
Learning SURF Cascade for Fast and Accurate Object Detection

Jianguo Li, Yimin Zhang
Intel Labs China

Abstract

This paper presents a novel learning framework for
training boosting cascade based object detector from large
scale dataset. The framework is derived from the well-
known Viola-Jones (VJ) framework but distinguished by
three key differences. First, the proposed framework adopts
multi-dimensional SURF features instead of single dimen-
sional Haar features to describe local patches. In this way,
the number of used local patches can be reduced from hun-
dreds of thousands to several hundreds. Second, it adopts
logistic regression as weak classifier for each local patch
instead of decision trees in the VJ framework. Third, we
adopt AUC as a single criterion for the convergence test
during cascade training rather than the two trade-off cri-
teria (false-positive-rate and hit-rate) in the VJ framework.
The benefit is that the false-positive-rate can be adaptive
among different cascade stages, and thus yields much faster
convergence speed of SURF cascade.

Combining these points together, the proposed approach
has three good properties. First, the boosting cascade can
be trained very efficiently. Experiments show that the pro-
posed approach can train object detectors from billions of
negative samples within one hour even on personal comput-
ers. Second, the built detector is comparable to the state-
of-the-art algorithm not only on the accuracy but also on
the processing speed. Third, the built detector is small in
model-size due to short cascade stages.

1. Introduction

Object detection is one hot research topic in computer
vision due to wide applications. Great advances have been
made in the passed decade, especially since the milestone
work by Viola and Jones [36]. To realize good general-
ization performance, more training data are required in the
learning procedure. Nowadays, it is much cheaper to collect
many training samples from Internet with small incremen-
tal human labeling efforts like Mechanical Turk [32]. How-
ever, big data make the learning a critical bottleneck. This is
especially true for training object detectors [37, 23, 41]. As
is known, the training is usually required to reach very low

false positive rate per scan-window (FPPW) such as 10−6

[37], which means that hundreds of millions or even bil-
lions of negative samples should be processed during train-
ing procedure. Therefore, training object detector is a very
time-consuming task. In early works, it may take months
to train a high quality detector due to the limitation of com-
puting resources. Even with the great increase of computing
power today, existing learning frameworks are still not effi-
cient to handle such a large scale training problem. It is still
required several days or even weeks to obtain a high-quality
detectors [42, 28, 41]. As some fine-tuning of parameters
are usually required based on training experiments, the long
training time yields very painful experiences for researches
in the field of object detection.

Someone may argue that we just care the detection speed
since the training only need running once. However, diverse
data appear on Internet everyday, and some may not be well
covered by existing detectors, thus yields possible hit-miss.
This is true for most object categories. One way is to re-
train and refresh detectors on new coming data to alleviate
possible hit-miss. This is similar to what Google does on
refreshing its pagerank and indexing. Hence, the research
on training is still very useful since training is a critical in-
frastructure for visual recognition engine.

Besides the big data problem, another important factor
is the convergence speed of the cascade training. To the
best of our knowledge, almost all existing cascade detec-
tion frameworks are trained based on two conflicted crite-
ria (false-positive-rate and hit-rate) for the detection-error
tradeoff. Although some researches introduced intermedi-
ate or post tuning of cascade parameters with some opti-
mization methods [40, 3, 31, 39], they did not touch the
convergence speed of cascade training. As a result, the final
cascade usually has very long stages.

This paper proposes a new cascade learning framework
for object detection, with an emphasis on training efficiency.
First, the detection window is represented by local SURF
patches, which are spatial regions within the window and
described by the multi-dimensional SURF descriptor [2].
The number of local SURF patches is limited to several
hundreds in the detection window. Thereof, the feature pool
size is greatly reduced, which makes feature selection much

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.445

3466

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.445

3466

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.445

3468

easier. Moreover, SURF is much faster in feature extraction
than existing local features like HoG [5]. Second, we adopt
logistic regression as weak classifier on each local SURF
patch. Third, we adopt AUC (Area under ROC curve) as a
single criterion for convergence test during cascade training
instead of the two conflicted criteria (false-positive-rate and
hit-rate). We named the new training framework SURF cas-
cade. The training of SURF cascade converges much faster
and generates much shorter cascade stages. Experiments
show that the proposed approach can build highly accurate
detectors by processing billions of samples within one hour
even on personal computers. In summary, this paper has
three major contributions:

(1) We introduce variants of SURF descriptors for fast and ac-
curate object detection.

(2) We propose AUC as a single criterion for cascade training,
which makes the training converge faster and yields cascade
model with much shorter stages.

(3) We show a system that can train cascade object detectors
from billions of samples within one hour even on PCs.

In the rest of the paper, we will first revisit related works
on object detection in Section 2, and present the details
of the proposed framework in Section 3. Experiments are
shown in Section 4. Conclusions are drawn in Section 5.

