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Abstract

We propose an algorithm utilizing geodesic distances to
upsample a low resolution depth image using a registered
high resolution color image. Specifically, it computes depth
for each pixel in the high resolution image using geodesic
paths to the pixels whose depths are known from the low
resolution one. Though this is closely related to the all-pair-
shortest-path problem which has O(n2 log n) complexity,
we develop a novel approximation algorithm whose com-
plexity grows linearly with the image size and achieve real-
time performance. We compare our algorithm with the state
of the art on the benchmark dataset and show that our
approach provides more accurate depth upsampling with
fewer artifacts. In addition, we show that the proposed al-
gorithm is well suited for upsampling depth images using
binary edge maps, an important sensor fusion application.

1. Introduction
Depth sensors have emerged as an important tool for 3D

scene understanding. They have been applied to various

applications and gradually shaped the way people interact

with machines. However, unlike the conventional optical

camera, the resolution of depth sensors advances at a much

slower pace. This is mainly due to the manufacturing cost of

main sensor elements. While the resolution of mainstream

optical cameras is in the order of 10 megapixels, the res-

olution of mainstream time-of-flight depth sensors is still

lower than 0.02 megapixels, which greatly limits their ap-

plications.

One way to improve the resolution of depth images is

to use a high resolution optical camera in tandem with the

depth sensor. In general, geometric and color boundaries of

a scene are correlated: abrupt depth transition often leads to

abrupt color transition. Therefore, it is possible to leverage

this correlation to upsample the depth images. In this pa-

per, we study depth image upsampling problem using reg-

istered color images and propose a new algorithm based on

geodesic curves in joint color and depth images.

Our algorithm is inspired by the joint bilateral upsam-

pling algorithm [11] (current state of the art in terms of

both accuracy and efficiency), which interpolates low res-

olution depths on the high resolution grid based on a set

of weights computed as multiplications of spatial and color

kernels. These kernels utilize Euclidean distance to quan-

tify the dissimilarities of the pixels and the word “joint“ is

due to utilization of two channels: optical image for com-

puting color distance and depth image for computing spatial

distance. We argue that using two separate kernels causes

blurry depth boundaries and depth bleeding artifacts par-

ticularly when the colors of the surfaces across the depth

boundaries are similar. In addition, fine scene structures are

usually not preserved during upsampling.

Geodesic curves are shortest paths on the image grid.

We compute geodesic distances—lengths of the geodesic

curves—from each pixel in the target high resolution depth

image to all the pixels whose depths are known from the

low resolution depth image. These distances are used to

propagate the known depths to the high resolution grid

in a smooth and depth discontinuity preserving manner.

Since the geodesic distance integrates joint color and spa-

tial changes along the curve, it is sensitive to thin contours

around the surfaces, providing sharp depth boundaries even

when the color difference between two sides of a contour

is subtle. In addition, the geodesic path can follow thin

segments with uniform colors and therefore produce high

quality depth images with fine details. An example moti-

vating the use of geodesic distances for depth upsampling

is illustrated in Figure 1 (see Section 2 for further details).

Computing geodesic distances is closely related to the

all-pair-shortest-path problem, which is computationally

expensive. For real-time processing, we propose a new ap-

proximation algorithm for simultaneously finding K near-

est (in geodesic sense) nodes from each source node and

show that its complexity grows linearly with the image size

and K. We conduct extensive experimental validation on

the Middlebury dataset and compared the proposed algo-

rithm with the state of the art. The result shows that the

proposed algorithm produces more accurate high resolution

depth images for both smooth surfaces and boundary re-
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gions. We also show that our method is well suited for up-

sampling depth images using binary edge maps (e.g. pro-

vided by a multi-flash camera [15]), which is a difficult task

for most of the existing methods.

1.1. Related Work

Depth upsampling methods can be categorized as global

or local. Global methods [6, 14, 19] formulate depth up-

sampling as an optimization problem where a large cost is

induced if two neighboring pixels having a similar color are

assigned two very different depths. These methods can pro-

duce accurate depth images but are generally too slow for

real-time applications.

