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Abstract
Pose variation remains to be a major challenge for real-

world face recognition. We approach this problem through
a probabilistic elastic matching method. We take a part
based representation by extracting local features (e.g., LBP
or SIFT) from densely sampled multi-scale image patches.
By augmenting each feature with its location, a Gaussian
mixture model (GMM) is trained to capture the spatial-
appearance distribution of all face images in the training
corpus. Each mixture component of the GMM is confined
to be a spherical Gaussian to balance the influence of
the appearance and the location terms. Each Gaussian
component builds correspondence of a pair of features
to be matched between two faces/face tracks. For face
verification, we train an SVM on the vector concatenating
the difference vectors of all the feature pairs to decide if
a pair of faces/face tracks is matched or not. We further
propose a joint Bayesian adaptation algorithm to adapt
the universally trained GMM to better model the pose
variations between the target pair of faces/face tracks,
which consistently improves face verification accuracy. Our
experiments show that our method outperforms the state-of-
the-art in the most restricted protocol on Labeled Face in
the Wild (LFW) and the YouTube video face database by a
significant margin.

1. Introduction
Face recognition has remained an active research topic

in computer vision for decades [17, 32, 31, 22, 2, 11, 1,

21, 30, 14, 18, 29, 7]. In recent years, we have witnessed

more and more research efforts on face recognition under

uncontrolled settings [21, 14, 18, 29, 7]. Face recognition

can be categorized into two tasks: face identification and

face verification. The former attempts to recognize the

identity of a probe face based on a set of gallery face images

with known identities. The latter tries to arbitrate if a pair

of faces is from the same subject or not. In this paper,

we address the problem of pose variant face verification in

uncontrolled settings.

Among the various visual complications affecting robust

face recognition, pose variation is one of the most challeng-

ing [30]. Previous work has approached this problem

by either exploiting a strong face alignment algorithm [7],

or building a robust matching scheme that measures the

similarity of faces across different poses [21, 30, 14, 18].

While we have witnessed great progress on face alignment

in recent years [4], building a robust face alignment system

by itself is a very challenging problem which requires a lot

of engineering efforts [4]. As a result, state-of-the-art face

alignment systems, even those with published papers, are

often not fully accessible to the research community.

Although sharing aligned faces in a carefully crafted

benchmark face recognition dataset such as the Labeled

Face in the Wild (LFW) [16] partly relieves the issue, it

immediately becomes a hurdle when one wants to build

an end-to-end functioning system for face recognition.

Besides, state-of-the-art face alignment results are still far

from perfect, the aligned face may still present a lot of pose

variations. Hence, we take the latter approach by designing

robust matching schemes for unaligned or roughly aligned

pose variant face verification. We believe it is a more

fundamental problem as it also addresses the residue pose

variations from any state-of-the-art face alignment systems.

We take a part based representation for a single face

image or face tracks. Each face image is densely partitioned

into overlapping patches at multiple scales, from each of

which a local feature such as Local Binary Pattern (LBP) [1]

or SIFT [19] is extracted. We augment each local feature

with its location in the face image, and hence a face is rep-

resented as a bag of spatial-appearance features. To enable

robust matching for pose variant face verification, given a

set of training images, we firstly build a Gaussian mixture

model (GMM) on the spatial-appearance features from all

the training images. In speech recognition, such a GMM is

also called Universal Background Model (UBM) [13].

To balance the impact of the appearance and spatial

location, we further constrain each mixture component

of the UBM to be a spherical Gaussian (Section 4.1).

When matching two face images for face verification,

each component of the GMM model identifies a pair of
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appearance features (corresponding to a pair of image

patches) from the two face images to be matched (Sec-

tion 4.2). We concatenate the absolute difference vector of

all these feature pairs from all spherical Gaussian compo-

nents together to form a long difference vector. An SVM

classifier is trained on such difference vectors given a set

of training matching/non-matching face/face track pairs,

which is subsequently used to verify any new face/face track

pairs. One important advantage of this matching framework

is that it can be used for both image-to-image and video-to-

video face verification without any modification.

