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Abstract

We propose an integer programming method for estimat-

ing the instantaneous count of pedestrians crossing a line

of interest in a video sequence. Through a line sampling

process, the video is first converted into a temporal slice

image. Next, the number of people is estimated in a set of

overlapping sliding windows on the temporal slice image,

using a regression function that maps from local features

to a count. Given that count in a sliding window is the

sum of the instantaneous counts in the corresponding time

interval, an integer programming method is proposed to

recover the number of pedestrians crossing the line of inter-

est in each frame. Integrating over a specific time interval

yields the cumulative count of pedestrian crossing the line.

Compared with current methods for line counting, our pro-

posed approach achieves state-of-the-art performance on

several challenging crowd video datasets.

1. Introduction

The goal of crowd counting is to estimate the num-

ber of people in a region of interest (ROI counting), or

passing through a line of interest (LOI counting) in video.

Crowd counting has many potential real-world applications,

including surveillance (e.g., detecting abnormally large

crowds, and controlling the number of people in a region),

resource management (counting the number of people en-

tering and exiting), and urban planning (identifying the

flow rate of people around an area). Beyond people, these

counting methods can also be applied to other objects, such

as animals passing through a particular boundary, blood

cells flowing through a blood vessel under a microscope,

and the rate of car traffic. Therefore crowd counting is a

crucial topic in video surveillance and other related fields.

However, it is still a challenging task because of several fac-

tors: 1) in crowded scenes, occlusion between pedestrians

is common, especially for large groups in confined areas; 2)

the perspective of the scene causes people to appear larger

and move faster when they are close to the camera. These

problems are especially prominent in “high-angle” camera
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Figure 1. Line counting example: a) crowd scene and line-of-

interest; b) temporal slice of the scene; c) Flow-mosaicking [1]

result where a large blob leads to a big jump in the cumulative

count. In contrast, our method can predict instantaneous counts

better, yielding a better cumulative prediction over time.

views (where the camera looks down at an angle), which are

typical of outdoor surveillance cameras.

Most previous approaches [2–6] focus on solving the

ROI counting problem, and are based on the counting-

by-regression framework, where features extracted from

the ROI are directly regressed to the number of people.

By bypassing intermediate steps, such as people detection,

which can be error-prone on large crowds with severe oc-

clusion, these counting-by-regression methods achieve ac-

curate counts even on sizable crowds. In this paper, we

focus on LOI counting, which has received relatively less

attention so far. The goal of LOI counting is to count the

number of people crossing a line (or visual gate) in the

video (see Fig. 1a for example). In particular, the aim is

to estimate both the cumulative count, i.e., the total count

since the start of the video, and the instantaneous count, i.e.,

the count at any particular time or short temporal window.

A naive approach to LOI counting is to apply ROI counting

on the regions on each side of the LOI, and take the count

difference. However, this LOI count will be erroneous when

people enter and exit the ROIs at the same time, since the

number of people in the regions remains the same.

Current state-of-the-art LOI counting approaches (e.g.

[1]) are based on extracting and counting crowd blobs from
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Figure 2. Results of instantaneous count estimation on: a) UCSD and b) LHI datasets. The image is a temporal-slice of the video on the

LOI. The red and blue segments correspond to crowds moving in different directions, and the instantaneous count estimates appear above

and below the image.

a temporal slice of the video (e.g., the y-t slice of the video

volume). However, there are several drawbacks of these

“blob-centric” methods: 1) because the blob is not counted

until it has completely crossed the line, large blobs (e.g.,

containing more than 10 people) yield big jumps in the

cumulative count, which leads to poor instantaneous count

estimates (see Fig. 1c); 2) the counts in these large blobs

are not accurate, due to severe occlusion [1]; 3) current

evaluation methods for blob-based methods are based on

the ground-truth people in the blob, not the actual people

passing the line – hence, it is difficult to assess errors due to

segmentation failure of the blob. Moreover, these methods

typically require spatial-temporal normalization to handle

the differences in pedestrian size due to the camera perspec-

tive and pedestrian velocity. Current perspective normaliza-

tion methods [2, 7] require marking a reference person in

different positions in the video. For arbitrary videos (e.g.,

from the internet), these normalization techniques cannot be

applied if no suitable reference exists.