Local methods [11, 22, 7] are based on filtering and can

often obtain real-time performance. Among them, joint bi-

lateral upsampling is particularly popular, which uses bilat-

eral filtering in a joint color-spatial space. The proposed

algorithm is also based on filtering where the upsampling

filter weights are determined by geodesic distances.

Geodesic distances were previously applied to the col-

orization [24], image matting [2], and image de-nosing and

editing [5] problems. Here, we define joint geodesic fil-

tering in a color-spatial space and show its application for

depth upsampling. The fast marching algorithm [23] and

the geodesic distance transform [18] are two common im-

plementations for geodesic distance computation, both of

which have a linear time complexity. Still, they are not

fast enough to compute all pair shortest paths needed for

the proposed algorithm. We derive a novel approximation

algorithm for simultaneously finding K nearest nodes from

each source node based on geodesic distance transforms and

achieve real-time performance. Recently, [8] proposed us-

ing geodesic distances to compute Voronoi cells for image

tessellation, which are used for fitting planes to sparse depth

measurements for depth interpolation. This algorithm has a

quadratic time complexity and is a magnitude slower than

the proposed algorithm.

1.2. Contributions

The contributions of the paper are listed below.

• We propose a new joint filtering algorithm using

geodesic distances for upsampling a depth image us-

ing a registered high resolution color image.

• We develop a fast optimization technique for find-

ing approximate K nearest nodes based on geodesic

distance and achieving real-time upsampling perfor-

mance.

• We compare the proposed algorithm with the state of

the art and show that it has superior performance, es-

pecially in depth discontinuity regions.

The rest of the paper is organized as follows. In Section 2,

we present the depth upsampling formulation. Section 3

discusses the optimization technique. Experiment results

are given in Section 4. Section 5 concludes the paper.

2. Joint Geodesic Upsampling
Let D↓ and I be the low resolution depth and high reso-

lution optical images, respectively, where the resolution of

I is r times larger than that of D↓. The two images are reg-

istered so that each grid point in D↓ can be mapped to a

unique grid point in I . Without loss of generality, we can

assume that a simple mapping exists where the pixel at lo-

cation (i, j) in D↓ is mapped to the pixel at location (ir, jr)
in I . Our goal is to construct a high resolution depth image

D whose resolution is equal to that of I .

Depths of pixels in a sparse grid in D are known (which

we refer to as seed pixels) from the corresponding low reso-

lution depth image D↓. They are used to fill in the depths of

the other pixels in D. We adopt a filtering-based approach

such that the depth for a pixel x in D is given by

D(x) =
∑
y↓

g(x,y)D↓(y↓) (1)

where y and y↓ are the corresponding coordinates of the

seed pixels in the high and low resolution images respec-

tively, and g is a kernel function measuring the affinity be-

tween the two coordinates in the argument. The joint bi-

lateral filtering algorithm [11] uses a similar formulation

where its kernel function is a product of two Gaussian ker-

nels given by

exp(
−||x− y||22

2σ2
D

) exp(
−||I(x)− I(y)||22

2σ2
R

) (2)

where σD and σR are the kernel bandwidth parameters for

spatial distance ||x−y||2 and color distance ||I(x)−I(y)||2
respectively.

We propose computing the affinity measure between two

pixels using geodesic distances defined on the image grid1,

which can be considered as a two dimensional embedding

in a joint color-spatial space. Let p be a path joining x and

y. Note that such path can be uniquely represented by the

sequence of pixels it traverses, x = x
(1)
p , x

(2)
p , x

(3)
p , . . . ,

x
(|p|)
p = y, where |p| denotes the number of pixels in the

sequence. Let P be the set of all the paths joining x and y;

p ∈ P . The geodesic distance between x and y is given by

the length of the shortest path;

dG(x,y) =min
p∈P

|p|∑
i=2

(
1

r
||x(i)

p − x(i−1)
p ||2

+ λ||I(x(i)
p )− I(x(i−1)

p )||2
)

(3)