As we will show in our experiments, the proposed robust

matching scheme bridged by the UBM-GMM, namely

probabilistic elastic matching (PEM), outperforms the cur-

rent state-of-the-art performance on both the LFW [16]

(working under the most restricted protocol) and the You-

Tube Video Face Dataset [27] with a significant margin.

To make PEM to be adaptive to each pair of faces, we

further propose a joint Bayesian adaptation scheme to

adapt the UBM-GMM to better fit the features of the pair

of faces/face tracks by Bayesian maximum a posteriori

parameter estimation (Section 4.3).

We call such an adapted matching algorithm to be adap-

tive probabilistic elastic matching (APEM). It consistently

improves the face verification accuracy over PEM at the

cost of additional computation. Our experiments even show

that our PEM and APEM algorithms, when applied to face

verification with unaligned faces, i.e., raw face images

extracted from the Viola-Jones face detector [24], indeed

outperforms the state-of-the-art algorithm, such as the bio-

inspired V1 features with multiple kernel learning applied

to faces aligned with the funneling method [15] under

the most restricted protocol in LFW. This provides strong

evidence that our proposed PEM and APEM algorithms can

better handle pose variations.

Hence, the main contributions of this paper are: 1) we

propose to use an universally trained spherical UBM-GMM

on spatial-appearance features as a bridge to build invari-

ant feature correspondences through probabilistic elastic

matching for both image and video face verification; 2)

we show that the joint Bayesian adaptation of the spherical

UBM-GMM on the pair of faces/face tracks to be verified

can further improve the invariance in matching; and 3)

we achieve state-of-the-art face verification accuracy on

both LFW (the most restricted protocol in image restricted

setting), and the YouTube Faces benchmarks.

2. Related Work
Related works include those adopted UBM-GMM for

visual recognition [34, 9, 12, 26], and the current state-of-

the-art face verification algorithms on both the LFW [18,

29, 21, 14, 5, 33, 8, 25, 3] and YouTube video face

datasets [27]. We briefly discuss them in turn.

The Gaussian mixture model has been widely used for

various visual recognition tasks including face recogni-

tion [12, 26, 34] and scene recognition [9, 34]. While early

works [12, 26] focused on modeling the holistic appearance

of the face with GMM, more recent works [34, 9] have

largely exploited the bag of local feature representation and

use GMM to model the local appearances of the images.

These latter works also leveraged the UBM-GMM and

Bayesian adaptation paradigm to learn adaptive representa-

tions, wherein the super-vector representations are adopted

for building the final classification model. While the super-

vector representation is related to average pooling scheme,

our invariant matching scheme is more similar to the max

pooling and the lateral inhibition mechanism found in the

visual cortex. Besides, none of these works conducted joint

spatial-appearance modeling using spherical Gaussians as

the mixture components and their Bayesian adaptation is

applied to a single image whereas we conduct a joint

Bayesian adaptation on a pair of faces/face tracks to better

build the correspondences of the local features in the two

face images.

The LFW benchmark has three protocols in the Image-

Restricted Training setting for a 10 folds cross validation

evaluation. The most restricted protocol does not allow any

additional datasets to be used for face alignment, feature

extraction, or building the recognition model. The less

restricted protocol allows to use additional datasets for

face alignment and feature extraction, but not for building

the recognition model. While the least restricted protocol

allows additional datasets to be exploited for all three tasks.

The current state-of-the-art on the most restricted protocol

is the work of the bio-inspired V1-like features presented

by Pinto et al. [21], which achieved an average accuracy of

0.7935± 0.00551.

Predominant recent works focused on the less restricted

protocol [5, 8, 25] and least restricted protocol [18, 33, 3],

which have pushed the recognition accuracy to be as high as

0.9330±0.0128. They all leveraged additional data sources.

We focused our experiments on the most restricted protocol

on LFW as our interest is the design of a robust matching

method for pose variant face verification. Restricting the

evaluation to the most restricted protocol enables objective

evaluation of the capacity of our proposed approach. Our

method only employed simple visual features such as LBP

and SIFT. We also observed consistent improvement when

fusing the results from these two types of features together,

suggesting that we can further improve face verification

accuracy from the proposed method by fusing more types

of features, or by feature learning, which we leave as our

future work.

