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Abstract

In this paper, we propose a new approach for match-
ing images observed in different camera views with com-
plex cross-view transforms and apply it to person re-
identification. It jointly partitions the image spaces of
two camera views into different configurations according
to the similarity of cross-view transforms. The visual fea-
tures of an image pair from different views are first lo-
cally aligned by being projected to a common feature space
and then matched with softly assigned metrics which are
locally optimized. The features optimal for recognizing
identities are different from those for clustering cross-view
transforms. They are jointly learned by utilizing sparsity-
inducing norm and information theoretical regularization.
This approach can be generalized to the settings where test
images are from new camera views, not the same as those
in the training set. Extensive experiments are conducted on
public datasets and our own dataset. Comparisons with the
state-of-the-art metric learning and person re-identification
methods show the superior performance of our approach.

1. Introduction
Person re-identification is to match the snapshots of

pedestrians observed in non-overlapping camera views with

visual features. It has drawn a lot of attentions in recent

years [11, 23, 32, 27] because of its important applica-

tions in video surveillance [16], such as cross-camera track-

ing, multi-camera behavior analysis and pedestrian search.

However, this problem is extremely challenging, because it

is difficult to match the visual features of pedestrians cap-

tured in different camera views due to the large variations of

lightings, poses, viewpoints, image resolutions, photomet-

ric settings of cameras, and backgrounds. Accurate human

parsing[18] will benefit person re-identification, but it is a

hard problems to solve.

Existing works solve this challenge in two possible

ways: (1) learning the photometric or geometric transforms

between two camera views, if the photometric/geometric

(a) Camera view A

(b) Camera view B

Figure 1. Examples of pedestrians captured in two camera views

in the VIPeR dataset[10]. Two images in the same column belong

to the same person. Images have different poses, lightings and

background even if they are captured in the same camera view.

models can be assumed [24]; (2) learning a distance met-

ric or projecting visual features from different views into

a common feature space for matching in order to suppress

inter-camera variations. The approaches from both cate-

gories assume two fixed camera views with a uni-model

inter-camera transform and labeled training samples from

the two views are available. However, in practice the config-

urations (which are the combinations of view points, poses,

image resolutions, lightings and photometric settings) of

pedestrian images are multi-modal even if they are observed

in the same camera views. Some examples are shown in

Figure 1. Therefore, the inter-camera variations cannot be

well learned with a single transform or metric. Moreover,

given a large camera network in video surveillance, it is im-

possible to label training samples for every pair of camera

views. It is highly desirable to develop an algorithm which

can match images from two new camera views given train-

ing samples collected from other camera views.

We propose a new approach of learning locally aligned

feature transforms across multiple views and apply it to per-

son re-identification. The contribution of this work can be
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Figure 2. Person re-identification in locally aligned feature trans-

formations. The image spaces of two camera views are jointly par-

titioned based on the similarity of cross-view transforms. Sample

pairs with similar transforms are projected to a common feature

space for matching.

summarized as following. (1) As illustrated in Figure 2,

the proposed approach automatically partitions the image

spaces of two camera views into subregions which corre-

spond to different configurations, and learns a different fea-

ture transform for a pair of configurations. Given a pair of

images to be matched, they are softly assigned to configu-

ration types with a gating network and their visual features

are projected to a common feature space and matched by

a local expert. Therefore, it well handles the multi-modal

transform problem discussed above. (2) The features opti-

mal for configuration estimation and identity matching are

different. They are jointly learned and selected in our ap-

proach with sparsity and log-determinant divergence regu-

larizations. (3) The image spaces of the two camera views

are jointly partitioned instead of separately, to avoid some

combinations of configurations rarely appearing in the two

views. The local experts of these rare combinations cannot

be well learned given few, if any, training samples. (4) Be-

sides suppressing cross-view variations, the discriminative

power of local experts is further increased by locally magni-

fying inter-person variations. (5) This approach is extended

to the case when test images are from new camera views not

existing in the training set. Extensive experimental evalua-

tions on public datasets and our own dataset and comparison

with state-of-the-art methods show the effectiveness of the

proposed approach.