2. Viola-Jones Framework Revisited

The boosting cascade framework by Viola and Jones is
a milestone work in object detection [36]. It inspired many
following works. It is necessary to revisit the VJ frame-
work before diving into more details. Basically, there are
three key ideas that make it able to build real-time object
detectors: the integral image trick for efficient Haar feature
extraction, the boosting algorithm for ensemble weak clas-
sifiers, and the attentional cascade structure for fast neg-
ative rejection. The VJ framework has several limitations.
First, the feature pool size of Haar-like features is very high,
which is usually in hundreds of thousands level for a typical
20×20 detection template. This leads to extremely large
feature search space for weak classifier learning. Some
heuristic feature selection or filtering strategies have been
proposed to speedup the training [24, 4, 27]. However, these
kind of techniques are still unsatisfied, due to that the search
space after filtering is still large, and there is possible accu-
racy loss from un-optimal search.

Second, Haar features have very limited representation
capacity. It has difficulty to handle variations due to pose
and illumination. On the one hand, some researches ex-
tended Haar features to rotated Haar-like features [21], joint
Haar features [26], sparse features [14], polygon features
[28], etc. These features can improve detection accuracy,
but make feature space even larger, and thus the feature se-
lection problem becomes even critical. On the other hand,

some complex features are proposed and used in object
detection, which includes histogram of oriented gradient
(HoG) features [5, 42], region-covariance features [34], etc.
They are much slower in computing than Haar features.
This paper introduces some variant of SURF features [2]
to describe local patches. It is closely related to HoG fea-
tures in the cascade HoG framework [42]. However, SURF
is much easier and faster in computing than HoG.

Third, the attentional cascade is trained based on two
conflicted criteria: false-positive rate (FPR) 𝑓𝑖 and hit-rate
(or detection-rate) 𝑑𝑖. The overall FPR of a 𝑇 -stage cascade
is 𝐹 =

∏𝑇
𝑖=1 𝑓𝑖, while the overall hit-rate is 𝐷 =

∏𝑇
𝑖=1 𝑑𝑖.

Due to detection error trade-off, the VJ framework suggests
setting maximum FPR as 𝑓𝑖 = 0.5 and minimum hit-rate
such as 𝑑𝑖 = 0.995 during training procedure. If wanting
to reach overall FPR = 10−6, it requires at least 20 stages
(0.520≈ 10−6) by the given global setting. This is ineffi-
cient since some stages may reach the goal without conver-
gence. It is better that 𝑓𝑖 can be adaptive among different
stages such that we could easily reach overall training goal.
Some methods design automatic schemes to tune the inter-
mediate threshold of each stage [40, 3, 31, 4]. These meth-
ods may alleviate the painful manual tuning efforts, but have
nothing to do with the convergence speed. Inspired by [22],
we introduced AUC [8] as a single criterion for cascade con-
vergence testing. This will realize adaptive FPR among dif-
ferent stages, and yield fast convergence speed and cascade
model with much shorter stages.

The proposed approach has some relationship with part-
based model [10]. In the early stage, part-based model
trained part detectors separately and integrated them to-
gether [25] for detection. Later works trained mixtures of
deformable part models even under the cascade framework
[10, 11]. The proposed approach can be viewed as a simple
case of the part-based model, when viewing each picked
local patch as part-based model. However, the proposed
approach just combines local parts in a discriminative way
for each stage without any pictorial structures among parts.
Although it may not have the same power to handle de-
formable objects, it is still valuable in object detection field
due to its simplicity and efficiency.

3. SURF Cascade for Object Detection

The proposed approach contains four ingredients: SURF
features for local patch description, logistic regression
based weak classifier for each patch, boosting ensemble
of weak classifiers for each stage, and AUC-based cascade
learning algorithm. We describe them below separately.

3.1. Feature Description

Dense local patches: Given a detection window, we de-
fine rectangular local patches within it using similar scheme
in [42]. For instance, given a 40×40 detection template,

346734673469

we define patch with 4 spatial cells, and allow the patch
size ranging from 12×12 pixels to 40×40 pixels. We slide
the patch over the detection template with 4 pixels forward
to ensure enough feature-level difference. We further al-
low different aspect ratio for each patch (the ratio of patch
width and patch height). Different from [19], the 4 spa-
tial cells can be configured not only 2×2, but also 4×1 and
1×4. 1. In this way, 450 patches are generated within the
40×40 detection template. Each patch is represented by a
32-dimensional SURF descriptor.

SURF descriptor: This paper adopts SURF feature to
describe local patches due to its balance of computing effi-
ciency and representation capacity. SURF is a scale and ro-
tation invariant detector and descriptor [2]. It has been suc-
cessfully applied in applications like object recognition, im-
age matching/registration, structure-from-motion, etc. This
paper derives some variant of SURF descriptor for object
detection, and does not use the keypoint detector part at all.

The SURF descriptor is defined over the gradient space.
The gradient may have different granularity. In the simplest
case, we define 𝑑𝑥 as the horizontal gradient image obtained
with the filter kernel [−1, 0, 1], and 𝑑𝑦 as the vertical gra-
dient image by the filter kernel [−1, 0, 1]𝑇 . The 8-element
SURF (or 8-bin in simple) computes the sums of 𝑑𝑥 and
∣𝑑𝑥∣ separately for 𝑑𝑦 < 0 and 𝑑𝑦 ≥ 0, and the sums of 𝑑𝑦
and ∣𝑑𝑦∣ for 𝑑𝑥 < 0 and 𝑑𝑥 ≥ 0 for each spatial cell.