1We assume the image grid is 8-connected, i.e., each pixel is only con-

nected to its 8 neighbors via graph edges.
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Figure 1. Comparison between joint bilateral upsampling and joint geodesic upsampling. (a) An image of an indoor scene consisting

of a wall, a door, and a window. The door and window frames have the same color as the wall. (b) A horizontal slice of the image and

its intensity and depth profiles. The triangles indicate the locations where depth measurements are collected using a low resolution depth

sensor. Note that there is a thin dark band at the location of the occluding boundary of the frame and the wall, due to shading of the rounded

surface edge. (c) The upsampled depth profile using joint bilateral upsampling. (d) The upsampled depth profile using the proposed joint

geodesic upsampling algorithm. The proposed method integrates color changes along the geodesic path and accurately recovers high

resolution depth profile, whereas joint bilateral upsampling smooths depths across occlusion boundary resulting in blurring effect.

where λ is a weighting parameter. We use the Gaussian

kernel to convert the geodesic distance into the affinity mea-

sure:

gG(x,y) = exp(
−d2G(x,y)

2σ2
) (4)

where σ is the kernel bandwidth parameter.

Figure 1 shows a 1D illustration comparing joint bilat-

eral upsampling and joint geodesic upsampling. Although

the front and back surfaces have similar colors (Figure 1a),

there is a very thin dark band at the location of the occlusion

boundary2 (Figure 1b). Joint geodesic upsampling inte-

grates color changes along the geodesic curves; therefore it

is sensitive to thin structures and fine scale changes, produc-

ing smooth surfaces with sharp occlusion boundaries (Fig-

ure 1d). In contrast, the joint bilateral upsampling algorithm

incorrectly propagates depths across the depth boundary

due to Euclidean color distance computation (Figure 1c).

3. Fast Geodesic Upsampling Computation
The upsampling formulation in (1) requires computa-

tion of shortest paths from each pixel to all the seed pix-

els, which is equivalent to the all-pair-shortest-path prob-

lem. The best known exact algorithm for this problem

has O(n2 log n) complexity where n is the image size:

O(n log n) time complexity for computing single source

shortest paths to all the pixels and it is repeated n times for

each pixel. Even the best known approximation algorithm

with a constant bound [17] has O(n
3
2 ) complexity, which is

still prohibitive for real-time applications.

Here we derive an approximate formulation of the up-

sampling operation and present an O(Kn) algorithm which

achieves real-time performance. There are two assumptions

2Most of the man-made and natural surfaces do not have sharp edges,

but exhibit rounded edges with very high curvature. A thin contour around

the occlusion boundaries is almost always visible in high resolution images

due to changing illumination around these high curvature boundaries and

cast shadows.

involved in our approximation. First, we make the assump-

tion that to compute the depth of a pixel it is sufficient to

propagate information from its K “nearest“ depth pixels.

Note that the “nearest“ is defined in the geodesic sense. Let

K(x) be the set of the K nearest seed pixels for a pixel x.

The K-nearest approximation to geodesic upsampling (4) is

given by

D(x) =
∑

y↓∈K(x)

gG(x,y)D↓(y↓). (5)

Our second assumption is that if the two seed pixels are spa-

tially far away, they are unlikely to be simultaneously in the

set of K nearest depth pixels of a given pixel. Empirically

this assumption largely holds which we analyze in the ex-

periments section.

Our algorithm consists of three major processing steps,

as summarized in Figure 2: 1) we demultiplex the pixels

into K channels, 2) for each channel we compute geodesic

distance transform, and 3) we interpolate the depths accord-

ing to computed geodesic distances. Below we detail each

step.

1) Demultiplexing: For an input low resolution depth

image, we first partition its pixels into K separate channels

which is called demultiplexing. Based on our second as-

sumption, the best demultiplexing strategy is uniform par-

titioning of the image grid. Let δ be the interval of this

demultiplexing, which corresponds to the distance between

two consecutive pixels in a given channel on the low res-

olution grid. Note that these two pixels map to the seed

pixels on the high resolution grid, which are L = δr pixel

away from each other. Then, the first channel consists of

grid points (iL, jL) in the high resolution grid where i and

j are nonnegative integers, the second channel consists of

grid points (iL, r + jL), and so forth. Note that K = δ2.