1Pinto et al. [21] used the View 1 of LFW for parameter tuning, which

may have partly boosted their accuracy on the View 2 of LFW as the face

images in View 1 and View 2 are overlapping.
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Wolf et al. [27] published a video face verification

benchmark, namely YouTube Faces. To date, the state-of-

the-art results are reported by the authors, using a method

extended from their previous work [29] on image-based

face verification. Our proposed approach can be directly

applied to video face verification without any modification,

which outperformed their method by a significant margin.

3. Spatial-appearance Feature Extraction
For image based face verification, we represent each

face image as a bag of spatial-appearance features. As

shown in Figure 1, for each face image F , we firstly

build a three layer Gaussian image pyramid. Then we

densely extract overlapping image patches from each level

of the image pyramid. The set of all N patches extracted

from face image F is denoted as P = {pi}Ni=1. After

that, we extract appearance feature from each image patch

pi which we denote as api . Finally, we augment the

appearance feature of each patch pi with its coordinates

lpi
= [x y]T as its spatial feature. As a result, the final

feature representation for patch pi is a spatial-appearance

feature fpi
= [api

T , lpi

T ]T . The final representation

for face image F is hence an ensemble of these spatial-

appearance features, i.e., fF = {fpi}Ni=1.

In video based face verification, the task is to verify

if two tracks of faces are from the same person or not

(assuming each track of faces is the face of a single

person). We adopt the same bag of spatial-appearance

feature representation for a track of faces by repeating

the feature extraction pipeline in Figure 1 on each face

image in the track. The features extracted from all the

face images from a single track are put together to form

a larger set of spatial-appearance features to serve as the

final representation of a face track. As a result, we take

the same kind of feature representation for both image

based and video based face verification. Therefore the

probabilistic elastic matching method we will introduce in

the next section will apply to both image and video based

face verification.

4. Probabilistic Elastic Matching
The exact steps of the proposed probabilistic elastic

matching method are illustrated in Figure 2. We start by

building a GMM from all the spatial-appearance features

extracted from face images in the training set. Following the

terminology from the speech recognition community [13],

we call such a GMM a Universal Background Model

(UBM) or UBM-GMM.

Given a face/face track pair, both of which are repre-

sented as a bag of spatial-appearance features, for each

Gaussian component in the UBM-GMM, we look for a pair

of features (one from each of the face images/tracks) that

induces the highest probability on it. We call such a pair

of features a corresponding feature pair. We concatenate

the absolute difference vectors of all these corresponding

feature pairs together to form a long vector, which is

subsequently fed into an SVM classifier for prediction.

An additional improvement is to conduct a joint

Bayesian adaptation step to adapt the UBM-GMM to the

union of the spatial-appearance features from both face

images/tracks constrained a priori by the parameters of the

original UBM-GMM to form a new GMM (A-GMM). Then

we could use the A-GMM instead of the UBM-GMM to

build the corresponding feature pairs. We call the proposed

approach using UBM-GMM to build the corresponding

feature pair to be probabilistic elastic matching (PEM),

and the approach using A-GMM to build the corresponding

feature pair to be adaptive probabilistic elastic matching
(APEM).

We proceed with detailed description of the key steps

including the training of the UBM-GMM (Section 4.1),

the invariant matching scheme (Section 4.2), and the joint

Bayesian adaptation algorithm for the APEM (Section 4.3).

4.1. Training UBM-GMM
As we have mentioned, GMM as UBM is widely used

in the area of speech recognition [13]. In our method, to

balance the impact of the appearance and spatial location,

we confine the UBM to be a GMM with spherical Gaussian

components, i.e.,

P (f |Θ) =

K∑

k=1

ωkG(f |�μk, σ
2
kI), (1)

where Θ = (ω1, �μ1, σ1, . . . , ωK , �μK , σK); K is the number

of Gaussian mixture components; I is an identity matrix;

ωk is the mixture weight of the k-th Gaussian component;

G(μk, σ
2
kI) is a spherical Gaussian with mean μk and

variance σ2
kI, and f is an m-dimensional spatial-appearance

feature vector i.e., f = [aT lT ]T .