To address the above problems, we propose a novel

line counting algorithm that estimates instantaneous peo-

ple counts using local-level features and regression without

perspective normalization (see Fig. 2 for examples). The

contributions of this paper are three-fold. First, to overcome

the drawbacks of “blob-centric” methods, we propose an in-

teger programming approach to estimate the instantaneous

counts on the LOI, from a set of ROI counts in the tempo-

ral slice image. The cumulative counts of our method are

smoother and more accurate than “blob-centric” methods.

Second, we introduce a novel local histogram-of-oriented-

gradients (HOG) feature, which is robust to the effects of

perspective and velocity and yields accurate counts even

without spatial-temporal normalization. Third, we demon-

strate experimentally that our method can achieve state-of-

the-art results for both cumulative and instantaneous LOI

counts on two challenging datasets.

2. Related work

Counting-by-regression methods focus on either count-

ing people in a region-of-interest (ROI), or counting people

passing through a line-of-interest (LOI). For ROI counting,

features are extracted from each crowd segment in an im-

age, and a regression function maps between the feature

space and the number of people in the segment. Typically

low-level global features are extracted from the crowd seg-

ment, internal edges, and textures [1, 2, 4, 6]. The seg-

ment area is a prototypical feature that can indicate the total

number of pedestrians in the segment. [2] shows that there

is a near linear relationship between the segment area and

the number of pedestrian, as long as the feature extraction

process properly weights each pixel according to the per-

spective of the scene. [2] also provides a method to generate

a perspective map, by manually labeling a reference person

at opposite positions in the scene. Low-level features can

also be extracted from each crowd blob, i.e., an individual

connected-component in the segment, which contains sever-

al pedestrians [5, 6]. Regression methods include Gaussian

process regression [8] or Bayesian Poisson regression [4],

which are both kernel methods that can estimate non-linear

functions. [9] proposes an alternative approach to ROI

counting, using pixel-wise density learning. The crowd

density at each pixel is regressed from the feature vector,

and the number of pedestrians in a ROI is obtained by inte-

grating over the crowd density map.

Line-of-interest (LOI) counting essentially estimates the

number of people in a temporal-slice image (e.g., the y-t

slice of the video volume), the result of which represents

the number of people passing through the line within that

time window. However, with the basic temporal slice,

people moving at fast speeds will have fewer pixels than
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those moving slowly, thus confounding the regression func-

tion. The flow-mosaiking framework [1] corrects for this by

changing the thickness of the line, based on the the average

velocity of the pixels in the crowd blob, resulting in a “flow

mosaic”. [7] is used for perspective normalization, and the

count in each blob is estimated from low-level features. The

blob count can only be estimated after the blob has passed

the line, and hence large jumps in the cumulative count

can occur, and instantaneous counts (indicating when each

person passes the line) are not possible. In contrast to [1],

our proposed approach performs ROI counting on windows

in the temporal slice image, and uses integer programming

to recover the instantaneous count on the line.

For both ROI and LOI counting, global- and blob-

level features are very sensitive to the perspective (spatio-

temporal) normalization, especially in scenes with large

depth changes. In our experiments, the accuracy of counting

using low-level features drops significantly without normal-

ization, whereas the accuracy using our local HOG feature

remains at a similar level. [9] also uses local features, based

on random forest [9] or SIFT features [10], but still requires

perspective normalization.

Finally, counting can also be performed using people

detection methods [11–13], which are based on “individual-

centric” features, i.e., features describing the whole per-

son, such as the HOG descriptor of a whole person [11].

The deformable part-based model (DPM) [13] also builds a

HOG descriptor of a whole person, by using a more flexible

layout model for the spatial relationship between HOG parts

at different scales. While this results in a model that is

better adapted to varying poses of a single person, it still has

problems in detecting partially-occluded people in groups.

In contrast, by removing the layout model, our local HOG

representation is better able to handle occlusions.

3. Local HOG feature

Fig. 3a shows an example of a temporal-slice image with

a sizable crowd walking in two directions. Due to the cam-

era tilt angle, which is nearly 45 degree, the occlusion of

pedestrians is heavy. The torsos or the legs of the occluded

pedestrians are not visible in most cases. Hence, the st-

andard histogram-of-oriented-gradients (HOG) feature and

detector [11] will not work well in this scenario. In this

paper, we propose a local HOG descriptor for crowd count-

ing. In contrast to the standard HOG, which is a descriptor

of a whole person, the local HOG can describe parts of

the person independently. As a result, in crowded scenes,

meaningful descriptors can still be extracted from partially-

occluded people.

