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Abstract
This paper tackles the problem of reconstructing the

shape of a smooth mirror surface from a single image. In
particular, we consider the case where the camera is ob-
serving the reflection of a static reference target in the un-
known mirror. We first study the reconstruction problem
given dense correspondences between 3D points on the ref-
erence target and image locations. In such conditions, our
differential geometry analysis provides a theoretical proof
that the shape of the mirror surface can be uniquely recov-
ered if the pose of the reference target is known. We then
relax our assumptions by considering the case where only
sparse correspondences are available. In this scenario, we
formulate reconstruction as an optimization problem, which
can be solved using a nonlinear least-squares method. We
demonstrate the effectiveness of our method on both syn-
thetic and real images.

1. Introduction
In this paper, we tackle the problem of mirror surface

reconstruction from a single image. Traditional 3D recon-

struction methods typically perform poorly on mirror ob-

jects, since the information captured by the camera comes

from the objects’ surroundings rather than from the ob-

jects themselves. Methods specifically designed to han-

dle mirror surfaces have been introduced, but usually ex-

ploit motion and thus do not apply to the single image sce-

nario [16, 8, 13, 20]. Solutions to the single image case

have nonetheless been proposed [9, 17, 15, 18]. However,

existing approaches do not offer theoretical guarantees of

the uniqueness of the reconstructed surface.

Here, we introduce an approach to reconstructing a mir-

ror surface from a single image with a provably unique so-

lution. To this end, we consider the scenario where the

camera observes the reflection of a static reference plane1
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1Although we consider a plane, any object of known shape can be used.
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Figure 1. Real reconstruction setup and sample input images.

with known pose in the unknown mirror. Furthermore,

we assume that reflection correspondences between 3D

points on the reference plane and 2D image locations are

given. With dense correspondences, a differential geometry

analysis reveals that, for a smooth mirror surface without

inter-reflections, reconstruction reduces to solving an initial

value problem (IVP) with two partial differential equations

(PDEs). We derive a theoretical proof of uniqueness of the

solution to this IVP. Furthermore, studying the order of in-

tegration of the two PDEs yields a generally unique solu-

tion for the starting point of the IVP. This therefore implies

uniqueness of the mirror surface reconstruction.

To address the more realistic scenario where only sparse

reflection correspondences are available, we parametrize

the depths of points on the mirror surface as a uniform cubic

B-spline. We then formulate reconstruction as an optimiza-

tion problem that minimizes the 3D error between the points

on the reference plane and the image correspondences back-

projected to the reference plane via the mirror.

In summary, the key contributions of this paper are

• A solution to the problem of reconstructing a smooth

mirror surface from a single image given dense corre-

spondences between the image and a reference plane

with known pose.
• A theoretical proof of uniqueness of this solution.
• A practical optimization formulation of the reconstruc-

tion problem given sparse reflection correspondences.

We demonstrate the effectiveness of our reconstruction

method from both dense and sparse correspondences on

synthetic and real images, such as those depicted in Fig. 1.
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2. Related Work
Most existing methods that tackle mirror surface recon-

struction exploit temporal information, such as the motion

of the camera [13, 20], or that of the environment [8, 16].

Within this class of methods, shape from specular flow has

become a popular approach [14, 1, 5, 19]. As an alterna-

tive, shape recovery can be performed by exploiting multi-

ple reference planes with known pose relative to the camera.

This can be achieved either by utilizing multiple views of

the object with a reference plane fixed relative to the cam-

era [3, 12, 2], or with a static camera, but a moving reference

plane [4, 11]. In [10], it was shown that the surface shape

can be recovered from a single viewpoint when two 3D ref-

erence points on the light path are known, which is similar

to using a moving reference plane. In this paper, we con-

sider the problem of reconstructing a smooth mirror surface

from a single image, and therefore cannot exploit motion.

As such, our approach is most related to [9, 17, 15, 18].

In [9], a method to recover the shape of the human cornea

from a fixed camera and a static reference plane with known

pose was introduced. The shape was modeled as a uni-

form biquintic B-spline, thus bearing similarities with our

cubic B-spline formulation. However, the approach in [9]

requires the 3D location of one point on the surface to be

known. Furthermore, it comes with no theoretical guaran-

tees of convergence, or uniqueness. Here, we provide a the-

oretical proof of uniqueness of the mirror shape that does

not require knowing the position of any surface point.