The computing of 8-bin SURF requires branches opera-
tion, which is bad for speed optimization. This paper tries
a variant of SURF descriptor, namely T2 descriptor [38].
The 4-bin T2 descriptor is defined as

∑
(∣𝑑𝑥∣ − 𝑑𝑥, ∣𝑑𝑥∣ +

𝑑𝑥, ∣𝑑𝑦∣ − 𝑑𝑦, ∣𝑑𝑦∣ + 𝑑𝑦)
2. And we extended 4-bin T2 de-

scriptor to 8-bin by concatenating an additional 4 bins from
gradients of diagonal and anti-diagonal directions. Given
2D filter kernels 𝑑𝑖𝑎𝑔(−1, 0, 1) and 𝑎𝑛𝑡𝑖𝑑𝑖𝑎𝑔(1, 0,−1), we
obtain leading diagonal gradient image 𝑑𝑢 and anti-diagonal
gradient image 𝑑𝑣 , respectively. Therefore, the additional 4-
bin is defined as

∑
(∣𝑑𝑢∣−𝑑𝑢, ∣𝑑𝑢∣+𝑑𝑢, ∣𝑑𝑣∣−𝑑𝑣, ∣𝑑𝑣∣+𝑑𝑣).

Feature normalization: The local patch is divided into
4 spatial cells. The SURF descriptor is extracted in each
cell. Concatenating features in 4 cells together yields a 32-
dimensional (8×4) feature vector. To make the descriptor
invariant to patch size, the feature vector needs normaliza-
tion. Good normalization methods may also alleviate the
impact from illumination/contrast variations. We study dif-
ferent normalization methods proposed in [5], and find that
𝐿2 normalization followed by clipping and renormalization
(𝐿2Hys) works the best. For more detail on how to apply
𝐿2Hys normalization, please refer to supplementary.

1See supplementary for some configuration examples. Patches of 2×2
cells allow 1:1, 1:2, 2:1, 2:3, 3:2 aspect ratio. Patches of 4×1 cells only
allow 4:1 aspect ratio. Patches of 1×4 cells only allow 1:4 aspect ratio.

2The absolute ∣.∣ operation can be implemented without branch oper-
ation, and accelerated with SIMD optimization. On the contrary, original
SURF can’t be optimized by SIMD.

Multi-channel integral images: We adopt the integral
image tricks to speedup feature extraction [37]. Given 8-bin
SURF for describing local patches, if building one integral
image per bin separately, it needs 4×8 = 32 address access
ops to obtain SURF feature from one cell. Here, we in-
troduce the array-of-structure trick which packs data of 8
bins together with a structure, and generate multi-channel
integral images. We only need 4 access ops for each cell
with the multi-channel integral image. Furthermore, this
array-of-structure trick allows using instruction-level paral-
lelization (i.e., SIMD), not only on the address access oper-
ation, but also on the summation and subtraction operations
for computing SURF feature in each cell. In summary, this
trick can greatly speed up feature extraction .

Feature comparison: This paper adopts 8-bin T2 de-
scriptor as it has similar representation capacity to original
SURF and even HoG, while dominates others on the feature
extraction speed. Practice shows that 8-bin T2 descriptor
has almost the same accuracy as the original SURF descrip-
tor in object detection, while it is about 1.5X faster in fea-
ture extraction. Meanwhile, 8-bin T2 descriptor is slightly
worse than HoG in terms of overall cascade accuracy, while
it is more than 2X faster than SIMD optimized HoG de-
scriptor in feature extraction. In addition, 4-bin T2 descrip-
tor is also applicable in object detection. The differences
between 4-bin and 8-bin are two folds. First, 8-bin T2 de-
scriptor has more representation capacity than that of 4-bin.
As an example, to build detectors with the same accuracy, 8-
bin T2 descriptor requires 8 stages, while 4-bin T2 descrip-
tor requires 12 stages. Second, the memory requirement of
8-bin is twice as that of 4-bin. Hence, 4-bin T2 descriptor
may be applied in some memory limited applications.

3.2. Weak Classifier

We built weak classifier over each local patch, and
picked optimal patches in each boosting iteration from the
patch pool. In the VJ framework, the weak classifier is deci-
sion tree. In some following works, people introduced other
linear classifiers such as Fisher linear discriminant [18], lin-
ear asymmetric classifier [39, 4] and linear SVM [5]. This
paper chooses logistic regression as weak classifier due to
that it is a linear classifier with probability output.