3.1. Local HOG descriptor

We define a local HOG descriptor as one “block” of

the standard HOG feature, extracted from a 8×8 image

(a) (b)

(c)
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Figure 3. Examples of local HOG features: a) temporal-slice im-

age; b) image patches and their local HOG features; c) one bin of

the bag-of-words histogram versus crowd size.

patch. Each block contains four 4×4 “spatial cells”, from

which the local histogram of oriented gradients is extracted.

Fig. 3b presents examples of the local HOG features extract-

ed from a crowd in the temporal slice image. Note how the

local HOG feature can represent the head-shoulders, side,

or legs and feet of a person. We also considered rectangular

image patches (e.g., 8×16) and other sizes, and found that

the 8×8 image patches yield the best performance in the ex-

periments. Finally, we considered applying a weight to the

gradient magnitudes using a spatial Gaussian kernel (similar

to the SIFT descriptor [10]), but this did not increase the

counting accuracy.

3.2. Global descriptor of local HOG features

The number of extracted local HOG features depends

on the size of the crowd segments in each video frame,

with potentially hundreds of local features extracted per

frame due to dense sampling. Hence, further processing

is required to summarize the set of local features into a

concise feature vector, which describes the crowd. The set

of local HOG features is summarized with a bag-of-words

histogram, where each bin represents the number of times

a local HOG codeword appears in the image. Fig. 3c plots

the value of one bin of the histogram versus the number of

people in the crowd segment. The bin value varies linearly

with the number of people, which suggests that the bag-

of-words of local HOG can be a suitable feature for crowd

counting. Finally, we do not apply histogram normalization

methods (e.g., TF, TF-IDF). Normalization will obfuscate

the absolute number of codewords in the segment, making

histograms from large crowds similar to those from small

crowds, which confounds the regression function.

4. Line counting framework

In this section, we propose our line counting framework,

which is illustrated in Fig. 4. Given an input video se-

quence, the video is first segmented into crowds of interest,

e.g., corresponding to people moving in different directions.
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Figure 4. The proposed line counting framework.

A temporal slice image and temporal slice segmentation are

formed by sampling the LOI over time. Next, a sliding

window is placed over the temporal slice, forming a set of

temporal ROIs. Features are extracted from each temporal

ROI, and the number of people in each ROI is estimated us-

ing a regression function. Finally, an integer programming

approach is used to recover the instantaneous count from

the set of temporal ROI counts.

4.1. Crowd segmentation

Motion segmentation is first applied to the video to focus

the counting algorithm on different crowds of interest (e.g.,

moving in opposite directions). We use a mixture of dynam-

ic textures motion model [14] to extract the regions with dif-

ferent crowd flows. The video is divided into a set of spatio-

temporal video cubes, from which a mixture of dynamic

textures is learned using the EM algorithm [14]. The motion

segmentation is then formed by assigning video patches

to the most likely dynamic texture component. Static or

very slow moving pedestrians will not be included in the

motion segmentation, which is desirable, since the counting

algorithm should ignore people who have stopped on the

line, in order to avoid double counting.

4.2. Line sampling and temporal ROI

In contrast to flow-mosaicking [1], we use line sampling

with a fixed line-width to obtain the temporal slice image.

As shown in Fig. 4, the input video image and its corre-

sponding segmentation are sampled at the same line per

�������	

Figure 5. Temporal slices of pedestrians with different velocities.
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Figure 6. a) temporal-slice image, and its b) temporal and c) spatial

weighting maps.

frame. The sampled image slices and segment slices are

collected to form the temporal slice image and temporal

slice segmentation, where each column in the slice image

corresponds to the LOI at a given time. To obtain the tem-

poral ROIs, a sliding window is moved horizontally across

the slice image, using a stepsize of one pixel.

4.3. Feature extraction

Features are extracted from each crowd segment in each

temporal ROI. In this paper, we consider both low-level

global features and local features. We use the 30 global

features from [3], which measure various properties of the

segment, and its internal edges and texture (see Table 1).

For the local features, we use our proposed local HOG

features and bag-of-words model. A set of local HOG

features is extracted from densely sampled patches over

the crowd segment in the temporal ROI. The set of local

HOGs is then summarized using the bag-of-words model,

as described in Section 3, resulting in a single feature vector

for each crowd segment for each ROI.