2. Related Work

Metric learning and feature selection have been widely

used to reduce cross-view variations and to increase the

discriminative power in person re-identification. Some ap-

proaches [26, 23] assume that all the persons to be identi-

fied have samples in the training set. In [26], Partial Least

Square reduction was used to reduce the dimensionality of

visual features and to weight features according to their dis-

criminative power under a one-against-all scheme. Lin and

Davis [23] assumed that a feature optimal for distinguish-

ing a pair of persons might not be effective for others, and

therefore learned the dissimilarity profiles under a pairwise

scheme. In order to identify persons outside the training

set, Zheng et al. [32] formulated person re-identification

as a distance learning problem by maximizing the probabil-

ity that a pair of true match has a smaller distance than a

wrong match. A relaxed distance metric learning is used to

address this problem in [19]. In [17], Jurie et al. learned a

metric specially designed for identification tasks under pair-

wise constraints and further kernelized it to overcome the

linearity. In [11, 25] boosting and RankSVM were used to

select features to compute the distance between images ob-

served across camera views. In [22], Li et al. proposed a

transferred metric learning framework for learning specific

metric for different query-candidate combinations. Metric

learning loses important information when directly com-

puting the difference between two feature vectors without

aligning them first. Although not being widely applied to

person re-identification yet, Canonical Correlation Analysis

(CCA)[14] has been used to match data from different views

or in different modalities in the applications of face recog-

nition [21, 33] and image-to-text matching [13]. All the ap-

proaches discussed above assume a single global model or

a generic metric, which cannot well handle multiple types

of transforms between two views. It is also hard for these

learning-based approaches to be generalized to new views

without re-labeling training data.

Localized learning methods work more effectively on

datasets with complex distributions. They learn different

classifiers or metrics for different clusters of images or even

individual samples. Weinberger et al. [28] extended their

metric learning framework named Large Margin Nearest

Neighbor (LMNN) to learn multiple localized metrics for

different image clusters. In mixture of experts [15], a gating

network classified test samples into different clusters and

samples within one cluster were classified with the same

local expert. In [31], a local classifier was learned for ev-

ery training sample. A test sample found its classifier from

its nearest neighbor in the training set. Similarly, Zhan et
al. [30] learned a different metric for each training sample.

In [6, 7], each training sample had a different metric and all

the metrics were aligned with global constraints. All the ap-

proaches discussed above matched images in the same fea-

ture space and did not consider cross-view transforms. They

clustered images or identified per-instance metric/classifier

by comparing visual similarities. Differently, we jointly

partition the image spaces of two views based on the sim-

ilarity of cross-view transform. Since the possible trans-

forms is much less than the total visual diversity, it leads to

a smaller number of local experts which can be well learned
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Figure 3. Graphical illustration of our model.

from a smaller training set. Moreover, features optimal for

identifying cross-view transforms (i.e. identifying proper

local metrics) are different from those for identity match-

ing. Our approach automatically separates the two types of

features with a proposed sparse gating network.

3. Model
A graphical illustration of our model is shown in Fig-

ure 3. (x,y) ∈ R
m × R

m are the visual feature vec-

tors of a pair of images observed in two camera views.

X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ] are the train-

ing sets from the two views. There are K local experts to

be learned. A pair of test samples to be matched are input to

a gating network to choose local experts in a soft way, and

matched with the selected experts. The details are given

below.

Gating network. One way of designing the gating net-

work by following traditional approaches with a single im-

age space is to partition each of the two image spaces sepa-

rately into K regions, and then learn K2 experts for all the

combinations. The gating functions in two image spaces

are independent, i.e. η(sx = k1, sy = k2) = ηx(sx =
k1|x)ηy(sy = k2|y). This leads to a large number of ex-

perts. Since some configurations (sx, sy) rarely co-exist in

both views, not enough training samples can be found to

train the experts. Instead, we assume the two image sam-

ples are correlated and compute the gating function as1

p(s = k|x,y) = exp(φT
k x) exp(ψ

T
k y)∑K

k′=1 exp(φ
T
k′x) exp(ψT

k′y)
,

φk,ψk ∈ R
m. (1)

Local experts. Each local expert k does the alignment

by projecting the two samples (x,y) to be matched into a

1Bias term can be added padding vector x,y with 1 and thus omitted

here for simplicity

common feature subspace with linear projections Wk and

Vk, and compare their Euclidean distance in this subspace.