Given SURF feature x over local patch, logistic regres-
sion defines a probability model (a.k.a logit model)

𝑃 (𝑦 = ±1∣x,w) =
1

1 + exp(−𝑦(w𝑇x+ 𝑏))
, (1)

where 𝑦 = 1 for face samples, 𝑦 = -1 for non-face samples,
w is a weight vector for the model, and 𝑏 is a bias term.
Given training samples {x𝑖, 𝑦𝑖}𝑁𝑖=1, the parameters can be
found via minimizing the following objective

𝑙(w) =
∑𝑁

𝑖=1
log(1 + exp(−𝑦𝑖(w𝑇x𝑖 + 𝑏)) + 𝜆∥w∥𝑘𝑘,

346834683470

while 𝜆 is a tunable parameter for the regularization term,
and ∥w∥𝑘𝑘 means 𝐿𝑘 norm (𝑘=1,2) of the weight vector.
This problem can be solved by algorithms in [7].

3.3. Learning Boosting Classifier

We trained the boosting cascade on local patches from
large scale dataset. Suppose there are 𝑁 training samples,
and 𝐾 possible local patches represented by 𝑑-dimensional
(= 32) SURF feature x, each stage is a boosting learning
procedure with logistic regression as weak classifier. There
are different variants of boosting algorithms to ensemble
weak classifiers. We find that Gentle AdaBoost gives the
best results over other variants [12].

Gentle AdaBoost thinks that the base learner fits a re-
gression function over training data, and outputs a real
value. Given weak classifiers ℎ𝑡(x),the strong classifier is

𝐻𝑇 (x) =
1

𝑇

∑𝑇

𝑡=1
ℎ𝑡(x).

In the 𝑡-th boosting round, we built 𝐾 logistic regression
models {ℎ𝑘(x)}𝐾𝑘=1 for each local patch in parallel from
the boosting sampled subset. We tested each model ℎ𝑘(x)
in combination with model of previous 𝑡-1 rounds. That is
to say, we tested 𝐻𝑡−1(x) + ℎ𝑘(x) on all the 𝑁 training
samples. Each tested model will produce an AUC score
𝐽(𝐻𝑡−1(x) + ℎ𝑘(x)). We picked the one which produces
the highest AUC score, i.e.,

𝐻𝑡(x) = arg max
𝐻𝑘, 𝑘=1:𝐾

𝐽(𝐻𝑘 = 𝐻𝑡−1(x) + ℎ𝑘(x)). (2)

This procedure is repeated until the AUC score is con-
verged, or the designed number of iterations is reached.
Weak classifier ℎ𝑡 is trained on balanced positive and nega-
tive samples. To avoid overfitting, we restricted the number
of used samples during training as in [40]. In practice, we
sampled an active subset from the whole training set accord-
ing to the boosting weight. It is generally good to use about
30×𝑑 (if 𝑑=32, 30×𝑑=960) positive samples and the same
number of negative samples as the active training set.

The whole procedure is forward selection and inclusion
of weak classifier over possible local patches. It is sim-
ple to extend the procedure with capability to backward re-
moving redundant weak classifiers. This is not only able to
shrink the number of weak classifiers in each stage, but also
able to improve the generalization capability of the strong
classifier. For details on including backward removing or
even floating searching capability into boosting framework,
please refer to [20]. In our implementation, for training
speed consideration, we only add the backward removing
capability to Gentle AdaBoost. Details of boosting learning
algorithm is given in Table 1.

3.4. Cascade Training

Within one stage, we did not need to give threshold for
intermediate weak classifiers. We just need to determine the

Table 1. Learning Boosting Classifier for SURF cascade

1. Given training set: {(x𝑘
𝑖 , 𝑦𝑖)}𝑁𝑖=1, 𝑘 = 1 : 𝐾, where 𝑁 is the

number of samples and 𝐾 is the number of local patches. x𝑘 is
𝑑-dimensional SURF descriptor of the 𝑘-th local patch.

2. Initialize weight for positive samples and negative samples.

(1) 𝑤+
1,𝑖 = 1

𝑁+
for those 𝑦𝑖=1;

(2) 𝑤−
1,𝑖 = 1

𝑁−
for those 𝑦𝑖= -1.

3. for 𝑡 = 1 : 𝑇 boosting round

3.1 Sampled 30×𝑑 (𝑑=32 in 2×2 SURF patch) positive sam-
ples and 30×𝑑 negative samples from training set according
to the weight as the active training subset;

3.2 Parallel for each patch {x𝑘
𝑖 , 𝑦𝑖}, train a logistic regression

model ℎ𝑘(x,w);
3.3 For each ℎ𝑘 , combine it with existing model 𝐻𝑡−1; and

evaluate on the whole training set to obtain AUC score
𝐽(𝐻𝑡−1 + ℎ𝑘);

3.4 Choose the best model 𝐻𝑡(x) according to Eq 2 to include
weak classifier ℎ𝑡;

3.5 Update weight 𝑤𝑡,𝑖 = 𝑤𝑡,𝑖 exp[−𝑦𝑖ℎ𝑡(x𝑖)];

3.6 Normalize the weight so that
∑

𝑖 𝑤
+
𝑡,𝑖 =1 and

∑
𝑖 𝑤

−
𝑡,𝑖 =1;