A differential geometry analysis of surface patches was

proposed in [17]. While the reconstruction in [17] was lim-

ited to local patches, it was extended to modeling a global

surface shape in [15]. To this end, local patches were linked

by a Delaunay triangulation, and this rough shape estimate

was refined by constrained interpolation. While we also

base our analysis on differential geometry, our formulation

naturally extends to the entire mirror surface without requir-

ing stitching patches together.

In [18], the shape of the surface was recovered by it-

eratively estimating the normal at a point from its depth,

and the depth of a neighboring point from this normal. The

initial depth was obtained by searching for a value that

gave coherent depth and normal fields. Our method can

be thought of as an analytical formulation of this approach.

Our analytical formulation allows us to establish a theoreti-

cal proof of uniqueness of the solution of both the IVP that

corresponds to the iterative procedure described above and

the starting depth required to solve this IVP.

3. Notation and Setup
Objects and scalars are denoted by italic letters (e.g., λ,

P ). Points and vectors are denoted by bold letters (e.g., v =
(x, y, 1)�) with the exception of the rotation matrix and

translation vector, which we denote by R and T, respectively.

v
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Figure 2. Mirror surface reconstruction setup. A pinhole cam-
era centred at O is observing a mirror surface P that reflects a
reference plane Q in the image I . A point m on Q is reflected to
the image point v on I via the 3D mirror point p on P . We refer
to m and v as reflection correspondences. The reflected ray l is
determined by m and p. We denote i as the incident ray for image
point v and n as the normal to P at p. R and T denote the pose of
the reference plane w.r.t. the camera.

Elements of a vector are referenced with subscripts that in-

dicate their position in the vector (e.g., n = (nx, ny, nz)
�).

Vector-valued functions are denoted by bold letters (e.g.,

m(x, y)). The L2 norm of a vector is denoted ‖ · ‖, and 〈, 〉
denotes the inner product of two vectors.

Mirror surface representation. Fig. 2 depicts our setup

for mirror surface reconstruction. Without loss of gener-

ality, we suppose that the camera is centred at the origin

of the coordinate system and oriented so that its principal

axis is aligned with the positive z-axis. Furthermore, we as-

sume that the focal length is 1. A point (x, y) in the image

therefore corresponds to a point v(x, y) = (x, y, 1)� in an

image plane at distance 1 in front of the camera. We focus

on a rectangular region of interest (ROI) Ix × Iy
2 in which

the mirror P is visible, non-tangentially.

Thus, for points (x, y) ∈ Ix × Iy , the ray through point

v(x, y) = (x, y, 1)� meets the mirror simply (not tangen-

tially) at a point p(x, y) = s(x, y)v, where s(x, y) is re-

ferred to as the depth of the mirror at this point. The func-

tion s(x, y) therefore determines the shape of the mirror,

and finding this function is equivalent to finding the shape

of the part of the mirror that lies within the ROI. We as-

sume that the function s(x, y) is at least twice continuously

differentiable.

4. Differential Geometry Analysis

In this section, we present our approach to mirror surface

reconstruction given dense reflection correspondences, as

well as our proof of uniqueness of a solution. Our analysis

of the reconstruction problem relies on the normal n to the

mirror at p. Therefore, we start by deriving an analytical

expression for n. Let m be a point on the reference plane

2Ix and Iy are closed sets.
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Q that reflects to v on the image plane I via p. Based on

the geometry of reflection, n bisects the angle between the

incident ray i = v/||v|| and the reflected ray l = (m −
sv)/||m−sv||. This lets us write the unnormalized normal

to the mirror surface P at p as

n = ‖v‖(m− sv)− ‖m− sv‖v . (1)

Note: It is important to remember that all the quantities

n, v, m, and s are functions of (x, y). To simplify notation,

the explicit dependence on (x, y) will henceforth usually be

omitted.