Let z = 1 indicates that x and y belong to the same person;

otherwise it is zero. Then the expert computes the condi-

tional probability,

p(z = 1|x,y, s = k) ∝ e−||Wkx−Vky||22 ,

Wk,Vk ∈ R
d×m. (2)

(Wk, Vk) is the alignment matrix pair for expert k. The

decision function of two samples being the same identity is

p(z = 1|x,y) =
K∑

k=1

p(z = 1|x,y, s = k)p(s = k|x,y). (3)

4. Learning
4.1. Priors

The gating function parameters {φk,ψk}Kk=1 and expert

parameters {Wk,Vk}Kk=1 are to be learned from training

data. They are all in very high dimensional spaces, and

therefore need to be properly regularized with priors at the

training stage. In order to select features more effectively

for comparing cross-view transforms, a Laplacian prior is

added to φk and ψk,

p(φk) ∝ exp

(
−||φk||1

λ

)
, p(ψk) ∝ exp

(
−||ψk||1

λ

)
.

(4)

�1 regularization requires the selected features to be sparse.

For each pair of (Wk,Vk), if they are rotated by the

same projection matrix P satisfying PPT = I, the pro-

jected common feature space and the conditional probabil-

ity in Eq (2) remains the same. Therefore, the solution of

Wk and Vk is not unique. Moreover, Wk and Vk may

degenerate to zero and map all the points to a small region

around the origin without proper regularization. Therefore,

we employ a log-determinant divergence [20, 3] between

Wk(Vk) and a prior W0(V0), which are learned from reg-

ularized CCA.

Dld(Wk,W0) = trace(WT
k (W0W

T
0 )

−1Wk)

−logdet(WkW
T
k (W0W

T
0 )

−1)− d. (5)

We choose this prior for several reasons. (W0,V0) is a rea-

sonable regularization for local experts, since CCA provides

a global solution of reducing cross-view variations. Second,

we wish that the information loss is minimized after project-

ing feature vectors x to the common feature space through

Wk. It is known that the dimensionality of the space

spanned with {xi} is not reduced after being projected to

{W0xi} with CCA (i.e. feature space is not shrunk after

CCA), and its covariance matrix becomes an identity ma-

trix I. Eq (5) measures the differential relative entropy be-

tween two equal mean multivariate Gaussian with variance
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W0W
T
0 and WkW

T
k [3]. This actually indicates the in-

formation loss when projecting x into the common feature

space through Wk compared with the CCA feature space.

Also, if the dimensionality of the space spanned by {xk}
gets reduced after projection, det(WkW

T
k ) = 0, leading

Eq (5) to be infinity. Therefore, the prior of Eq (5) prevents

shrinkage of the feature space2.

p(Wk) ∝ exp(−μDld(Wk,W0)),

p(Vk) ∝ exp(−μDld(Vk,V0)). (6)

4.2. Objective function

The objective function on the training set {(xi,yi)}Ni=1,

where (xi,yi) is a pair of samples with the same identity

but observed in different views, is written as following

N∏
i=1

p(zi = 1|(xi,yi), {φk,ψk}, {Wk,Vk})

K∏
k=1

p(φk)p(ψk)p(Wk)p(Vk) (7)

∝
N∏
i=1

K∑
k=1

exp(φT
k xi) exp(ψ

T
k yi)∑K

k′=1 exp(φ
T
k′xi) exp(ψT

k′yi)
e−||Wkxi−Vkyi||22

K∏
k=1

exp

(
−||φk||1 + ||ψk||1

λ

)

K∏
k=1

exp
(
− μ(Dld(Wk,W0) +Dld(Vk,V0))

)
. (8)

In Eq (7), the first row is the data likelihood and the second

row is prior.