3.7 Compute 𝐻𝑡(x) on the whole training set to obtain the
AUC score 𝐽𝑡;

3.8 If AUC value 𝐽𝑡 is converged, break the loop.
4. While true // backward removing

4.1 Find ℎ− = argmax
ℎ𝑘

𝐽(𝐻𝑇 ∖ℎ𝑘), where 𝐻𝑇 ∖ℎ𝑘 means

that 𝐻𝑇 excludes weak learner ℎ𝑘;
4.2 If 𝐽(𝐻𝑇 ∖ℎ−) > 𝐽(𝐻𝑇) on the whole training set, let

𝐽(𝐻𝑇) = 𝐽(𝐻𝑇 ∖ℎ−); otherwise, break the loop.
5. Output final strong model 𝐻𝑇 (x) for this stage.

decision threshold 𝜃 of the strong classifier 𝐻𝑡(x). In the
VJ framework [36, 42], the threshold is manual tuned on a
validation set based on the two conflicted criteria, FPR and
hit-rate. In our case, the threshold is much easier to be de-
termined since ROC curve is consistently available. With
ROC curve, FPR is easily determined when given minimal
hit-rate 𝑑𝑚𝑖𝑛. We decreased 𝑑𝑖 from 1.0 on the ROC curve,
until reaching the transit point 𝑑𝑖 = 𝑑𝑚𝑖𝑛. The correspond-
ing threshold at that point is the desired 𝜃.

After one stage is converged, we continued to train an-
other stage with false-positive samples coming from scan-
ning non-target images with partial trained cascade. We re-
peated this procedure until the overall FPR reach the goal.
The cascade training algorithm is given in Table 2.

In the proposed approach, FPR is adaptive among dif-
ferent stages, and is usually much smaller than 0.5. For
instance, we got an 8-stage cascade for face detection with
𝑓𝑖 at each stage forming a vector like (0.305, 0.226, 0.147,
0.117, 0.045, 0.095, 0.219, 0.268). In comparison, the
VJ framework requires 20 stages to reach the same goal
(FPR=10−6≈ 0.520). This means that AUC based cascade
training can converge much faster. As a byproduct, this will
not only make model-size very smaller (for instance, model-
size of 8-stage cascade is only 50KB), but also increase the
detection speed quite a lot.

346934693471

Table 2. Training SURF cascade based on ROC analysis

∙ Input: over all FPR 𝐹𝑡; minimum hit-rate per stage 𝑑𝑚𝑖𝑛; positive
sample set 𝑋+; negative sample set 𝑋−.

∙ Initialize 𝐹𝑖 = 1.0, 𝐷𝑖 = 1.0, 𝑖=0.

∙ While 𝐹𝑖 > 𝐹𝑡

1. 𝑖 = 𝑖 +1;
2. Train one stage classifier 𝐻𝑖(x) using samples of 𝑋+ and

𝑋− via the algorithm in Table 1;
3. Evaluate the model 𝐻𝑖(x) on the whole training set to ob-

tain ROC curve;
4. Determine the threshold 𝜃𝑖 by searching on the ROC curve

to find the point (𝑑𝑖, 𝑓𝑖) such that 𝑑𝑖 = 𝑑𝑚𝑖𝑛;
5. 𝐹𝑖+1 = 𝐹𝑖 × 𝑓𝑖 and 𝐷𝑖+1 = 𝐷𝑖 × 𝑑𝑖;
6. Empty the set 𝑋−;
7. If 𝐹𝑖+1 > 𝐹𝑡, adopt current cascaded detector to scan non-

target images with sliding window and put false-positive
samples into 𝑋− until the size ∣𝑋−∣ = ∣𝑋+∣.

∙ Output the boosting cascade detector {𝐻𝑖(x) > 𝜃𝑖} and overall
training accuracy 𝐹 and 𝐷.

4. Experiments

We applied the proposed approach to face detection and
car detection. This section will show the implementation
details, evaluation results on public datasets and the detec-
tion speed of the proposed approach.

Note that the proposed approach is not limited to face de-
tection and car detection. We also applied it to several real-
world applications such as real-time hand gesture detection.
Specially, we have made a high quality face detection SDK
free available to public 3.

4.1. Implementation

We implemented all the training and detection modules
in C/C++ on x86 platform. For the feature extraction part,
we adopted the integral image trick to speedup the compu-
tation as we described in Section 3.1. For the cascade train-
ing part, we parallelized the time-consuming weak classifier
training step with OpenMP in task level. Furthermore, we
did SIMD optimization on some hotspots, which include
the 𝐿2Hys vector normalization of SURF features, the dot-
product operation in logistic model (i.e., wTx), and the fea-
ture extraction from the packed 8-channel integral images.
The detection module shares the same SIMD optimization
with the training part 4.

The training and detection experiments were done on a
personal workstation with 3.2GHz Core-i7 CPU (4 cores 8
threads SandyBridge) and 12GB RAM.

3Face detection and tracking based on SURF cascade are in-
tegrated in Intel perceptual computing SDK, which is available at
http://www.intel.com/software/perceptual.

4For more details, please refer to the implementation FAQ at the project
page in https://sites.google.com/site/leeplus/.