2) Geodesic Distance Transform (GDT): For each

channel, we compute the geodesic distance transform [18],

which provides the shortest distance from each pixel to the

nearest seed point. Let Sk be the set of seed pixels in the
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Figure 2. Illustration of the fast geodesic upsampling compu-
tation. 1) We demultiplex the seed pixels into K disjoint chan-

nels shown by color coding. 2) For each channel, we compute

the geodesic distance transform, which provides the shortest dis-

tance from each pixel to the nearest seed pixel. 3) The depths of

the seed pixels are propagated to the high resolution grid using the

computed distances.

kth channel. The geodesic distance transform solves the

following optimization problem

Mk(x) = min
y∈Sk

dG(x,y) (6)

where dG(x,y) is defined in (3). Equation (6) can be solved

efficiently with a dynamic program consisting of a sequence

of forward and backward passes over the image.

The forward pass traverses the image from top-left to

bottom-right where each pixel is updated according to

Mk(x)← min
v∈Vf

Mk(x+ v) + dG(x,x+ v). (7)

The shift set of the forward pass consists of original pixel

and upper-left, upper, upper-right, and left neighboring

pixels, Vf = {(0, 0), (−1,−1), (0,−1), (1,−1), (−1, 0)}.

Similarly, the backward pass traverses the image in the re-

verse order according to

Mk(x)← min
v∈Vb

Mk(x+ v) + dG(x,x+ v), (8)

where the backward pass shift set is given by Vb =
{(0, 0), (1, 1), (0, 1), (−1, 1), (1, 0)}.

Exact computation of geodesic distance transform re-

quires multiple iterations of the forward and backward

passes until convergence. It can be shown that, in patholog-

ical cases such as spiral shaped geodesic paths, the number

of iterations grows by the image size, leading to super lin-

ear complexity. Yet such patterns are very rare in natural

images and the average case performance can be shown to

be linear. In all our experiments, convergence was achieved

within ten iterations. To further speed up the algorithm, one

can terminate the algorithm after a few iterations and ob-

tain a close approximation in practice. In the experiment

section, we analyze empirical performance of these cases.

3) Interpolation: After computing geodesic distance

transform for each channel, we propagate the sparse depths

given by the low resolution depth image to the high resolu-

tion grid using the computed distances. The geodesic dis-

tance transform not only provides the geodesic distance but

also the nearest seed coordinate and hence its depth. Let Mk

be the geodesic distance transform for channel k, where the

distance from a pixel x to its nearest seed point in channel

k is given by Mk(x) and its coordinate is given by yk
↓(x).

The approximate geodesic upsampling is then given by

D(x) =
K∑

k=1

exp(
− (Mk(x))

2

2σ2
)D↓(yk

↓(x)). (9)

Note that even when K = 1 neighbor is used for up-

sampling, the nearest seed pixel to a pixel is not necessarily

one of its immediate neighbors in the low resolution grid.

The shortest paths are defined on the high resolution grid

which is sparsely covered by the seed pixels, and a path can

reach a spatially distant seed pixel if the pixels along the

path have similar colors. This property is important for re-

covering thin structures that are only apparent in the high

resolution image.

4. Experiments
We conduct extensive evaluation on a benchmark dataset

and compare our results with the state of the art. Parameter

sensitivity, approximation quality, and computational per-

formance of the algorithm are analyzed. We also show a

new upsampling application using binary edge maps.

4.1. Quantitative and Visual Evaluation

We benchmark the performance of the proposed algo-

rithm using the Middlebury 2005 dataset [10]. It contains
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Table 1. Quantitative comparison. We compare the proposed algorithm with the state of the art on the Middlebury dataset using 3

performance metrics: DISC, RMS and SRMS. The DISC metric measures the error rate in the depth discontinuity region, while SRMS

measures the root mean square error in the depth smooth region. RMS measures the root mean square error over the whole image.