4.4. Spatial-temporal normalization

Because the temporal slice image is generated using a

fixed-width line, the width of a person will change with its

velocity. In particular, people moving slowly across the LOI

will appear wider than those moving fast, as illustrated in

Fig. 5. Hence, temporal normalization is required during

254025402542



Table 1. Spatial-temporal normalization for low level features.

Group Features Dimension Weighting strategy

area 1 wpwv

segment perimeter 1
√
wpwv

features perimeter-area ratio 1
√
wpwv

(10) perimeter edge orientation 6

√
w2

p cos
2 θ + w2

v sin
2 θ

blob number 1 N/A

edge edge length 1
√
wpwv

features edge orientation 6

√
w2

p cos
2 θ + w2

v sin
2 θ

(8) edge Minkowski 1
√
wpwv

texture texture homogeneity 4
√
wpwv

features texture energy 4
√
wpwv

(12) texture entropy 4
√
wpwv

feature extraction to adjust for the speed of the person (fea-

tures). A temporal weight map wv(x, y) is formed from the

tangent velocity of each LOI pixel, estimated with optical

flow [15] (see Fig. 6b). Faster moving people have higher

weights, since their features will be present for less time.

In addition to the temporal normalization, the features

must also be normalized to adjust for perspective effects of

the angled camera. We follow [2] to generate the spatial

perspective weight map wp(x, y) (see Fig. 6c).

Both weighting maps are applied when extracting low-

level features from the image, yielding a spatio-temporal

normalization summarized in Table 1. For the area feature,

each pixel is weighted by wpwv , and for most edge and

texture features, the weighting of
√
wpwv is applied on

each pixel. The edge orientation features are sensitive to

a particular edge angle θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦},

and hence a weight of

√
w2

p cos
2 θ + w2

v sin
2 θ is used to

readjust the contributions between wv and wp. For example,

when the edge is oriented horizontally (θ = 90◦), only the

temporal weight is applied, since there is no component of

the edge in the spatial direction.

For the local HOG feature, we resize the image patch by

scaling the height and width by wp and wv . This normalizes

the local HOG feature extraction to a common reference

size. However, normalization of the local HOG features

is not necessary; our experimental results show similar

performance between local HOG with and without spatio-

temporal normalization, which indicates the robustness of

the feature to perspective and velocity variations.

Finally, note that flow mosaicking [1] performs temporal

normalization by sampling the LOI using a variable line-

width, where the current width is based on the average

speed of the crowd blob. Because the same line-width must

be applied to the whole blob, blobs containing both fast and

slow people will not be normalized correctly. In contrast

to [1], we use a fixed line-width and per-pixel temporal

normalization, which can better handle large crowd blobs

with people moving at different speeds (e.g., in Figs. 6a

and 6b).

4.5. Count Regression

For each temporal ROI, the count in each crowd segment

of the ROI is predicted using a regression function that

directly maps between the feature vector (input) and the

number of people in the crowd segment (output). Gaussian

process regression (GPR) [8] has shown promising results

for the people counting task [2]. However, pedestrian

counts are discrete non-negative integer values, and hence

it is not suitable to use GP regression, which models con-

tinuous real-valued outputs. Aiming to take full advantage

of Bayesian inference, we use Bayesian Poisson regression

[3], which directly learns a regression function with discrete

integer outputs. We use the combination of RBF kernel

and linear kernel, which yielded the best performance, com-

pared to the single RBF kernel, linear, Bhattacharyya, his-

togram intersection, and Chi-squared-RBF kernels. Fig. 7a

presents an example of the predicted counts for the temporal

ROIs, along with the ground-truth.

4.6. Instantaneous count estimation

In the final stage, the instantaneous counts on the LOI are

recovered from the temporal ROI counts using an integer

programming formulation. The ith temporal ROI spans

time i through i + L − 1, where L is the width of the ROI.