4.2. Face Detection

4.2.1 Frontal Face Detector

We collected training samples from Internet. Positive sam-
ples of frontal faces are mainly from the GENKI dataset
[35], the facetracer dataset [17], the FERET dataset [29],
etc. We discarded faces less than 32×32 pixels, and col-
lected 15,000 frontal faces from these datasets. We fur-
ther derived 15,000 faces with mirror transform, and 15,000
samples by random perspective transforming face image
within [-10, 10] degree. All cropped and derived frontal
faces are resized to 40×40. Finally, we had 45,000 posi-
tive training samples. The negative images are mainly from
Caltech 101 dataset [9], Corel 5k image set, etc. We made
some refinement on this negative set to remove images con-
taining faces. Totally, we collected about 18,000 images
without faces 5.

We placed 450 local patches on the 40×40 detection
template as described in section 3.1. We set the maximum
number of weak classifiers in each stage to 128. To obtain
fast detector, we restricted that the first 3 stages have at most
4 weak classifiers. We set the minimum hit-rate to 0.995 for
each stage and the overall FPR per window to 10−6. Given
this configuration, the training procedure is fully automatic.
It took about 47 minutes (2,841 seconds) to converge at the
8th stage. During training, we scanned both the original
and the mirror of each negative image with a scalable slid-
ing window to get false-positive samples. In the end, more
than 13.6 billions negative samples were processed.

In comparison, we tried to train face detector using the
OpenCV Haar training modules on the same dataset. How-
ever, we can’t finish the training within 2 days on the same
computer with parallel processing tuned on. This means
that SURF cascade is at least 60X faster than Haar cascade
in training. Besides, we tried to replace AUC based criterion
with VJ’s criteria to control SURF cascade training, which
requires more than 5 hours to converge. This experiment in-
dicates that AUC based criterion brings about 6X (5 hours
vs 47 min) speedup in training, while SURF representation
brings the other 10X speedup.

Figure 1(a) and 1(b) illustrate details of the final cas-
cade, including the number of weak learner in each stage
and the accumulated rejection rate over the cascade stages.
It shows that the first three stages rejects 98% negative sam-
ples with only 7 weak classifiers. The cascade detector con-
tains 334 weak classifiers, and only need to evaluate 1.5 per
window. On the contrary, the default Haar-based face de-
tector in OpenCV contains more than 24 stages and 2,912
weak classifiers, and requires to evaluate more than 28 Haar
features per window [21].

Figure 2(a) further depicts the top-3 picked local patches.
We observed that the best local patch lies in the regions of

5Detail info about the training set is also available on the project page.

347034703472

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

cascade stage

w
ea

k
le

ar
ne

r
co

un
t

(a)

1 2 3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

cascade stage

re
je

ct
 r

at
e

(b)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

cascade stage

w
ea

k
le

ar
ne

r
co

un
t

(c)

0 2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

1

cascade stage

re
je

ct
 r

at
e

(d)

Figure 1. (a) The number of weak classifiers at each stage of the face detector, (b) the accumulated rejection rate over the cascade stages of
the face detector; (c) The number of weak classifiers at each stage of the car detector, (d) the accumulated rejection rate over the cascade
stages of the car detector.

two eyes. This is similar to that of Haar-based detector [36].
The final detector contains a common post-processing

step, which merges cascade outputs using the disjoint-
set algorithm and filters unreliable results using the non-
maximum suppression algorithm.

(a) (b)

Figure 2. Top-3 local patches picked by training procedure in the
red-green-blue order (a) on the face object (b) on the car object.

4.2.2 Multi-view Face Detector

Besides frontal face detectors, we also trained multi-view
face detector using the proposed approach. The multi-view
detector is a parallel structure with independent detectors
for each view: frontal view, left/right half-profile views
(about 40∼60 degree of out-of-plane rotation to the frontal
view), and left/right full-profile views (about 70∼90 degree
of out-of-plane rotation to the frontal view). The frontal
view detector is the same as the previous frontal detector.
For half/full profile views, the training data are mainly from
the CAS-PEAL database [13], the FERET database [29],
and the CMU PIE database [30]. We collected 12,000 faces
for half-profile view, and 8,000 faces for full-profile view.
The detector training for each view follows the same proce-
dure as the training of frontal view detector.

4.2.3 Face Detection Evaluation

We evaluated SURF cascade detector on two public
datasets: one is the CMU+MIT dataset, the other is the
UMass FDDB dataset [15].

The standard CMU+MIT dataset consists of 130 gray
images with 507 frontal faces. As SURF cascade can di-
rectly output probability score (in the range 0∼1) at any

stage, it is natural to define score for each detection win-
dow 𝑤 as 𝑠(𝑤) = 𝑝(𝑤) + 𝑘(𝑤), where 𝑘(𝑤) is the number
of passed stages and 𝑝(𝑤) is probability output at the exit
stage. With this score, we strictly followed the benchmark
protocol suggested in [15], and generated the ROC curve as
shown in Figure 3(a). Comparable results are depicted for
some recent works in face detection such as the VJ detector
[37], polygon-feature detector [28], soft cascade detector
[3] and recycling-cascade detector [4]. Figure 3(a) shows
that SURF cascade achieves comparable performance to the
state-of-the-art method soft-cascade [3], while outperforms
all the other methods.