Alg.
DISC /Rank RMS /Rank SRMS /Rank

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x

BL 0.20 /6.1 0.39 /6.3 0.54 /6.3 0.67 /6.3 2.19 /6.1 3.37 /6.7 4.41 /6.8 5.57 /7.0 0.19 /1.6 0.84 /6.3 2.41 /6.8 4.24 /7.0

JBU 0.08 /3.3 0.13 /2.1 0.22 /2.1 0.38 /2.4 1.06 /2.1 1.52 /2.3 2.44 /3.3 3.55 /3.6 0.37 /6.0 0.49 /3.4 1.41 /3.6 2.48 /3.8

NLM 0.15 /4.9 0.20 /4.8 0.31 /4.5 0.45 /4.3 1.08 /3.4 1.56 /3.8 2.16 /3.3 3.27 /3.4 0.34 /5.0 0.46 /3.3 0.97 /3.3 2.16 /3.5

GIF 0.27 /6.9 0.40 /6.7 0.54 /6.8 0.67 /6.7 1.20 /5.0 1.60 /4.7 2.34 /4.6 3.66 /4.8 0.32 /4.2 0.70 /5.3 1.50 /5.3 2.92 /5.6

QUAD 0.08 /3.0 0.17 /3.7 0.30 /4.0 0.48 /4.6 1.05 /2.2 1.41 /1.3 1.92 /1.3 2.97 /1.5 0.18 /1.7 0.40 /2.0 0.88 /2.4 2.07 /3.0

MST 0.08 /2.5 0.16 /3.4 0.27 /3.4 0.40 /2.8 2.51 /6.9 3.13 /6.3 3.61 /6.0 3.92 /5.0 0.46 /6.2 0.91 /6.3 1.65 /5.6 2.40 /3.8

Prop. 0.07 /1.3 0.11 /1.0 0.19 /1.0 0.33 /1.0 1.07 /2.3 1.52 /3.1 2.05 /2.7 3.05 /2.7 0.30 /3.4 0.36 /1.5 0.67 /1.0 1.68 /1.3

6 scenes, namely art, books, dolls, laundry, moebius, and

reindeer. Each scene contains two views, and each view

contains a registered pair of color and depth3 images. We

generate the low resolution depth images by downsampling

the original ones with the downsampling rate varying from

2x to 16x. The task is to upsample the low resolution depth

image to the original resolution using the registered high

resolution color image.

Metrics: We use three performance metrics for evalu-

ation: 1) the error rate on the depth discontinuity regions

(DISC), 2) the root-mean-square error (RMS), and 3) the

root-mean-square error in the smooth region (SRMS).

DISC measures the reconstruction error in the depth

discontinuity regions, a standard metric for benchmarking

stereo reconstruction algorithms [16]. We first extract depth

edges in the ground truth depth image. The extracted depth

edges are 1-pixel wide. We dilate them to cover both sides

of the depth boundary. We compare the upsampled depth

map to the ground truth only in the extracted discontinuity

regions. A depth is denoted as erroneous if deviating from

the ground truth value by more than one disparity. The fi-

nal metric is given by the ratio of the number of erroneous

pixels to the total number of pixels in the extracted region.

RMS is commonly used for comparing depth upsampling

algorithms [11, 14]. However, we argue that RMS favors

blurry depth boundaries, which produce major artifacts for

depth upsampling. Square error magnifies large few pixel

errors, which are commonly generated by algorithms pro-

ducing sharp depth boundaries but minimized by blurry

edges. Therefore, this metric is less suited for evaluation

of upsampling performances.

SRMS is a modified version of RMS error where the error

is computed only in the smooth region given by the comple-

ment of the extracted depth discontinuity region. This met-

ric ensures that error in smooth regions is not dominated by

few boundary pixels having large errors and is better suited

for measuring upsampling accuracy in the smooth region.

Algorithms: We compare the proposed algorithm

with several filtering-based depth upsampling algorithms,

3Depths are given by disparities in the dataset.

bilinear interpolation (BL), joint bilateral upsampling

(JBU) [11], non-local means filtering (NLM) [3], minimal-

spanning-tree based cost aggregation (MST) [20], and

guided image filtering (GIF) [9]. In addition, a global ap-

proach based on a quadratic cost function on the image

graph (QUAD) [12] is included in our comparison. Below,

we briefly review these algorithms.

JBU (discussed in Section 2) is a popular choice for

depth upsampling [4, 7]. We note that real-time upsampling

performance can be achieved by using the fast implementa-

tions described in [21, 1].