Let ni be the count in the ith temporal ROI, and sj be the

instantaneous count on the LOI at time j. The temporal ROI

count ni is the sum of the instantaneous counts sj , within

the temporal window of the ROI,

ni = si + si+1 + · · ·+ si+L−1 =

L−1∑
k=0

si+k, (1)

Defining the vector of ROI counts n = [n1, . . . , nN ]T and

s = [s1, . . . , sM ]T , where N is the number of temporal

ROIs and M is the number of video frames, we have

n = As, (2)

where A ∈ {0, 1}N×M is an association matrix with entries

aij =

{
1, j ≤ i < j + L

0, otherwise.
(3)

Both n and A are known, and hence finding s is a signal re-

construction problem, with non-negative integer constraints

on the counts sj . We propose to recover the instantaneous

counts s using an integer programming problem with a sum-

squared reconstruction error

s∗ =argmin
s

‖As− n‖2 s.t. sj ∈ Z
+, ∀j, (4)

where Z
+ is the set of non-negative integers. We solve (4)

using the optimization toolbox [16]. Fig. 7b presents an ex-

ample of the instantaneous counts recovered from the ROI
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Figure 7. a) temporal ROI counts over time, and the recovered

instantaneous count estimates using b) integer programming, c)

least-squares, and d) non-negative least-squares.

counts in Fig. 7a with integer programming. The predicted

instantaneous counts are close to the ground-truth people

crossing the line.

Another possible solution is to relax the non-negative

integer constraints on sj . Letting sj be a real number, we

obtain a standard least-squares formulation, with s = A†n,

where A† is the pseudo-inverse of A. However, the recov-

ered sj will be both positive and negative, which are not in-

terpretable as counts (see Fig. 7c). Enforcing a non-negative

real constraint, sj ≥ 0, yields a non-negative least-squares

problem, with the recovered sj more similar to counts (see

Fig. 7d). However, this method causes localization errors,

where a single count is split into several small real-valued

counts in its neighborhood (see arrow in Fig. 7d). Using the

integer programming formulation fixes these localization

problems (Fig. 7b arrow).

5. Experiments

In this section, we present experimental results on using

the proposed LOI algorithm on two crowd datasets.

5.1. Pedestrian datasets

We consider two datasets in our experiments, the UCSD

people counting dataset [2] and the LHI pedestrian dataset

[17]. An example frame from the UCSD dataset is shown in

Fig. 8a. The video is captured by a stationary digital cam-

corder with an angled viewpoint over a walkway at UCSD.

The dataset contains 2000 video frames, with a frame size

of 238 × 158 and frame rate of 10 fps. The LHI dataset

contains three types of video, categorized by the camera

tilt angle. In our experiments, we use the 3-3 video with

40 degrees camera tilt angle, which is the most challenging

video in LHI due to the large amounts of occlusion. An

example frame is displayed in Fig. 8b. The 3-3 video has

frame size 352× 288.

(a)

64  [64]

35  [34]
(b)

58  [61]

0  [0]

Figure 8. Examples of input video with line position for a) UCSD

dataset, and b) video 3-3 of LHI dataset.

5.2. Experimental setup

For the UCSD dataset, we follow the experimental pro-

tocol in [2], where the training set consists of 800 frames

(frames 600 to 1399), and the remaining 1200 frames are

used as the test set for validation. For the LHI dataset, the

training set is the first 800 frames and the following 1200

frames are the test set. The LOI positions are also shown

in Fig. 8. For UCSD, the crowd was separated into two

components moving in opposite directions on the walkway

(right and left), using the method described in Section 4.1.

For LHI, the crowd is only moving in the right direction.

We estimate the instantaneous and cumulative counts on

the LOI using our proposed framework. The length of the

sliding window is 238 pixels. We tested both the global low-

level features [2, 4] and the proposed local HOG features,

with and without using spatio-temporal normalization. The

regression model is learned from the training set (UCSD

or LHI), and predictions made on the corresponding test

set. For comparison, we also predict the cumulative counts

using the flow-mosaicking algorithm [1]. Both methods

are run on the same motion segmentation and optical flow

images.

The cumulative counting results are evaluated with the

mean squared error (MSE) and the absolute error between

the predicted counts and the ground truth number of people,

averaged over all frames in the test set. For flow mosaick-

ing, which is blob-based and inherently cannot produce sm-

ooth cumulative counts, we also consider a “blob ground-

truth” that updates only when the predicted count changes,

i.e., when a blob is counted.

A recall-distance curve is used to measure the perfor-

mance of the instantaneous count predictions. The ground-

truth instantaneous count and the predictions are matched

pairwise using the Hungarian algorithm to find pairs with

minimal temporal distances (i.e., match the red stars with

blue lines in Fig. 11b). A recall-distance curve is formed by

sweeping a threshold distance d, and recording the fraction

of pairwise matches with distance less than d. The curve

represents the accuracy of detecting a person crossing the

line within duration d of the ground-truth crossing.