Our formulation relies on differential geometry. To this

end, we assume that s, m, and therefore p and n, are suffi-

ciently smooth functions of the image location (x, y). This

will certainly be true if the mirror is smooth, and with no

occluding contours. Under this assumption, the normal to

the surface can also be expressed as n = ∂p/∂x× ∂p/∂y.

This implies that the surface normal must be orthogonal to

the partial derivatives ∂p/∂x and ∂p/∂y. Since p = sv,

this can be expressed, for x, as

0 = 〈n, ∂p/∂x〉
= 〈n, s ∂v/∂x+ ∂s/∂xv〉
= s 〈n, ∂v/∂x〉+ ∂s/∂x 〈n,v〉 . (2)

Since v = (x, y, 1)�, its x-derivative is (1, 0, 0), and

Eq. (2) can be re-written as

∂s

∂x
=
−nxs

〈n,v〉 , (3)

where nx denotes the x coordinate of n. Similarly, for y,

we can derive
∂s

∂y
=
−nys

〈n,v〉 . (4)

Suppose that the reflection correspondence m is known

for each point in the ROI (either by dense matching, or mod-

eling) and can therefore be written as a function m(x, y).
Eq. (1) expresses n as a function of x, y, s and m(x, y).
Substituting this expression into Eqs. (3) and (4) yields the

Initial Value Problem (IVP)

∂s

∂x
= fx (s, x, y,m(x, y))

∂s

∂y
= fy (s, x, y,m(x, y)) (5)

s(x0, y0) = s0

where (x0, y0) ∈ Ix× Iy , s0 is an initial value for the func-

tion s at this point, and the particular form of fx and fy is

given by Eqs. (3), (4) and (1). Assuming that m(x, y) is

known for points in Ix × Iy , both fx and fy are ultimately

functions of x, y and s only.

The important point here is that given the function

m(x, y), the shape of the mirror, determined by s(x, y),
must be a solution to this IVP.

4.1. Uniqueness Results

The goal of this section is to state certain uniqueness re-

sults for the mirror shape, based on the formulation of the

problem as the IVP (5). Proofs will follow in later sections.

Uniqueness of the solution to the IVP. Assuming that

the function m(x, y) is derived from an actual instantiation

of the model, without noise, then there is at least one so-

lution to the IVP (5) for a particular value of s0, namely

the true solution. However, if m(x, y) is a given arbitrary

function, even smooth, and s0 is some given value, then it

cannot be expected that the IVP has a solution. We therefore

concentrate on the uniqueness of the solution, which would

imply that the true shape of the mirror is the only solution

to the IVP.

Theorem 4.1. Suppose that for each point (x, y) in a region
of interest Ix×Iy in an image, the corresponding ray meets
a mirror non-tangentially. Given the data m(x, y) and an
initial value s0, the IVP (5) has (at most) a unique solution,
defined on the whole of Ix × Iy .

In Section 4.2, this result will be seen to follow from a

standard uniqueness result in Ordinary Differential Equa-

tions (ODEs), namely the Picard Lindelöf Theorem [6].

Uniqueness of the starting point. From Theorem 4.1 it

may appear that there is a family of solutions to the IVP (5),

one for each value of s0. However, studying the order of

integration of the PDEs in the IVP reveals that, for generic

mirror shapes, there is a single valid s0. This will be shown

in Section 4.3.

4.2. Solution to the IVP

Rather than considering the more difficult case of PDEs,

we start by fixing y = y0, thus reducing the PDEs in (5) to

a single ordinary differential equation (ODE) of the form

f(x, s) =
ds

dx
=

−s nx(x, s)

〈n(x, s),v(x)〉 . (6)

Any solution to the PDEs restricted to the scan line y = y0
is a solution to the ODE (6).

Existence and uniqueness of solutions to ODEs are much

simpler problems than for PDEs. In particular, the Picard

Lindelöf Theorem gives the required existence and unique-

ness conditions. In our context, it can be stated as follows:

Theorem 4.2 Picard Lindelöf Theorem. Let Ix and Is =
[s0 − β, s0 + β] be closed intervals of the real line, and let
f : Ix × Is → IR be a continuous function bounded by
M . Suppose that f(x, s) satisfies a Lipschitz condition in s,
namely

|f(x, s1)− f(x, s2)| ≤ L|s1 − s2|
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for all (x, s1), (x, s2) ∈ Ix × Is and for some constant L
(not depending on x). Then the initial value problem

ds

dx
= f(x, s), s(x0) = s0

for x0 ∈ Ix has a unique solution in Ix ∩ [x0 − b, x0 + b]
where b = β/M .