To fit such a UBM-GMM over the training feature

set χ = {f1, f2, . . . , fM}, we resort to the Expectation-

Maximization (EM) algorithm to obtain an estimate of the

parameters of GMM by maximizing the likelihood L of the

training features χ, formally,

Θ∗ = argmax
Θ
L(χ|Θ) (2)

The EM algorithm consists of the E-step which computes

the expected log-likelihood and the M-step which updates

parameters to maximize this expected log-likelihood [10].

Specifically, in our UBM-GMM case, in the E-step, we

calculate

nk =
M∑

i=1

P (k|fi), (3)

Ek(f) =
1

nk

M∑

i=1

P (k|fi)fi, (4)
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Figure 1. Spatial-appearance feature extraction pipeline.
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(UBM-GMM)(A-GMM)
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Figure 2. Our pipeline to build feature pair correspondence.

Ek(f
T f) =

1

nk

M∑

i=1

P (k|fi)fTi fi, (5)

where P (k|fi) is defined as

P (k|fi) = ωkG(fi|μk, σ
2
kI)∑K

k′=1ωk′G(fi|μk′, σ2
k′I)

(6)

which is the posterior probability that the k-th Gaussian

component generated feature fi.
In the M-step, the parameter set Θ is updated as

ω̂k =
nk

M
, (7)

μ̂k = Ek(f), (8)

σ̂2
k =

1

m
(Ek(f

T f)− μ̂T
k μ̂k). (9)

These two steps are iterated until convergence, at which

time we obtain the UBM-GMM. Note that variances along

different dimensions are indeed taken into consideration

through Equation 9.

With the location augmented feature, it is a well-

recognized problem that the spatial constraint from the

augmented l can be too weak to make a difference if

treated in a straightforward manner. This is because, in

practice, the dimension ma of the appearance feature a can

be considerably larger than the dimension of the location

feature l which is ml = 2 in our experiments.

Here we argue and demonstrate that confining each

mixture component in GMM to be a spherical Gaussian can

handle this issue, as it helps establish a balance between the

spatial and appearance constraint. Take the k-th Gaussian

component P (f |ωk, μk, σ
2
kI) as an example, the probability

feature f over it is

G(f |�μk, σ
2
kI) ∝ e

− ‖a−�μa
k‖

2

2σ2
k e

− ‖l−�μl
k‖

2

2σ2
k , (10)

where �μa
k and �μl

k are the appearance and location part

of �μk, respectively, such that �μk = [�μaT
k , �μlT

k ]T . As

shown in Equation 10, the spherical Gaussian on the spatial-

appearance model can be regarded as the product of two

equal variance Gaussian distribution over two Euclidean

distances produced by the appearance and location, respec-

tively. As long as the ranges of the two Euclidean distances

are matched, the influence of these two Gaussians will be

balanced. This can be easily achieved by normalizing the

appearance and the location part of the spatial-appearance

feature in an appropriate way, such as scaling a to be unit

vector and keeping every element of l has a value between

0 and 1.

As illustrated in Figure 3, without confining the mixture

components to be spherical Gaussians, the spatial constraint

introduced from l is so weak that the spatial spanning of

Gaussian components are highly overlapped, which could

not help build correct feature correspondences in the in-

variant matching stage. In contrast, the spatial variances of

350035003502



(a) UBM - normal Gaussians (b) UBM - spherical Gaussians

Figure 3. Spatial distribution of 10 selected Gaussian components

in the UBM over a face. Each red ellipse (or circle) stands for

a Gaussian component. The center and span show mean and

variance of the spatial part of the Gaussian component.

spherical Gaussian components are more localized, which

could tolerate pose variations more appropriately.

Note that if the UBM-GMM is with normal Gaussian

components, one can not address this issue by scaling a.

This can be observed by checking the equations in the

EM algorithm: if a is scaled, the corresponding means

and covariances will be scaled proportionally. Then the

probability of f over each of the Gaussian components

will be scaled in the same way. As a result, P (k|fi) is

unchanged (Equation 6), which means the EM estimates

will undesirably remain the same – it only scales the mean

and variance estimates. This is not able to help balance the

influence of the appearance and the location.