The CMU+MIT dataset is a little out-of-date as it only
contains gray-scale, relative low-resolution images, and the
size of the dataset is too small to reflect nowadays data ex-
plosion status. Hence, the UMass face detection benchmark
(FDDB) is introduced [15]. FDDB contains 2,845 images
with a total of 5,771 faces under a wide range of condi-
tions. Besides, it provides a systematic protocol to eval-
uate performance of face detection system. Figure 3(b)
shows the discrete-score ROC curve generated by SURF
cascade in comparison to available results on the bench-
mark [33, 21, 25, 16]. We also compared with our previous
algorithm [19] which used Discrete AdaBoost for ensem-
ble logit classifiers. It is obvious that SURF cascade out-
performs others significantly, and Gentle AdaBoost is bet-
ter than Discrete AdaBoost for ensemble logit classifiers.
Furthermore, our multi-view detector yields significant im-
provement over pure frontal face detectors. Supplemen-
tary illustrates some examples of face detection results on
CMU+MIT and UMass FDDB.

4.2.4 Detection Speed

We ran faces detector on videos to collect performance data.
The frontal detector reaches 100 fps (frame-per-second) for
a typical VGA video with single face in each frame, while
the multi-view detector can process this video in real time.
In comparison, the OpenCV default face detector can only
achieve 60 fps with parallel processing tuned on. As is
known, the OpenCV face detector is tailored optimized for

347134713473

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 10 20 30 40 50 60 70 80 90 100

T
ru

e
po

si
tiv

e
ra

te

False positives

SURF
SoftCascade [3]

Recycling [4]
PolyFace [28]

Viola-Jones [37]

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000 1250 1500 1750 2000

T
ru

e
po

si
tiv

e
ra

te

False positives

SURF_Multiview
SURF_Front_GB

SURF_Front_AB [19]
VJGPR [16]

Viola-Jones [21]
Mikolajaczyk et al [25]

Subburaman [33]

(b)

Figure 3. (a) ROC curves for different methods on CMU+MIT dataset (b) ROC curves for different methods on UMass FDDB dataset.

processing speed.
This is due to two facts. First, SURF cascade detec-

tor has fewer number of stages (8 vs 24), fewer number of
weaker classifiers (334 vs 2,912) and fewer average number
of evaluated weak classifiers per detection window (1.5 vs
28) than that of OpenCV Haar detector. These advantages
can compensate one weakness point that the computing on
each weak classifier is higher than that of OpenCV detec-
tor. Second, SURF cascade benefits more from optimiza-
tion than Haar cascade. The 8-stage SURF cascade has bet-
ter workload load balance among threads in parallelization
than that of 24-stage Haar cascade. Besides, SURF cascade
is much easier for SIMD optimization (i.e., wTx in logit
model, etc) than that of Haar cascade.

4.3. Car Detection

For car detection, we collected 600 side view car sam-
ples from PASCAL VOC 2005 dataset [6, 1], containing
the UIUC subset and ETHZ subset. We further derived 600
samples with mirrors, 600 samples with resampling (down-
sampling 10% followed by upsampling 10%), and 1200
samples with random perspective transforming within ±5
degrees, etc. All cropped and derived car samples are re-
sized to 80×32 pixels. Finally, we had 4,200 positive train-
ing samples. The negative images are collected similar to
the face detection task. In total, there are about 5,000 nega-
tive images without cars for training.

On the target 80×32 detection template, we defined
patch size range from 16 × 16 to 80 × 32, and allowed the
patch aspect ratio like 1:1, 1:2, 2:1, 3:1, 4:1, etc. Totally,
we placed 502 local patches on the detection template. And
we set the same training configuration as face detection. It
took 27 minutes (1,672 seconds) to finish the training with
about 3.7 billions negative samples processed.

The final cascade contains 10 stages. Figure 1(c) and
1(d) illustrate the number of weak classifier in each stage
and the accumulated rejection rate over the cascade stages.

It shows that the first three stages rejects 95% negative sam-
ples with 7 weak classifiers. On average, the detector only
need to evaluate 2.2 local SURF patches per detection win-
dow. We showed the top-3 local patches picked by the train-
ing algorithm in Figure 2(b).

The test set is 200 images from the TUGRAZ subset in
PASCAL VOC 2005 with near side-view cars [6], which
contains cars with different scales and even some viewpoint
variations to sideview. We ran the detector on the test set,
and found 141 cars and 18 false alarms. In summary, the
detection rate is 70%, while the FPPW is 2×10−6, and the
false-positive-per-image is 9%. This result looks promising
considering that the detector is trained by the poor quality
UIUC dataset [1]. The detection speed on this dataset (VGA
resolution images) is about 56 fps. Some challenging detec-
tion results are shown in supplementary.