The general statement, as well as the proof of Theorem 4.2

are given in [6]. To show that the solution to our problem

is unique, we now show that the conditions of this theorem

are satisfied in our context.

To apply Theorem 4.2, let s0 > 0 and Is = [0, 2s0] (i.e.,

β = s0), and observe that f(x, s) in Eq. (6) is defined for

x ∈ Ix and s ∈ Is. Observe in particular that when s = 0
and n is given by Eq. (1), 〈n,v〉 is nonzero (assuming that

m is not at the camera center). We now need to verify that

f(x, s) is bounded and satisfies a Lipschitz condition in s.

Bound for f(x, s). Since f is continuous on a closed

bounded set, it is bounded. However, we need to find

the bound for f(x, s). We first observe that f(x, s)
is unchanged if n is multiplied by a constant factor,

since it appears both in the numerator and denominator

of Eq. (6). Therefore, we may assume that n has unit

norm. In this case, we have nx(x, s) ≤ 1 and thus

|f(x, s)| ≤ s/ 〈n(x, s),v(x)〉. Now, since both n(x, s) and

v(x) are continuous on Is × Ix, so is | 〈n(x, s),v(x)〉 |;
hence it is bounded below, and since it is nonzero, by

the assumption that rays meet the mirror non-tangentially,

| 〈n(x, s),v(x)〉 | ≥ δ for some value δ. For s ∈ [0, 2s0]
and β = s0, it then follows that

|f(x, s)| ≤M = 2s0/δ . (7)

Lipschitz condition in s. By a standard result, if a func-

tion has bounded derivative, |f ′(s)| < L, then f is Lips-

chitz with constant L. Here, f(s) has the form p(s)/q(s) =
s/| 〈n(x, s),v(x)〉 |. Its derivative is continuous whenever

q(s) is non-zero. Being defined on a closed bounded do-

main, it is hence bounded. This applies to the present func-

tion for which the derivative is bounded by a constant inde-

pendent of x, since | 〈n(x, s),v(x)〉 | ≥ δ. Hence f satisfies

a Lipschitz condition in s, as required.

Extension in one dimension. Having shown that f(x, s)
is bounded and satisfies a Lipschitz condition in s, Theo-

rem 4.2 implies that there is a unique solution to the ODE

on the interval Ix ∩ [x0 − b, x0 + b], where b = β/M =
s0/M = δ/2. Hence there exists a unique solution s(x) on

the interval [x0− δ/2, x0+ δ/2] to the extent that this inter-

val lies within the domain Ix of x. Since δ is a fixed value,

independent of s0, this solution can be extended further by

a distance of δ/2 in either direction, and hence ultimately

to the whole interval Ix, by iteratively extending the previ-

ous solution. In particular, let x1 = x0 + δ/4 be the new

starting point with depth s1 = s(x0 + δ/4). By the pre-

vious argument, there exists a unique solution defined on

the interval [x1 − δ/2, x1 + δ/2], which must be an exten-

sion of the first solution, since they coincide at x1. To reach

this conclusion, it is necessary only to show that s1 > 0.

Assuming that s1 ≤ 0, by the intermediate value theo-

rem there exists a point x in the interval [x0, x1] such that

|ds/dx| = |f(x, s(x))| = |s1 − s0|/|x1 − x0| ≥ 4s0/δ =
2M . This is contrary to hypothesis that |f(x, s)| ≤ M ,

where x ∈ [x0 − δ/2, x0 + δ/2], which thus shows that

s1 > 0. This implies that there is a unique solution to the

IVP on the interval [x1 − δ/2, x1 + δ/2]. This extends the

original solution up to x1 + δ/2 = x0 + 3δ/4. By iterating

over this process, the solution can therefore be extended to

the complete interval Ix.