4.2. Invariant Matching

After we obtained the K-components UBM-GMM

trained over a set of m-dimensional spatial-appearance

features, we exploit it to form an elastic matching scheme

in the form of a D = m × K dimensional long difference

vector for a pair of face images/tracks.

Formally, we present a face/face track F as a bag of

spatial-appearance features fF = {f1, f2, . . . , fN}. First we

let each Gaussian component (ωk,Gk(�μk, σ
2
kI)) commit

one feature fgk(F) from fF , such that

gk(F) = argmax
i

ωkG(fi|�μk, σ
2
kI). (11)

The face/face track F is then represented as a sequence of

K m-dimensional features, i.e, [fg1 fg2 . . . fgK ]. After this

stage, given the i-th faces/face tracks pair (F and F ′), the

difference vector is a concatenated vector, i.e.,

di = [Δag1 Δag2 . . . ΔagK ]T , (12)

where Δagk = |agk(F) − agk(F ′)|T , which serves as the

final matching feature vector of a pair of faces/face tracks

for face verification. Note in this final representation,

we focus on the appearance differences since the spatial

component is already taken into consideration when we

build the corresponding feature pairs. The way we build

correspondence from the spatial-appearance GMM model is

motivated by and related to max pooling and the lateral inhi-

bition mechanism in receptive fields, both have been proven

to be beneficial when building visual representations.

A kernel SVM classifier, i.e.,

f(d) =
V∑

i=1

αik(di,d) + b, (13)

is then trained over C training difference vectors

{d1,d2, . . . ,dC} with the Gaussian Radial Basis Function

(RBF) kernel, i.e. ,

k(di,dj) = exp(−γ||di − dj ||2), γ > 0, (14)

where i, j = 1, . . . , C. Given the difference vector dt of a

testing face/face track pair, the SVM predicts its label. We

employed the LibSVM [6] to train the SVM classifier. We

call the matching algorithm presented in this section to be

probabilistic elastic matching (PEM).

4.3. Joint Bayesian Model Adaptation

Prior work applying GMMs with Bayesian adaptation to

visual recognition [34, 9] has operated either at the class

level or at the image level. To make the matching process

adaptive for each face/face track pair, we propose a joint

Bayesian adaptation on the union of the bag of spatial-

appearance features from the faces/face tracks pair. In the

joint adaptation process, the parameters of the UBM-GMM

build the prior distribution for the parameters of the jointly

adapted GMM under a Bayesian maximum a posteriori

(MAP) framework.

We denote the UBM parameter set as Θb and parameter

set of the GMM after joint adaptation as Θp, where Θx =
{ωx1 , �μx1 , σx1 , . . . , ωxK

, �μxK
, σxK

}, x = {b, p}. Given a

face/face track pair Q and S, the adaptive GMM is trained

over the joint feature set χp = {f1, f2, . . . , fP } which is

the union of feature sets of Q and S as χq and χs, where

|χp| = |χq|+ |χs|. Upon χp a MAP estimate for Θp can be

obtained by maximizing the log-likelihood L(Θp), i.e.,

L(Θp) = lnP (χp|Θp) + lnP (Θp|Θb). (15)

The conjugate prior distribution of Θp is composed from

the UBM-GMM parameter Θb [9, 34, 10], i.e.,

(ωp1
, . . . , ωpK

) ∼ Dir(Tωb1 , . . . , TωbK ), (16)

μpk
∼ N (�μbk , σ

2
bk
/γ). (17)

The prior distribution over the mixture weights is a Dirichlet

distribution. The parameter T can be interpreted as the

count of features introduced by the UBM-GMM. The prior

distribution for mean μpk
is a spherical Gaussian distri-

bution with variance smoothed by parameter γ. We can
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(a) Feature correspondences built through UBM-GMM

(b) Feature correspondences built through A-GMM

Figure 4. In both figures, the row above shows local patches from

face A shown in Figure 2, while the bottom ones are from face B.

Each column shows a pair of features captured by one Gaussian

component in the GMM.

also use a Normal-Wishart distribution over the variance as

in [9, 10]. However, in order to stabilize the adapted GMM,

we confined the adapted variance to be the same as that of

the UBM-GMM, i.e, σ2
pk

= σ2
bk

.