4.3. Optimization

Optimizing Wk,Vk

We iteratively optimize φk, ψk, Wk, and Vk. Fixing φk

and ψk, we apply a block coordinate descent to optimize

Wk and Vk. The gradient for the negative log of Eq (8),

named f , can be calculated as follows, and similar results

can be obtained for Vk:

∂f

∂Wk
=2WkΣ

k
xx − 2VkΣ

k
yx

+2μ
(
(W0W

T
0 )

−1 − (WkW
T
k )

−1
)
Wk, (9)

Σk
xx =

∑
i

exp(φT
k xi) exp(ψ

T
k yi)e

−||Wkxi−Vkyi||22∑
k′ exp(φT

k′xi) exp(ψT
k′yi)e−||Wk′xi−Vk′yi||22

xix
T
i ,

Σk
yx =

∑
i

exp(φT
k xi) exp(ψ

T
k yi)e

−||Wkxi−Vkyi||22∑
k′ exp(φT

k′xi) exp(ψT
k′yi)e−||Wk′xi−Vk′yi||22

yix
T
i .

We update Wt+1
k = Wt

k − γ ∂f
∂Wk

.

2For numerical stability, we use a surrogate loss function

log det(WT
k (W0WT

0 )−1Wk + εI) where ε = 10−15 instead.

Optimizing φk,ψk

Fixing Wk,Vk, the objective function becomes a general-
ized multinomial logistic regression with �1 regularization.
It is the summation of a smooth negative log-likelihood
function (g) and a non-smooth �1 regularizer in Eq (4). We
employ a modified version of the cyclic coordinate descent
method [1] which is simple and effective without calculat-
ing the Hessian. We take the derivative of the smooth loss
term w.r.t each element j of φk.

∂g

∂φkj
=

−
∑
i

[
e−||Wkxi−Vkyi||22∑

k′ πk′(xi,yi)e−||Wk′xi−Vk′yi||22
− 1

]
πk(xi,yi)xij ,

where πk(xi,yi) =
exp(φT

k xi) exp(ψ
T
k yi)∑K

k′ exp(φk′xi) exp(ψk′yi)
.

Then we can define the effective gradient [1] to handle the

case that when φkj = 0, where �1 regularizer is non-smooth

∂f

∂φkj
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂g
φkj

+ sign(φkj)/λ φkj �= 0
∂g
φkj

+ 1/λ φkj = 0, ∂g
φkj

+ 1/λ < 0
∂g
φkj

− 1/λ φkj = 0, ∂g
φkj

− 1/λ > 0

0 Otherwise

The �1-regularizer is locally a hyperplane, thus
∂2||φkj ||1

∂φ2
kj

=

0. Then each φkj can be optimized using the Newton’s

method as φt+1
kj = φt

kj − ∂f
∂φkj

[ ∂2g
∂φ2

kj
]−1 when ∂2g

∂φ2
kj

> 0

and a line search is carried out otherwise. The remaining

question is how to choose j. Observing the geometric cor-

relation of each feature, at the first few steps we choose j
with steepest gradient and then we choose features that are

geometrically close for the next coordinate descent step.

4.4. Multi-Shot extension

All the descriptions so far assume single-shot person re-

identification, i.e. for a query sample xi in view A, there

is only one sample yi with the same identity in the gallery

of view B. Multi-shot person re-identification occurs when

there are more than one samples Yi with the same identity

as xi in view B. The identification is successful if there is

at least one yj ∈ Yi matched with xi. Our learning can be

extended to the multi-shot scenario by modifying the data

likelihood term in Eq (8) as,∏
i

max
yj∈Yi

p(zij = 1|(xi,yj), {φk, ψk}, {Wk,Vk}). (10)

As the max operation is non-smooth, we use the log-sum-
of-exponentials as a smooth approximate. Such function
works better for a larger range rather than [0, 1]. Therefore
a re-scaling factor η = 0.1 is used as follows,∏
i

η log
( ∑

yj∈Ci

exp
(p(zij = 1|(xi,yj), {Wk,Vk}, {φk, ψk})

η

))
.
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Our multi-shot extension makes training easier, since it does

not have to match every training pair when learning the

cross-view transforms. It only needs to minimize the dis-

tance of best matched pairs and effectively reduces the num-

ber of cross-view transforms in consideration.