Extending in both dimensions. The previous discussion

shows that, by holding y0 fixed, one can propagate in the

x direction, to find a unique solution s(x, y0) that satisfies

Eq. (3) on Ix × {y0}. Subsequently, starting at each point

s(x, y0), for all x ∈ Ix, a unique solution to Eq. (4) can be

obtained. This yields s(x, y) for all (x, y) ∈ Ix× Iy , which

is uniquely determined by the initial condition s(x0, y0) =
s0. Therefore, the entire visible mirror surface can be re-

constructed uniquely given the depth of one starting point.

Note that the solution obtained by this method is not

guaranteed to satisfy both Eqs. (3) and (4) everywhere. It

satisfies Eq. (4) everywhere, but Eq. (3) only along the line

y = y0. The essential point, however, is that if a full solu-

tion to the IVP (5) exists, then the described method must

find it and it must therefore be unique. Alternatively, it is

possible to propagate a solution in the y direction first, fol-

lowed by x. If this gives a different result than propagating

in x first, then no solution can exist for the full IVP (5).

On the other hand, if both methods give the same solution,

s(x, y), then this solution satisfies both Eqs. (3) and (4)

everywhere and hence is a solution to the IVP.

Numerically, this method can be implemented using

a method for solving ODEs, such as a Runge-Kutta

method [7], resulting in a solution if one exists.

4.3. Computing a Starting Depth

Although guaranteed to be unique (if it exists), the solu-

tion derived in the previous section relies on knowing the

depth of one point. Hence, there is at most a one-parameter

family of solutions to this problem, given known positions

of the points m(x, y). In this section, we show that not all

depths s0 give a valid solution, and more specifically, that

the valid depth of a starting point can be obtained uniquely.

Potentially, propagating a solution first in the x direction

then y may give different results from propagating first in

the y direction then x. In this case no solution exists to
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satisfy the PDEs everywhere. One may speculate that this

observation may rule out some values of the starting depth

s0. This observation suggests an additional constraint to

find the depth of the starting point: We want these two or-

ders of integration (i.e., first x then y, or first y then x) to

yield the same result. This motivates a consideration of the

constraint
∂2s

∂x∂y
=

∂2s

∂y∂x
. (8)

Swapping the order of partial derivation is valid for any C2

(twice continuously differentiable) function, which s is, by

hypothesis. Given Eqs. (3) and (4), Eq. (8) can be further

written as

∂

∂x
fy(x, y, s(x, y)) =

∂

∂y
fx(x, y, s(x, y)) . (9)

In general, for arbitrary functions fx and fy , this equality

will not hold. However, it does hold if fx and fy are C1

continuous functions (i.e., the mirror is a C2 continuous sur-

face), and if s(x, y) satisfies the PDEs in Eqs. (3) and (4).

Note that if s(x, y) satisfies Eq. 9, then it does not follow

that s satisfies the PDEs; it is only a necessary condition.

Eq. (9) allows us to derive an equation involving only x,

y, s, and m. More specifically, given fx = −nxs
〈v,n〉 , we can

write

∂fx
∂y

=
−〈n,v〉 (s∂nx/∂y + nx∂s/∂y)

〈n,v〉2

+
snx(〈∂v/∂y,n〉+ 〈v, ∂n/∂y〉)

〈n,v〉2 . (10)

Continuing with only the numerator yields

−〈n,v〉 (s∂nx/∂y+nx∂s/∂y)+ snx(ny + 〈v, ∂n/∂y〉) .
Substituting ∂s/∂y according to Eq. (4) gives

−〈n,v〉 (s∂nx/∂y−snxny/ 〈n,v〉)+snx(ny+〈v, ∂n/∂y〉) .

