LFDs are corresponding to that of the regions in the 1st column.
Hue and saturation of the LFDs represent direction and length of
the Δp vectors on 5×5 viewpoints as similar to Figure 7.

jects. It means that each object was uniquely modeled by
the LFDs. Figure 10(a) shows our methods utilized not only
silhouette LFD features but also LFD features inside region
of the object.

In contrast, Figure 10(b) shows the LFDs from the same
object in front of the different backgrounds. It shows that
these LFD patterns are the similar and coming from simi-
lar regions of the object, although the visual appearance so
different among the background differences. We con�rmed
that LFD feature is irrespective of the background differ-
ence, since the feature models not intensity pattern but ge-
ometrical distortion cased by object refraction. As a result,
the proposed method achieved 80% of average classi�ca-
tion accuracy over the 7 object classes in front of 5 different
backgrounds, although it realized transparent object recog-
nition from a single-shot image.

We also performed real experiments in indoor and out-
door settings (Figure 11). Objects were placed 40 cm from
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(a) Of�ce (b) Outside

Figure 11. Examples of the scenes for real experiments

Table 1. Recognition ratios for real experiment
racognition ratio

Proposed LFD feature 0.714
Standard SIFT 0.119
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Figure 12. Recognition ratios for camera position changes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

50 100 150 200 250

R
ecognitio ratio

Background position [cm]

Figure 13. Recognition ratios for background position changes

the camera against real backgrounds of structures at vari-
ous depths, i.e., distances suf�ciently far (more than 1m)
from the objects. Table 1 shows recognition ratios by leave-
one-out cross validations for three different scenes. We also
used a similar recognition method in using the SIFT fea-
ture. Numbers of clusters K for the SIFT approach was set
K = 100. Using SIFT, these recognition ratios are fairly
low. This result shows that local features are unsuitable for
transparent object recognition. The proposed method using
the LFD feature achieved an average 70% accuracy (Table
1), while standard SIFT was not working at all.

5.3. Limitation Analysis

We evaluated and discuss limitations of our proposed
method in this section. We used the same conditions to
the experiments in a laboratory setting as described in Sec.
5.2. We changed camera and background positions, object
poses and lighting conditions for the evaluation. Figures

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 10 20 30 40

R
ecognition ratio

Object pose [degree]

Overall
Symmetric objects
Asymmetric objects

Figure 14. Recognition ratios for object pose changes
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0.8
0.9

No Lighting 0 30 45 60 90

R
ecognition ratio

Lighting angle [degree]

Figure 15. Recognition ratios for illumination changes

12-15 show decreases of the recognition accuracies by these
changes from the reference setting on the learning step.

We moved the camera over a range ±10 cm from the
reference position 40 cm. Figure 12 shows that the recog-
nition ratios are decreased when the displacement form the
reference position is increased, because the LFD feature are
changed from the learned pattern related to the distance be-
tween the camera and object. We would consider the mar-
gins for object deviation to be about 7.5 cm if we accept
20% decrease in the recognition ratio.

We also moved the background position over the range
of 50 cm to 250 cm from the object, while the reference po-
sition of the background is 150 cm. Figure 13 shows the
recognition ratio decreased when the background displaced
from the reference position. The decrease was moderate in
compared with the changes of the object position as shown
in �gure 12. The ratio is not so changed when the back-
ground is away from the object, while it is steeply decreased
when the background position is approaching to the object.
This is because that the LFD difference cased by the depth
disparity is nonlinearly occurred, near position is larger and
far is small. The background position did not affect much
about the recognition ratio and we can apply this method
to more realistic no planer scene background, if we can as-
sume that the background objects of the scene are places
reasonably far positions, e.g. more than 100 cm.

We rotated objects up to 40 degree about their central
axes for evaluating the effect of the pose change. Figure 14
shows the results splitting to a symmetric group (object A,
B) and an asymmetric group (object C-G) of the objects, as
well as overall ratio. As we expected, the ratio of the sym-
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(a) Uniform background (b) False in uniform pattern

Figure 16. Falsely detected feature points

metric group was invariant to poses, since the shape and
its LFDs would be not changed. The ratio of asymmetric
group was decreased gradually and the limitation on object
pose variation is within 10 degree if we accept a 20% degra-
dation in recognition ratios.