4.5. Discriminative metric learning

The proposed locally aligned feature transform only re-

duces the cross-view variations without considering how

to discriminate different persons. In order to increase the

discriminative power, we further learn a low-rank Man-

halanobis Mk in each aligned common feature space.

d(x,y|{Mk}) =
∑
k

αk exp(−||Wkx−Vky||Mk
),

αk =
exp(φkx) exp(ψky)∑
k′ exp(φk′x) exp(ψk′y)

,

||Wkx−Vky||Mk
= (Wkx−Vky)

TMk(Wkx−Vky).

At the training stage, we learn Mk by maximizing the ex-

pected rank-1 accuracy within top ranks as proposed in [9].

The objective function is

θ
∑
k

tr(Mk)−
∑
xi

log
(∑

yj∈Yi
d(xi,yj)∑

yj∈Ti
d(xi,yj)

)
. (11)

Yi is the set of samples in view B with the same identity as

xi. Ti is the set of top ranked samples in view B with xi as

query and under the distance ||Wkx−Vky||22. The goal is

to well distinguish the true identities with other top ranked

persons, who are easily confused with the query person. To

optimize Mk we take a block coordinate descent method

w.r.t each Mk and project it to {Mk � 0} by spectral de-

composition. tr(Mk) equals to the nuclear norm of metric

Mk and induces low-rank.

5. Experiment
Datasets. We evaluate our approach on two widely used

public benchmark datasets, VIPeR[10] and CAVIAR[2],

and our own dataset(CUHK02)3. VIPeR contains 632 per-

sons and two camera views. Each person has one image per

camera view. CAVIAR contains 72 persons and two views.

50 persons appear in both views and 22 persons appear only

in one view. Each person has 5 images per view. These two

datasets are used to evaluate person re-identification given

two fixed camera views. CUHK02 contains 1, 816 persons

and five pairs of camera views (P1-P5, ten camera views).

They have 971, 306, 107, 193 and 239 persons respectively.

Each person has two images in each camera view. This

dataset is used to evaluate the performance when camera

views in test are different than those in training. Samples

from those datasets can be found in Figure 1 and 4.

3The dataset can be downloaded from http://www.ee.cuhk.
edu.hk/˜xgwang/CUHK_identification.html

(a) CAVIAR

(b) CUHK02

Figure 4. Sample images from CAVIAR and our dataset. (a) The

five columns on the left show five images of the same person in

each of the two camera views. The three columns on the right

show another three persons. Only two images in different views

are shown for each person. CAVIAR not only has large variations

on poses, but also on sizes and aspect ratios. (b) CUHK02 has five

pairs of camera views denoted with P1-P5. Two exemplar persons

are shown for each pair of views.

Methods in comparison. We compare with several

state-of-the-art methods which are popularly used to re-

duce cross-view variations, including CCA[14], Kernel

CCA[33], and three metric learning methods: Information

Theoretical Metric Learning (ITML)[3], Multiple Largest

Margin Nearest Neighbor (mLMNN)[28] and Localized

Distance Metric Learning (LDM)[29]. mLMNN and LDM

are localized learning methods. Many state-of-the-art per-

son re-identification methods have published their results on

VIPeR and CAVIER. We also compare with them on these

two datasets by using the same evaluation protocol.

Features. We combine four types of visual features.

LBP, HSV color histogram, and Gabor features are ex-

tracted from a 16× 8 dense grid with 25% overlap between

adjacent patches. Gabor filters have 8 orientations and 5
scales. HOG features have 9 orientations and each block

contains 3 × 3 cells. Each type of feature is normalized to

a vector with unit norm and multiple features are stacked to

form a single feature vector. This combined feature vector is

further normalized to zero mean. The three metric learning

methods ITML, mLMNN, and LDM require reducing the

dimensionality of visual features as a pre-processing step.

We use regularized CCA for dimension reduction, because
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our empirical study shows that it is better than using PCA.