NLM was proposed for image de-noising [3]. It assumes

that small patches are repeated throughout the image. De-

noising is achieved by averaging intensities of similar pix-

els with the similarity measured by patch matching scores.

NLM was used as a system component for a recent depth

upsampling work [14], which transfers depth information

from similarly-colored patches.

GIF filters an image using information from a guidance

image [9]. It assumes that a linear mapping exists from the

guidance image to the filtered image for each small patch.

For depth upsampling, a linear regression function from the

color image to the depth image is estimated for each low

resolution patch, which is then used to transfer higher reso-

lution color image to the output depth image.

MST was introduced for cost aggregation in stereo

matching [20]. It first constructs a minimal spanning tree

whose edge weights are given by the color differences. The

tree is then used to smooth the disparity cost volume. We

modify the algorithm for depth upsampling by prorogating

depths based on the distances on the spanning tree.

QUAD was proposed for colorization of gray-scale im-

ages [12] and recently modified for depth upsampling [19].

Upsampling is formulated as a quadratic optimization prob-

lem where the cost function enforces color and depth cor-

relation subject to the linear constraints given by the low

resolution depth image.

For the implementations that were not publicly available,

we used our own implementations. These algorithms have

several preference parameters. We either used the recom-

mended values from the original papers or ran a grid search
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Figure 3. Visual comparison. Visual comparison of the depth upsampling results at 8x upsampling rate. From left to right, the columns

correspond to input color image, ground truth depth images, output of the QUAD algorithm, output of the JBU algorithm, and output of

the proposed algorithm. The proposed algorithm produces the sharpest depth boundaries with the fewest artifacts.

for the best parameter. For the proposed algorithm, we

found that σ = 0.5 and λ = 10 provide the best perfor-

mance. We set δ = 2 and hence the number of nearest

nodes used is K = 4. We analyze the parameter sensitivity

of our algorithm in Section 4.2.

Results: The first column of Table 1 shows the com-

parison using the DISC metric. The results were averaged

over all the images in the dataset at different upsampling

rates. The proposed algorithm consistently yields the small-

est DISC error followed by the JBU algorithm. At 4x and

8x, it reduces the error rate by 15% and 14%, respectively,

as compared to the second best one. The table also shows

the average ranks of the competing algorithms where the

proposed algorithm has the best rank except for the dolls

image in the second view.

The second column of Table 1 shows the comparison re-

sults using the RMS metric. We found that QUAD produces

the best result in this metric, which is closely followed by

our algorithm. As discussed above, RMS metric is mis-

leading and is minimized by the blurry depth boundaries

produced by the QUAD algorithm. This artifact is clearly

visible in Figure 3, which confirms our argument. We also

note that the processing time per image for the QUAD al-

gorithm is about 25 seconds, while the proposed one only

utilizes a small fraction of a second.

The third column of Table 1 shows the results using the

SRMS metric. It can be seen that the proposed algorithm

provides better depth recovery in the smooth regions at 4x,

8x, and 16x upsampling rates. It has 24% less SRMS error

at 8x with respect to the second best one.

Figure 3 provides a visual comparison. It can be ob-

served that the proposed algorithm produces the sharpest

depth image. It also has much fewer artifacts. The results

obtained by the JBU algorithm tends to include depth bleed-

ing artifacts especially when the upsampling rate is large.

This is because it fails to consider intermediate color tran-

sition between the interpolated and interpolating pixels and

merely utilizes their color difference for similarity compu-

tation. Existence of a thin edge in-between has no effect on

the upsampling process. Our algorithm uses geodesic paths

for interpolation and is free from this drawback. We also

note that the QUAD algorithm produces relatively blurred

outputs as compared to the proposed one since its optimiza-

tion formulation favors smooth depth transitions.

4.2. Parameter Sensitivity

Our algorithm has three parameters: two for interpola-

tion, σ and λ, and one for approximation, K. We report
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Figure 4. Parameter sensitivity. Accuracy is shown as a function of parameter values. The proposed algorithm renders good performance

for a wide range of values. The parameters are fixed at σ = 0.5, λ = 10, δ = 2 and K = 4 if they are not varied.
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Figure 5. Approximation analysis. The approximation algorithm

produces close results to the exact algorithm particularly for larger

K. Our algorithm is exact when K = 1.

the performance sensitivity to the parameters in Figure 4.