With these priors, the parameters of the adapted GMM

can be estimated by a Bayesian EM algorithm [9, 34, 10],

i.e., in the E-step, we calculate

nk =

P∑

i=1

P (k|fi), (18)

Ek(f) =
1

nk

P∑

i=1

P (k|fi)fi, (19)

where

P (k|fi) =
ωpk
G(fi|μpk

, σ2
pk
)

∑K
k′=1ωpk′G(fi|μpk′ , σ

2
pk′)

, (20)

and in M-step, we update Θp as

ω̂pk
= α

nk

N
+ (1− α)ωbk , (21)

μ̂pk
= βkEk(f) + (1− βk)�μbk , (22)

where

α = N/(N + T ), βk = nk/(nk + γ). (23)

After we obtain the adapted GMM given a pair of

faces/face tracks, we conduct APEM to build the difference

vector for invariant matching. We could observe A-GMM

improves some feature correspondences as shown in Fig-

ure 4, such as the 10th and the last column.

5. Multiple Feature Fusion
In visual recognition, different kinds of multiple feature

fusion techniques are widely adopted [7, 21]. In this

paper, we augment our PEM/APEM by a simple multiple

feature post-fusion framework to combine the effectiveness

of different features using a linear SVM.

To post-fuse multiple features, we repeat the proposed

pipeline over all face/face track pairs using D types of

different local features to obtain D confidence scores for

each face/face track pair pi as a score vector

si = [si1 si2 . . . siD ], (24)

where sid denotes the score assigned by the classifier using

the d-th type of feature. Over all C training score vectors

{s1, s2, . . . , sC} and their labels, we train a linear SVM

classifier to predict the label for a testing score vector st
of a face/face track pair. Such a simple scheme proved to

be very effective in our experiments. We note here that

more advanced method such as multiple kernel learning

(MKL) similar to what has been adopted in [21] can also be

adopted, but we observe no performance difference when

compared with our simple fusion scheme with a linear

SVM.

6. Experimental Evaluation
Extensive experiments are performed over two challeng-

ing datasets, Labeled Face in the Wild (LFW) [16] and

YouTube Faces Database [27].

6.1. Labeled Faces in the Wild
Labeled Faces in the Wild (LFW) [16] dataset is de-

signed to address the unconstrained face verification prob-

lem. This challenging dataset contains more than 13,000

images from 5749 people. In general there are two training

methods over LFW, image-restricted method and image-
unrestricted method. By design, image-restricted paradigm

does not allow experimenters to use the name of a person to

infer two face images are matched or non-matched, while in

the image-unrestricted paradigm experimenters may form

as many matched or non-matched face pairs as desired for

training. Over LFW, researchers are expected to explicitly

state the training method they used and report performance

over 10-folds cross-validation. In our experiments, we

followed the most restricted protocol, in which detected

faces are aligned with the funneling method [15].

6.1.1 Baseline Algorithm
To better investigate our PEM/APEM approach to pose vari-

ant face verification, we introduce a baseline algorithm that

shows how well a trivial location-based feature pair match-

ing scheme performs. The baseline algorithm provides a

basis of comparison to evaluate the effectiveness of building

feature pair correspondences bridged by UBM-GMM or

adapted GMM. Formally, F and F ′ are representations of

two faces, both have N features, i.e., F = {f1 . . . fN}
and F ′ = {f ′1 . . . f ′N}, where fn and f ′n are two spatial-

appearance feature from the n-th local patch at the same

location. Similar to Section 4.2, the concatenated difference

vector between faces F and F ′ is d(F ,F ′) = [|f1 −
f ′1|T . . . |fN−f ′N |T ]T . Then we train an SVM classifier over
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Table 1. Performance comparison on the most restricted LFW

Algorithm Accuracy ± Error(%)

Nowak[20] 73.93± 0.49
Hybrid descriptor-based[28] 78.47± 0.51

V1/MKL[21] 79.35± 0.55
Baseline (fusion) 77.30± 1.59

PEM (LBP) 81.10± 1.71
PEM (SIFT) 81.38± 0.98
PEM (fusion) 82.93± 1.18
APEM (LBP) 81.97± 1.90
APEM (SIFT) 81.88± 0.94
APEM (fusion) 84.08± 1.20

APEM (fusion, unaligned) 81.70± 1.78

training difference vectors to predict if a testing face/face

track pair is matched.