Parameter settings. We set parameters as λ =
√
m in

Eq(4), μ = 1
d in Eq(6), θ = 1

d in Eq(11). The dimensional-

ity of projected common feature space in local experts (i.e.
number of rows of Wk and Vk) is changeable and we set it

as the number of CCA components with non-zero canonical

correlation. The number of local experts K = 5.

5.1. Identification with two fixed camera views

It is assumed that all the training and test samples come

from the same pair of camera views. Following existing

protocols, both single-shot and multi-shot identification are

evaluated. Each query person has one query image. Single-

shot assumes each person has one image in the gallery,

while multi-shot assumes M gallery images per person.

5.1.1 Single-Shot results

Figure 5 (a) shows the results of single-shot test on VIPeR,

CAVIAR, and CUHK02. All the random partitions de-

scribed below repeat for 100 times. Two protocols on

VIPeR were used in the past: randomly splitting the whole

dataset into 316 persons for training and the remaining 316
for test; and randomly splitting into 100 persons for train-

ing and 532 for test. We evaluate both. Table 1 and 2 com-

pare with results previously published on VIPeR with the

same protocol. For CUHK02, we choose view pair P1 for

evaluation. It has 971 persons, which are split to 485 for

training and 486 for test. Each person has two images in

each view. They are also randomly selected. CAVIRR has

a small number of persons, so we did not split the persons.

It is also to be consistent with existing protocol. If a per-

son has images in both camera views, we randomly select

two pairs of images in different views for training. One

query image and one gallery image are randomly selected

from the remaining images per person. Table 3 compares

with results previously published on CAVIAR. Experimen-

tal results show that our method significantly outperforms

other learning approaches and achieves the best results on

the two public datasets. CCA does not work very well since

it assumes the feature transforms to be uni-modal while the

three datasets are much more complicated. Kernel CCA al-

leviates the problem, but its performance is still not good as

ours after tuning the kernel. Metric learning methods do not

align features. Much information has been lost after the first

step of computing pointwise difference δi = xi − yi due to

misalignment between features. For our method, we also

compare with the case when discriminative metric learning

described in Section 4.5 is not used. This technique is ef-

fective. Its improvement is even larger for multi-shot test.

Figure 6 shows the rank-1 and rank-10 rates on VIPeR

and CUHK02 with different numbers (K) of local experts.

Our method works in a large range of K = 4− 10, because

Methods Top 1 Top 10 Top 25 Top 50

Ours 29.6 69.3 88.7 96.8
KISSME[19] 19.6 62.2 80.7 91.8

PS[2] 21.8 57.2 76.0 88.1

SDALF[5] 19.9 49.4 70.5 84.8

PRDC [32] 15.7 53.9 76 87

LDML[12][19] 10.4 31.3 44.6 60.4

LMNN-R [4] 23.7 68 84 93

MCC[8][32] 15.2 57.6 80 91

PCCAχ2
rbf [17] 19.3 64.9 83 96

Table 1. Compare rank-n identification rates (%) with other pub-

lished single-shot results on VIPeR. The gallery size is 316.

Methods Top 1 Top 5 Top 10 Top 20

Ours 12.90 30.30 42.73 58.02
PRDC[32] 9.12 24.19 34.40 48.55

PCCAχ2
RBF [17] 9.27 24.89 37.43 52.89

MCC[32] 5.00 16.32 25.92 39.64
Table 2. Compare rank-n identification rates (%) with other pub-

lished single-shot results on VIPeR. The gallery size is 512.

the gating network softly splits the feature space and output

is the weighted sum of all experts. With a large number of

experts, some adjacent regions may share training samples

without degenerating each expert. Figure 7 shows an ex-

emplar pair for each local expert, according to the largest

responses of the gating network. These pairs show different

transforms caused by poses, lightings and backgrounds.

5.1.2 Multi-Shot results

Figure 5 (b) shows the results of multi-shot test on CAVIAR

and CUHK02 P1, since VIPeR does not have multiple im-

ages per view. The dataset partition is similar to Section

5.1.1. On CAVIAR, each person has M = 3 gallery im-

ages following the protocol in [2]. On CUHK02 P1, each

person has M = 2 gallery images. Table 4 compares

with other multi-shot results published on CAVIAR4. Our

method again shows superior performance. Its success is

also due to the fact that at the training stage it does not try

to reduce cross-view transforms for every pair of images,

which is difficult, but instead uses a smoothed max function

to select the best matches from multi-shots for learning the

feature transforms. Thus it makes the training easier.