5.3. Experimental results

The cumulative counting results are summarized in

Table 2, with plots of the cumulative and instantaneous

254225422544



� �� �� �� �� �� "� &� #� '� ���
�

�$�

�$�

�$�

�$�

�$�

�$"

�$&

�$#

�$'

�

����	��

��
�	

��
���	��%����	��

()*+%,��	�����%-����
()*+%,��	�����%.���
()*+%.���%-����
()*+%.���%.���
.�/%.���%-����
.�/%,��	�����%-����

Figure 9. Recall-distance curves on UCSD and LHI datasets.

counts shown in Figs. 11-16. First comparing the different

feature sets on the UCSD dataset, the local HOG feature

achieves comparable results with the global low-level fea-

tures (0.6040 error vs 0.5342) for the left direction. On the

right direction, local HOG has significantly less error than

the global features (0.6883 vs 1.5067). Since the right di-

rections contains larger crowds, this suggests that the local

HOG features are better at counting the partially-occluded

people. Furthermore, the counting error for the local HOG

feature is nearly the same when no spatio-temporal normal-

ization is used, increasing slightly from 0.6050/0.6883 to

0.6083/0.7100. On the other hand, the error for the global

features increases significantly, e.g., from 1.5067 to 2.4158

for the right direction. This demonstrates that the local

HOG feature is robust to perspective and velocity effects,

whereas the global features are sensitive to these effects.

Our LOI counting framework using local HOG has low-

er error than flow-mosaicking (for both the ground-truth

and blob ground-truth). Flow-mosaicking has a particular-

ly large error (8.2400) on the right direction. In crowded

scenes with large blobs, the flow mosaicking method tends

to have high error, which is also shown in Fig. 14 and

Fig. 16. Similar results are obtained on the LHI video,

demonstrating that our framework achieves lower cumula-

tive counting error than flow-mosaicking.

The recovered instantaneous counts are presented in

Fig. 2, and the accuracy is evaluated using the recall-

distance curves in Fig. 9. On the UCSD dataset, our method

can correctly identify over 80% of the pedestrians crossing

the line within 2 seconds (20 frames, 10 fps), and on the

LHI dataset, almost 90% within 2 seconds (50 frames, 25

fps). Our method can generate more accurate instantaneous

counts than flow mosaicking, which is a “blob-centric”

method. For comparison, flow-mosaicking can identify

55% and 75% of the pedestrians within 2 seconds on UCSD,

and 72% on LHI.

Finally, Fig. 10a presents the average absolute count-
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Figure 10. Comparison over different time intervals: a) average

error vs interval width; b) average count vs interval width

ing error for varying time intervals (window lengths),

and Fig. 10b shows the corresponding average number of

ground truth people. For our method, the counting error is

relatively stable regardless of the interval width, whereas

that of flow-mosaicking increases as the interval width and

number of people increases. Two videos of our line count-

ing results on UCSD and LHI datasets can be found in the

supplemental material.

6. Conclusion

We present a novel line counting framework in this

paper, which is based on using integer programming to

recover the instantaneous counts on the LOI from ROI

counts on a sliding window over the temporal slice im-

age. We validate our framework on two challenging data-

sets. The results show that, compared with global low-level

features, the proposed local HOG feature is more robust

to the perspective and object velocity variations, and per-

forms equally well without using spatio-temporal normal-

ization. Moreover, compared with “blob-centric” methods

(e.g. flow-mosaicking), our method can generate more ac-

curate instantaneous and cumulative counts, especially in

crowded scenes.
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Figure 11. Local HOG - UCSD right
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Figure 12. Local HOG - UCSD left
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Figure 13. Local HOG - LHI 3-3 right

� ��� ��� "�� #�� ���� ����
�

�

��

��

��	
���
���

��
��

��
��	

�
��

�
� ���������

�����������

� ��� ��� "�� #�� ���� ����
�

��

��

"�

#�

��	
���
���

��
��

��
��	

�
��

�
� ���������

�����������

0	1

0�1

Figure 14. Flow mosaicking - UCSD right
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Figure 15. Flow mosaicking - UCSD left
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Figure 16. Flow mosaicking - LHI 3-3 right
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