6.1.2 Settings
In our experiments, images are center cropped to 150x150

before feature extraction. As shown in Figure 1, SIFT and

LBP features are extracted over each scale for a 3-scale

Gaussian image pyramid with scaling factor 0.9. SIFT fea-

tures are extracted from patches from a 8x8 sliding window

with 4-pixel spacing, and LBP features2 are extracted from

a 32x32 sliding window with 4-pixel spacing. After that, the

appearance feature is augmented by the coordinates of the

patch center to build the spatial-appearance feature vector.

Over all training features, we trained a UBM-GMM of 1024

spherical Gaussian components for PEM. For APEM, given

a pair of face images, all features in the joint feature set

are utilized for joint adaptation. After calculating matching

difference vectors, we trained an SVM classifier using RBF

kernel for classification. We followed the standard 10-folds

cross-validation over View 2 to report our performance, and

we never use the View 1 dataset.

6.1.3 Results
As shown in Table 1 and Figure 5, our methods outper-

formed the state-of-the-art by a considerable margin. We

demonstrated the effectiveness of the invariant matching by

comparing with the baseline and we also observed joint

Bayesian adaptation and multiple features fusion bring con-

sistent improvements. Furthermore, our approach on un-

aligned faces [16], which are the outputs of the Viola-Jones

face detector, even outperformed state-of-the-art methods

with faces aligned by the funneling method.

6.2. YouTube Faces Dataset
This work is a general framework which can handle both

image and video based face verification without modifica-

tion. Wolf et al. [27] published YouTube Faces Dataset

2The LBP feature is constructed in a part-based scheme by partitioning

each window uniformly into 16 8x8 cells and concatenating 16 58-

dimensional uniform LBP histogram [23] calculated in each cell to form

the 928-dimensional LBP feature.
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Figure 5. Performance comparison on the most restricted LFW.
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Figure 6. Performance comparison over YouTube Faces

(YTFaces) for studying the problem of unconstrained face

recognition in videos. The dataset contains 3,425 videos

of 1,595 different people. On average, a face track from a

video clip consists of 181.3 frames of faces. Faces are de-

tected by the Viola-Jones detector and aligned by fixing the

coordinates of automatically detected facial feature points

[27]. Protocols are similar to LFW, for the same purpose,

we focus on the restricted video face verification paradigm.

To date, the state-of-art performance is published by the

authors using Matched Background Similarity (MBGS)

algorithm with LBP feature.

6.2.1 Settings
In the video faces experiments, each image frame is center

cropped to 100x100 before feature extraction. Then features

are extracted in the same way in Section 6.1.2 for each

frame, except that both SIFT and LBP are extracted with

8-pixels spacing. On average, more than 40000 features are

extracted from one face track. In the stage of joint Bayesian

adaptation, to ease the computational intensity, 1000 out of

40000 features are sampled randomly from each face track

to be combined into the joint feature set.

6.2.2 Results
As shown in table 2 and figure 6, our method outperformed

the state-of-the-art algorithm by a significant margin. Even
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Table 2. Performance comparison over YouTube Faces

Algorithm Accuracy ± Error(%)

MBGS[27] 76.4± 1.8
PEM (LBP) 76.82± 1.60
PEM (SIFT) 77.52± 2.06
PEM (fusion) 78.36± 1.69
APEM (LBP) 77.44± 1.46
APEM (SIFT) 78.54± 1.42
APEM (fusion) 79.06± 1.51

without feature fusion, PEM with LBP features already

have comparable performance with slightly better accuracy

over MBGS.

7. Conclusion
In this paper, we proposed a probabilistic elastic match-

ing algorithm with an additional joint Bayesian adaptation

component as a general framework for both image and

video based face verification. Extensive experiments were

performed in which PEM/APEM showed superior perfor-

mances over state-of-the-art methods on two standard face

verification benchmark datasets, most restricted LFW and

restricted Youtube Faces dataset.

Acknowledgement
This work is partly supported by GH’s start-up funds

from Stevens Institute of Technology and a Collaboration

Research Gifts from Adobe System Incorporated.