5.2. More general camera settings

Our method can be easily extended to more general set-

tings when camera views in test are not the same as those

in training. But when learning the discriminative metric in

4Notice that PS [2] and SDALF [5] are the only published results on

CAVIAR. But they both rely on features specially design for person iden-

tification according to prior knowledge but without any learning methods.

So they did not use any training samples, but we do.
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Figure 5. Rank-n identification rates give two fixed camera views. (a) Single-shot results on VIPeR, CAVIAR and CUHK02. (b) Multi-

shot results on CAVIAR and CUHK02. Rank-1 rates are shown in parentheses. Ours NoM denotes our method but without discriminative

metric learning in Section 4.5. Euclidean is to directly match features.

Methods Top 1 Top 5 Top 10 Top 30

Ours 10.2 39 59 88
PS[2] 8.5 32 48 86

SDALF[2] 6.8 25 45 83
Table 3. Compare rank-n identification rates (%) with other pub-

lished single-shot results on CAVIAR.

Methods Top 1 Top 5 Top 10 Top 30

Ours 18.2 58 75 92

PS[2] 13.5 44 64 93
SDALF[2] 9.0 34 53 88

Table 4. Compare rank-n identification rates (%) with other pub-

lished multi-shot results (M=3) on CAVIAR.
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(b) CUHK02
Figure 6. Identification rates with different number of experts.

Section 4.5, we have to assume each view in the training

set could be a query view or a gallery view. If the training

set contain multiple view pairs, we simply put their training

samples together. Our training set contains three view pairs

(P1, P2 and P3) with 1, 384 persons. View pairs P4 and P5

are selected for test. To make results stable, we randomly

select a gallery set of 100 persons for 100 times. Figure 8

plots the multi-shot (M=2) test results. Our method is still

effective, because it has the ability to find the best cross-

view transforms from a complicated training set with com-

bined view pairs. Table 5 reports the rank-1 rates when P4

is in test and the training set has different combination of

view pairs. In CUHK02, the cross-view transforms in P3

have larger difference than those in P4. When P3 is added

to the training set, the performance of other learning meth-

ods (LDM, LMNN and ITML) drops significantly, because

it makes the feature transforms in the training set more com-

plicate to learn and there is a larger mismatch between the

training set and camera views in test. See the results of

columns (P1) and (P1, P3). Our method and mLMNN are

much more robust to this change.

Training (P1, P2, P3) P1 (P1, P2) (P1, P3)

Ours 28.2 26.2 28.1 25.9
mLMNN 21.1 22.1 22.5 20.9

LMNN 13.9 15.8 17.3 13.2

ITML 15.7 17.9 18.8 11.3

LDM 12.7 13.6 16.8 10.1
Table 5. Rank-1 rates (%) when P4 is in test and the training set

has different combinations of view pairs.
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Figure 7. Exemplars sampled from each

experts for VIPeR.

Figure 8. Rank-n identification rates under more general camera settings. Training set includes

samples from P1 - P3. The left is the result of P4 in test and the right is the result of P5 in test.

6. Conclusions
We propose locally aligned feature transforms for match-

ing pedestrians across camera views with complex cross-

view variations. Images to be matched are softly assigned to

different local experts according to the similarity of cross-

view transforms, then they are projected to a common fea-

ture space and matched with a locally learned discriminative

metric. It outperforms the state-of-the-art under the setting

when two fixed camera views are given. Experiments on a

small camera network with five pairs of camera views show

its good potential of being generalized to generic camera

settings. In the future, we will further explore its general-

ization capability by creating a much larger camera network

with more diversified cross-view variations.

7. Acknowledgment
This work is supported by the General Research Fund

sponsored by the Research Grants Council of Hong Kong

(Project No. CUHK 417110 and CUHK 417011) and Na-

tional Natural Science Foundation of China (Project No.

61005057).