Equating with the numerator of
∂fy
∂x (because the denomi-

nators are the same) and cancelling s which is a common

factor yields〈
−n∂nx

∂y
+ nx

∂n

∂y
+ n

∂ny

∂x
− ny

∂n

∂x
,v

〉
= 0 . (11)

We substitute n and its partial derivatives in Eq. (11) ac-

cording to its definition in Eq. (1), which gives a polynomial

of the form

(As2 +Bs+ C) + (as+ b)
√
ps2 + qs+ t = 0, (12)

where the square root is introduced by the term ||m − sv||
and all the coefficients rely on the values (x, y) and m(x, y)
at a given point and do not involve the unknown parameter

s. To obtain a solution for s, we multiply Eq. (12) with

(As2 + Bs + C) − (as + b)
√
ps2 + qs+ t and simplify

the resulting equation symbolically with the Matlab Sym-
bolic Toolbox. To our surprise, the coefficients of the degree

4 and 3 terms disappear, which thus leaves us with a degree

2 polynomial equation, whose coefficients depend on x, y,

m and its partial derivatives w.r.t. x and y. Although this

degree 2 polynomial has two solutions, for generic surfaces,

only one of them satisfies Eq. (12). This is due to the fact

that our strategy to remove the square root in (12) introduces

an additional, invalid solution. Therefore, for generic sur-

faces, there exists a single valid s0, which, combined with

the proof of uniqueness of the solution to the IVP, implies

that the mirror surface can be reconstructed uniquely.

To conclude, this gives us two ways of computing the

shape of the mirror: We can solve the polynomial equa-

tion at one image point, and then solve the two PDEs of

the IVP (5) sequentially, or we can solve the polynomial

equation at each image point. Note that both methods re-

quire dense reflection correspondences, both for integration

purposes and to compute accurate partial derivatives of the

reflection correspondences.

5. Shape Recovery from Sparse Measurements
While the previous section describes two possible ways

of reconstructing the mirror surface, the solution to the

polynomial equation, as well as the integration of the PDEs

strongly rely on dense and noise-free correspondences. In a

more realistic scenario, reflection correspondences will be

sparse and noisy. In this section, we introduce an approach

to performing reconstruction in these challenging condi-

tions. We first present our surface parametrization, and then

describe our reconstruction framework.

5.1. Surface Representation

In the formulation of Section 4, we directly modeled the

surface in terms of the depth of image points. Since our

proof of uniqueness relies on the surface being C2 continu-

ous, we can make use of other parametrizations that encode

such a smoothness. In particular, here, we parametrize the

depth s using a uniform cubic B-spline (UCBS). This im-

plicitly satisfies the geometric constraint that surface points

lie on their respective visual rays.

More specifically, let s : IR2 → IR be a function map-

ping the image point at z = 1 to a scalar value. For each

point (x, y) on the image plane, s is defined as

s =

ux∑
j=1

uy∑
k=1

CjkNj(x)Nk(y) , (13)

where Cjk are the unknown depth values of the control
points, which are organized in a ux × uy grid over the im-

age, and Nj(x), Nk(y) are the UCBS basis functions. For a
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point (x, y) on the image plane, Nj(x) and Nk(y) are fully

determined. We can re-write Eq. (13) as

s = wc , (14)

where w is the 1 × uxuy vector of known basis functions,

and c is the uxuy×1 vector of unknowns. Therefore, a point

on the surface p = wc(x, y, 1)�. With this parametriza-

tion, we can derive the normal at p from differential geom-

etry as n = ∂p
∂x × ∂p

∂y , where{
∂p
∂x = ∂s

∂x (x, y, 1)
� + s(1, 0, 0)� ,

∂p
∂y = ∂s

∂y (x, y, 1)
� + s(0, 1, 0)� .

(15)

This finally yields

n =

(
∂w

∂x
c ,

∂w

∂y
c , − x

∂w

∂x
c− y

∂w

∂y
c− s

)�
, (16)

where ∂w
∂x , ∂w

∂y are derived from the UCBS basis functions.

5.2. Shape Recovery as an Optimization Problem

Given our parametric representation of the mirror sur-

face, shape recovery reduces to estimating the depth of the

control points c. Given a set of sparse reflection correspon-

dences between image points {v1,v2, . . . ,vm} and points

on the reference plane {m1,m2, . . . ,mm}, we formulate

reconstruction as the problem of finding the c that mini-

mizes the distance between mi and the backprojection of

vi to the reference plane. In the remainder of this section,

we first explain the backprojection process and then derive

the resulting optimization problem.

As mentioned earlier, a 3D point on the mirror cor-

responding to image point (xi, yi) can be expressed as

pi = wic(xi, yi, 1)
�, with its normal given by Eq. (16).