References
[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition

with local binary patterns. In ECCV, 2004.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman.

Eigenfaces vs. Fisherfaces: Recognition using class specific

linear projection. T-PAMI, 1997.

[3] T. Berg and P. Belhumeur. Tom-vs-pete classifiers and

identity-preserving alignment for face verification. In

BMVC, 2012.

[4] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by

explicit shape regression. In CVPR, 2012.

[5] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with

learning-based descriptor. In CVPR, 2010.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM T-IST, 2011.

[7] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian

face revisited: A joint formulation. In ECCV, 2012.

[8] D. Cox and N. Pinto. Beyond simple features: A large-scale

feature search approach to unconstrained face recognition. In

FGR, 2011.

[9] M. Dixit, N. Rasiwasia, and N. Vasconcelos. Adapted

gaussian models for image classification. In CVPR, 2011.

[10] J.-L. Gauvain and C.-H. Lee. Maximum a posteriori

estimation for multivariate gaussian mixture observations of

markov chains. T-SAP, 1994.

[11] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.

From few to many: Illumination cone models for face

recognition under variable lighting and pose. T-PAMI, 2001.

[12] R. Gross, J. Yang, and A. Waibel. Growing gaussian mixture

models for pose invariant face recognition. ICPR, 2000.

[13] T. Hasan and J. Hansen. A study on universal background

model training in speaker verification. Audio, Speech, and
Language Processing, IEEE Transactions on, 2011.

[14] G. Hua and A. Akbarzadeh. A robust elastic and partial

matching metric for face recognition. In ICCV, 2009.

[15] G. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint

alignment of complex images. In ICCV, 2007.

[16] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller.

Labeled Faces in the Wild: A Database forStudying Face

Recognition in Unconstrained Environments. In Faces in
Real-Life Images Workshop in ECCV, 2008.

[17] V. Jain, A. Ferencz, and E. Learned-miller. Discriminative

training of hyper-feature models for object identification. In

BMVC, pages 357–366, 2006.

[18] N. Kumar, A. Berg, P. N. Belhumeur, and S. Nayar.

Describable visual attributes for face verification and image

search. T-PAMI, 2011.

[19] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 2004.

[20] E. Nowak and F. Jurie. Learning visual similarity measures

for comparing never seen objects. In CVPR, 2007.

[21] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you

get with a modern face recognition test set using only simple

features? In CVPR, 2009.

[22] M. A. Turk and A. P. Pentland. Face recognition using

eigenfaces. In CVPR, 1991.

[23] A. Vedaldi and B. Fulkerson. Vlfeat: an open and portable

library of computer vision algorithms. In ACM Multimedia,

2010.

[24] P. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 2004.

[25] F. Wang and L. J. Guibas. Supervised earth mover’s distance

learning and its computer vision applications. In ECCV,

2012.

[26] X. Wang and X. Tang. Bayesian face recognition based on

gaussian mixture models. In ICPR, 2004.

[27] L. Wolf, T. Hassner, and I. Maoz. Face recognition in

unconstrained videos with matched background similarity.

In CVPR, 2011.

[28] L. Wolf, T. Hassner, and Y. Taigman. Descriptor based

methods in the wild. In Faces in Real-Life Images Workshop
in ECCV, 2008.

[29] L. Wolf, T. Hassner, and Y. Taigman. Effective unconstrained

face recognition by combining multiple descriptors and

learned background statistics. T-PAMI, 2011.

[30] J. Wright and G. Hua. Implicit elastic matching with

randomized projections for pose-variant face recognition. In

CVPR, 2009.

[31] S. Yan, M. Liu, and T. Huang. Extracting age information

from local spatially flexible patches. In ICASSP, 2008.

[32] S. Yan, X. Zhou, M. Liu, M. Hasegawa-Johnson, and

T. Huang. Regression from patch-kernel. In CVPR, 2008.

[33] Q. Yin, X. Tang, and J. Sun. An associate-predict model for

face recognition. In CVPR, 2011.

[34] X. Zhou, N. Cui, Z. Li, F. Liang, and T. Huang. Hierarchical

gaussianization for image classification. In ICCV, 2009.

350435043506