References
[1] G. C. Cawley, N. L. C. Talbot, and M. Girolami. Sparse multinomial

logistic regression via bayesian l1 regularisation. In NIPS, 2007.

[2] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino.

Custom pictorial structures for re-identification. In BMVC, 2011.

[3] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-

theoretic metric learning. In ICML, 2007.

[4] M. Dikmen, E. Akbas, T. Huang, and N. Ahuja. Pedestrian recogni-

tion with a learned metric. In ACCV. 2011.

[5] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani.

Person re-identification by symmetry-driven accumulation of local

features. In CVPR, 2010.

[6] A. Frome, Y. Singer, and J. Malik. Image retrieval and classification

using local distance functions. In NIPS. 2007.

[7] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-

consistent local distance functions for shape-based image retrieval

and classification. In ICCV, 2007.

[8] A. Globerson and S. T. Roweis. Metric learning by collapsing

classes. In NIPS, 2005.

[9] J. Goldberger, S. T. Roweis, G. E. Hinton, and R. Salakhutdinov.

Neighbourhood components analysis. In NIPS, 2004.

[10] D. Gray, S. Brennan, and H. Tao. Evaluating appearance models for

recognition, reacquisition, and tracking. 2007.

[11] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with

an ensemble of localized features. In ECCV, 2008.

[12] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric

learning approaches for face identification. In ICCV, 2009.

[13] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor. Canonical

correlation analysis: An overview with application to learning meth-

ods. Neural Comput., 2004.

[14] H. Hotelling. Relations Between Two Sets of Variates. Biometrika,

1936.

[15] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive

mixtures of local experts. Neural Comput., 1991.

[16] O. Javed, K. Shafique, and M. Shah. Appearance modeling for track-

ing in multiple non-overlapping cameras. In CVPR, 2005.

[17] F. Jurie and A. Mignon. Pcca: A new approach for distance learning

from sparse pairwise constraints. CVPR, 2012.

[18] A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-supervised

hierarchical models for 3d human pose reconstruction. In CVPR,

2007.

[19] M. Kostinger, M. Hirzer, P. Wohlhart, P. Roth, and H. Bischof. Large

scale metric learning from equivalence constraints. In CVPR, 2012.

[20] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning

with bregman matrix divergences. JMLR, 2009.

[21] A. Li, S. Shan, X. Chen, and W. Gao. Maximizing intra-individual

correlations for face recognition across pose differences. In CVPR,

2009.

[22] W. Li, R. Zhao, and X. Wang. Human reidentification with trans-

ferred metric learning. In ACCV, 2012.

[23] Z. Lin and L. Davis. Learning pairwise dissimilarity profiles for ap-

pearance recognition in visual surveillance. In Proc. Int’l Symposium
on Advances in Visual Computing, 2008.

[24] B. Prosser, S. Gong, and T. Xiang. Multi-camera matching using

bi-directional cumulative brightness transfer functions. In BMVC,

2008.

[25] B. Prosser, W. Zheng, S. Gong, and T. Xiang. Person re-identification

by support vector ranking. In BMVC, 2010.

[26] W. Schwartz and L. Davis. Learning discriminative appearance-

based models using partial least sqaures. In SIBGRAPI, 2009.

[27] X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu. Shape and

appearance context modeling. In ICCV, 2007.

[28] K. Q. Weinberger and L. K. Saul. Fast solvers and efficient imple-

mentations for distance metric learning. In ICML, 2008.

[29] L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm

for local distance metric learning. In AAAI, 2006.

[30] D.-C. Zhan, M. Li, Y.-F. Li, and Z.-H. Zhou. Learning instance spe-

cific distances using metric propagation. In ICML, 2009.

[31] H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discrimi-

native nearest neighbor classification for visual category recognition.

In CVPR, 2006.

[32] W. Zheng, S. Gong, and T. Xiang. Person re-identification by proba-

bilistic relative distance comparison. In CVPR, 2011.

[33] W. Zheng, X. Zhou, C. Zou, and L. Zhao. Facial expression recogni-

tion using kernel canonical correlation analysis (kcca). Neural Net-
works, IEEE Transactions on, 2006.

359935993601