The corresponding reflected ray li can be computed as li =
ii − 2 〈ñi, ii〉 ñi, where ii = (xi, yi, 1)

�/‖(xi, yi, 1)‖ and

ñi = ni/||ni||. Points along this reflected ray can be

represented as ai = pi + λili. The pose of the refer-

ence plane relative to the camera is determined by the ro-

tation matrix R and the translation vector T. Let R =
(r1, r2, r3), where rj , j ∈ {1, 2, 3}, denotes the j-th col-

umn of R. The reference plane can be represented by the

vector q = (r3
�,−r3�T)�, such that

〈
q, (a�, 1)

〉
= 0

for any point a on the reference plane. Backprojection is

achieved by computing the intersection of the reflected ray

with the reference plane. This intersection can be computed

as m̂i = pi − 〈r3,pi〉−r3
�
T

〈r3,li〉 li.

We estimate the parameter c of the surface by solving

a non-linear least-squares problem that minimizes the error

between our backprojections to the plane and the real points

on the plane. This can be written as

min
c

m∑
i=1

‖m̂i(c)−mi‖. (17)

m2

m1

p1

p2

v1 v2

O

Q

Q′
P

m′
2m′

1

Figure 3. Initialization of the unknown mirror.

Note that Section 4 shows that only the correct mirror

surface corresponds to reflected rays that intersect the

reference plane at the observed points. The problem in

Eq. (17) can be solved using an iterative scheme such as

the Levenberg-Marquardt method.

Initialization. The optimization problem in Eq. (17) is

non-convex and therefore requires initialization. In our ex-

periments, we use the following strategy, depicted by Fig. 3:

We initialize the unknown mirror P as a plane, and seek for

its pose such that the camera can best see the reflection of

the reference plane Q. With an actual planar mirror, P is the

bisector of the angle between Q and its virtual image Q′,
which is related to Q by a rigid transformation. To achieve

full visibility of Q, P should be such that Q′ is parallel to

the image plane. We therefore search for a translation Tv
of Q′ that minimizes the squared distance between the cor-

respondence points m′
i on Q′ and the intersection of the

visual rays with Q′, which can be expressed as the least-

squares solution to a linear system. Given this translation,

we compute the pose of P by bisecting the angle between Q
and Q′. In practice, the mirror is not planar. Since the diver-

gence, resp. convergence, of the reflection rays with a con-

vex, resp. concave, mirror, Tv defines an upper bound for a

convex mirror and a lower bound for a concave one. There-

fore, we search for a translation of Q′ within the bounds

[0 Tv], or [Tv 3Tv], and take the mirror shape P that gives

the smallest energy value in Eq. (17) after optimization.

6. Experiments
We now demonstrate the effectiveness of our approach

on synthetic and real surfaces.

6.1. Synthetic Data
For our synthetic experiments, we used a UCBS, an el-

lipsoid and a sphere as mirror surfaces. The reflection corre-

spondences were obtained by backprojecting all image pix-

els to the reference plane. More than 4M reflection corre-

spondences were used in our synthetic experiments. Recall

that we have 3 possible ways of reconstructing the surface:

With dense correspondences, we can either solve a degree

2 polynomial equation for each pixel, or solve this equation

for a single pixel and solve the IVP (5). With sparse corre-
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Figure 4. Shapes obtained by solving polynomials and by integration. Red dots denote the surface reconstructed by solving polynomial

equations, Cyan dots the surface obtained by solving the PDEs in Order A, and Magenta dots in Order B. Blue dots denote ground truth.
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Figure 5. Reconstruction and self-consistency errors as a function of the density of noisy data: We show the average errors, as well as

standard deviations, over 50 runs with different random noise.

spondences, we solve the optimization problem in Eq. (17).

We now present results for these 3 methods. Due to space

limitation, results for the sphere, as well as additional re-

sults for the UCBS and ellipsoid are provided in supple-

mentary material.