We also evaluated effects of illumination change for
recognition. We placed an additional point light source to
the global illumination that was used in the all of the ex-
periments. We changed the direction of the light source
from above (0 degree) to the side (90 degree) with respect
to the target object. There were inter-re�ections and spec-
ular re�ections from the light source and these effects were
changed as we moved the light source. Figure 15 shows
the recognition ratios across the lighting directions. The
left most label indicate the recognition ratio without light-
ing which is same condition of learning setting. This �gure
shows that the internal and specular from the light source
contaminated the LFDs and decreases averagely 20% of the
recognition. It is not related to the directions of the settings.

5.4. Analysis for Texture Density

The background patterns used in the experiment have
complex textures (see Figure 9) from which correspondence
detection can be easily performed. Meanwhile, LFD fea-
tures were not appropriately extracted in certain background
scenes (Figure 16). Because textural information is min-
imal, correspondences between cameras were dif�cult to
�nd. In Figure 16(a), the LFD features were extracted from
only the edges of the transparent object, with no LFD fea-
ture taken interior to the object. For another background
(Figure 16(b)), LFD features were wrongly extracted exte-
rior to the transparent object (see the top-left part of the �g-
ure). Therefore, the performance is affected by the accuracy
in correspondence detection.

We evaluated how many LFD feature point is needed to
accurate recognition in simulation. First, to obtain ideal fea-
ture points, a dot pattern was displayed as a background to
the transparent object for easy to detect the correspondence
of the LFDs. A total of N feature points were captured;
note that the number of N corresponds to a whole number
of pixels. Second, a percentage d% of LFD features were
randomly selected, then leave-one-out cross-validation was
performed to acquire the recognition accuracy. This pro-
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0.0 2.0 4.0 6.0 8.0 10.0

Feature point density [%]

R
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Figure 17. Recognition ratio vs. density of feature points
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Figure 18. Recognition ratio vs. tracking noise.

cedure was repeated 100 times if d was less than 1%, oth-
erwise, just ten times. The recognition accuracy curve is
plotted in Figure 17. This �gure shows that our approach
requires at least 3% of the LFD features to obtain almost
100% recognition accuracy. In terms of practical uses, ex-
tracting LFD features for at least 3% of the image size is
not such a dif�cult problem. Therefore, our proposed LFD
feature is considered effective in transparent object recog-
nition.

We also evaluated mistracking for estimating the LFD
vectors. We used the same simulated features above and
randomly selected 3% of the features. We added zero-
mean Gaussian noise with different standard deviations to
the LFD features as a simulate tracking noise. The recogni-
tion ratios across different standard deviation of noise (Fig-
ure 18) show that ratios was decreased when error levels
was increased. We con�rmed that less than 5.0 pixels of the
error is required if we desired 70% recognition levels.

6. Conclusion

This paper proposed a novel feature termed the LFD fea-
ture, which models refraction in objects as distortions be-
tween multiple views captured by a light �eld camera. In
addition, we designed a learning and recognition method
with this LFD feature and performed recognition experi-
ments. We compared this approach based on our LFD fea-
ture with the SIFT-based method. Our method using the
LFD feature achieved on average 70% accuracy with seven
objects against different backgrounds as assessed by leave-
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one-out cross-validation in real environments, hence veri-
fying the effectiveness of our LFD feature. We also evalu-
ated the robustness and limitation of the proposed method
under various conditions such as: camera and background
positions, object poses, and lighting conditions. Further-
more, we conducted simulation experiments that evaluated
texture densities of backgrounds and tracking error in de-
tecting LFD feature. In conclusion, we have been successful
in: 1) producing a transparent object recognition approach
based on a single-shot image, 2) employing a novel feature,
namely refraction, for transparent object recognition, and
3) introducing the light �eld camera array in learning and
recognition applications.

In our practical experiments (in Sec.5.2), many LFD fea-
tures (more than 3% of the image size) were extracted. Nev-
ertheless, the recognition accuracy did not exceed 70% and
it is not so high in light of applications. One reason for the
result is false correspondence detection, that tracking errors
decrease recognition accuracy as indicated from simulation
results. Robust correspondence matching has to be consid-
ered in future work.
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