It shows that our algorithm does not require fine tuning of

the parameters and produces good performance for a wide

range of values, although extreme values could still lead to

poor performance. The figure also shows that the DISC er-

ror increases as the kernel bandwidth σ increases. This is

because the color difference is downplayed when σ is large,

which leads to blurred boundaries. Similar effect occurs

when the color difference weighting λ is decreased.

4.3. Approximation and Computation Analysis

Our optimization scheme produces an approximation to

the geodesic upsampling operation as explained in Sec-

tion 3. We analyzed the approximation quality by compar-

ing it with the the exact algorithm, which find the K nearest

neighbors with O(n2 log n) complexity. The approximation

error, measured using the RMS error metric, is plotted as a

function of number of nearest neighbors K in Figure 5. It

can be seen that the approximation algorithm produces very

close results to the exact one particularly for larger K.

Table 2 reports the processing time for a 695×555 im-

age at 8x upsampling rate. We compare three variants of

the geodesic upsampling algorithm: 1) exact, 2) approxi-

mation using multi-pass geodesic distance transform, and

3) approximation using two-pass geodesic distance trans-

Table 2. Computation analysis. The table shows the processing

speed (frames per second) achieved by the exact and approxima-

tion algorithms. See text for further details.

exact
approx. using approx. using

multi-core
multi-pass GDT two-pass GDT

fps 0.03 3.0 6.0 16.3

form (see Section 3 for details). The approximation algo-

rithm is about 100 times faster than the exact implemen-

tation. It has a processing speed of 3 frames per second

(fps) whereas the processing time for the exact algorithm

is 33 seconds for a single frame. By using the two pass

approximation, the processing speed is further improved to

6 fps. Our algorithm is fully parallelizable where distance

transform for each channel can be computed in parallel. We

achieved 16.3 fps upsampling rate on a quad-core computer.

4.4. Depth Upsampling Using Binary Edge Maps

In the last experiment, we show that our method is well

suited for upsampling depth images using binary images

and present an application for sensor fusion. Specifically,

we upsample a depth image from a low resolution depth

sensor with a high resolution depth boundary map from a

multi-flash camera (MFC)4 as shown in Figure 6. Instead

of using both spatial distance and color difference for pixel

affinity as in optical images, only spatial distance is used. In

addition, the spatial distance is set to infinite for neighbor-

ing pixels across depth boundaries. This forces only those

depth pixels in the same depth continuous region are used

to compute the depths of pixels in the region, achieving

boundary-confined upsampling. Note that this boundary-

confined property is highly nontrivial for other filtering-

based algorithms such as JBU as shown in Figure 6d.

Several advantages exist for upsampling using a depth

4MFC is a camera design that exploits illumination pattern change due

to LED flashes from different directions to compute a depth boundary map.

Note that the resolution of the boundary map is equal to the resolution of

the camera and is typically high [15].
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(a) (b) (c) (e) (d) 

Figure 6. Depth upsampling using binary edge maps given by multi-flash camera. (a) Scene. (b) Input low resolution depth image.

(c) Input high resolution depth boundary map from multi-flash camera. (d) 16x upsampled depth image using joint bilateral upsampling

(e) 16x upsampled depth image using the proposed algorithm.

boundary map from MFC instead of using a conven-

tional optical image. First, the boundary map directly de-

fines where depth discontinuity occurs. In contrast, depth

discontinuity can only be approximately found through

color/intensity difference in an optical image, a process sen-

sitive to texture surface. Second, the MFC depth boundary

extraction is robust to dust, dirt, grease, and dim illumina-

tion, common in industrial environments [13]. Hence, this

fusion scheme is better suited for industrial applications.

5. Conclusion
We presented a new joint filtering algorithm using

geodesic distances for upsampling depth images using high

resolution color images. We developed an efficient approx-

imation to the upsampling filter and achieved real-time per-

formance. We conducted extensive experimental compar-

ison with existing methods and showed that the proposed

algorithm advances the state of the art.
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