Solving Polynomials and Integrating PDEs. Fig. 4

compares with ground truth the shapes obtained by solving

either a polynomial equation at each pixel independently,

or the IVP. As mentioned in Section 4.2, the PDEs can be

solved in two different orders. Order A: Solve for x with

y = y0, then solve for y for fixed values of x, and Order B:

Solve in the opposite order. Therefore, in Fig. 4, we show

the results obtained with these 2 orders. Note that all the

shapes in Fig. 4 are essentially identical. This was to be

expected, since with dense, noise-free correspondences, the

shape is unique. We then added zero-mean Gaussian noise

with one pixel standard deviation. Fig. 5 depicts the recon-

struction and self-consistency errors as a function of the per-

centage of correspondences used for reconstruction for the

approach by solving IVP. The reconstruction error is com-

puted as the mean 3D point-to-point distance between the

reconstructed shape and ground-truth. The self-consistency

error is defined as the mean 3D point-to-point distance be-

tween the shapes obtained with order A and order B. These

errors were averaged over 50 runs with different random

noise. We observed from experiments that the approach by

solving polynomial equations is more sensitive to noise and

data density than that by solving the IVP.

Solving an Optimization Problem. Fig. 6 depicts our

results obtained by solving the optimization problem of

Eq. (17) with sparse, noisy data. As before, we used one

pixel for the noise standard deviation, and only kept 10%
of the correspondences. Note that our reconstructions are

accurate. In the case of the ellipsoid, representing the sur-

face as a UCBS introduces approximation errors, depend-

ing on the number of control points used. Fig. 7 shows the

influence of the number of control points on the objective
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Figure 6. Reconstructions by optimization with noisy data. Red
dots show our reconstructions, and Blue dots ground truth.

function value, the reconstruction error and the runtime. In

general, the approximation error decreases as the number of

control points increases, but the computational complexity

increases accordingly. Note, however, that there is a range

of values for which the approximation error is small and the

runtime reasonable.
6.2. Experiments on Real Data

To evaluate our approach on real surfaces, we used the

stainless steel spoon and gravy boat depicted in Fig. 1. We

acquired images with a Sony 1920×1080 HDR-XR200 dig-

ital camera and used an LCD monitor as reference plane, on

which we displayed patterns that let us extract correspon-

dences following the strategy of [11]. This yielded 1919
and 2029 correspondences for the spoon and gravy boat,

respectively. The pose of the reference plane relative to the

camera was calibrated with the Matlab Calibration Toolbox.

Since we only had sparse correspondences, we relied on

our optimization framework to perform reconstruction. The

spoon and gravy boat were approximated by a UCBS with

20 × 20 and 10 × 10 control points, respectively. In both

cases, the mirror was initialized using the same strategy as

for synthetic experiments. In Fig. 8, we show our recon-

structions, as well as histograms of objective function val-

ues. Note that the reconstructed shapes correspond to those

of the original objects shown in Fig. 1, and that most of

the objective function values are small, suggesting accurate

reconstruction.

7. Conclusion
In this paper, we have addressed the problem of mirror

surface reconstruction from a single image, and provided a
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Figure 7. Influence of control points for ellipsoid reconstruction. From left to right, mean objective function value over the pixels,

reconstruction error and runtime as a function of the number of control points used to approximate the ellipsoid. To really evaluate the

approximation error, these results were obtained with noise-free data. Standard deviations were computed over the image pixels.
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Figure 8. Reconstructions from real images. Reconstruction of

the spoon and gravy boat depicted in Fig. 1. The estimated sur-

faces visually match the shape of the objects. The majority of low

objective function values in the histograms suggests accurate re-

construction.

theoretical proof of uniqueness of the solution in the pres-

ence of dense reflection correspondences. Furthermore, we

have introduced an optimization framework to reconstruct

the mirror surface when only sparse correspondences are

available. Currently, our approach requires the pose of the

reference plane to be known. In the future, we will study

the case where this pose is unknown, and optimized in the

problem of Eq. (17). Our initial experiments in this direc-

tion have shown that, for generic surfaces, the Jacobian ma-

trix of the energy around a local minimum has full rank.

This indicates that only a finite number of discrete solutions

exist, as opposed to a continuous family of solutions. Find-

ing the global minimum among these discrete solutions, as

well as studying the impact of our shape representation on

the energy will be the focus of our future research.
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