5. Conclusions

This paper presents SURF cascade for fast and accurate
object detectors. The proposed approach brings three key
improvements over the Viola-Jones framework. First, we
introduce some variant of SURF features for fast and ac-
curate object detection. Second, we propose AUC as the
single criterion for cascade optimization. Third, we show
a real example that can train cascade object detector from
billions of samples within one hour on personal computers.

We compared SURF cascade detector with existing algo-
rithms on detection accuracy and speed. Experiments show
that SURF cascade can achieve results on par with state-of-
the-art detectors, while beats tailored optimized OpenCV
detector in detection speed.

Future work will consider three points: (1) other possible
SURF variants to further improve detection accuracy; (2)
applying the approach on other object detection task like hu-
man detection; (3) combing SURF cascade with deformable
part based models.

347234723474

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-
jects in images via a sparse, part-based representation. IEEE
TPAMI, 26(11):1475–1490, 2004. 7

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Surf: Speeded
up robust features. CVIU, 110:346–359, 2008. 1, 2, 3

[3] L. Bourdev and J. Brandt. Robust object detection via soft
cascade. In CVPR, 2005. 1, 2, 6

[4] S. Brubaker, J.Wu, J. Sun, and et al. On the design of cas-
cades of boosted ensembles for face detection. IJCV, 2008.
2, 3, 6

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 2, 3

[6] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 88(2):303–338, 2010. 7

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-
J. Lin. Liblinear: A library for large linear classification.
JMLR, 2008. 4

[8] T. Fawcett. Roc graphs: Notes and practical considerations
for researchers. Machine Learning, 2004. 2

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. In CVPR
workshop, 2004. 5

[10] P. Felzenszwalb, D.McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008. 2

[11] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
2010. 2

[12] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting. Annals of statistics,
2000. 4

[13] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang,
and D. Zhao. The cas-peal large-scale chinese face database
and baseline evaluations. IEEE Trans. SMC-A, 38:149–161,
2008. 6

[14] C. Huang, H. Ai, Y. Li, and S. Lao. Learning sparse features
in granular space formulti-view face detection. In AFGR,
2006. 2

[15] V. Jain and E. Learned-Miller. Fddb: A bench-
mark for face detection in unconstrained settings.
Technical Report UM-CS-2010-009, UMass, 2010.
http://vis-www.cs.umass.edu/fddb/. 6

[16] V. Jain and E. Learned-Miller. Online domain adaptation of
a pre-trained cascade of classifiers. In CVPR, 2011. 6

[17] N. Kumar, P. N. Belhumeur, and S. K. Nayar. Facetracer: A
search engine for large collections of images with faces. In
ECCV, 2008. 5

[18] I. Laptev. Improvements of object detection using boosted
histograms. In BMVC, 2005. 3

[19] J. Li, T. Wang, and Y. Zhang. Face detection using surf cas-
cade. In ICCV workshop, 2011. 3, 6

[20] S. Li, Z. Zhang, and et al. Floatboost learning for classifica-
tion. In NIPS, 2002. 4

[21] R. Lienhart and J. Maydt. An extended set of haar-like fea-
tures for rapid object detection. In ICIP, 2002. 2, 5, 6

[22] P. Long and R. Servedio. Boosting the area under the roc
curve. In NIPS, 2007. 2

[23] S. Maji and A. C. Berg. Max-margin additive classifiers for
detection. In ICCV, 2009. 1

[24] B. McCane and K. Novins. On training cascade face detec-
tors. Image and Vision Computing, 2003. 2

[25] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human de-
tection based on a probabilistic assembly of robust part de-
tectors. In ECCV, 2004. 2, 6

[26] T. Mita, T. Kaneko, and O. Hori. Joint haar-like features for
face detection. In ICCV, 2005. 2

[27] M.-T. Pham and T.-J. Cham. Fast training and selection of
haar features during statistics in boosting-based face detec-
tion. In ICCV, 2007. 2

[28] M.-T. Pham, Y. Gao, V. Hoang, and et al. Fast polygonal
integration and its application in extending haar-like features
to improve object detection. In CVPR, 2010. 1, 2, 6

[29] P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi. The feret
evaluation methodology for face recognition algorithms.
IEEE TPAMI, 22:1090–1104, 2000. 5, 6

[30] T. Sim and S. Baker. The cmu pose, illumination, and ex-
pression (pie) database. In FG, 2002. 6

[31] J. Sochman and J. Matas. Waldboost - learning for time con-
strained sequential detection. In CVPR, 2005. 1, 2

[32] A. Sorokin and D. A. Forsyth. Utility data annotation with
amazon mechanical turk. In CVPR Workshop, 2008. 1

[33] V. Subburaman and S. Marcel. Fast bounding box estimation
based face detection. In ECCV workshop, 2010. 6

[34] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast
descriptor for detection and classification. In ECCV, 2006. 2

[35] http://mplab.ucsd.edu. The MPLab GENKI
Database. 5

[36] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001. 1, 2, 4, 6

[37] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57(2):137–154, 2004. 1, 3, 6

[38] S. Winder and M. Brown. Learning local image descriptors.
In CVPR, 2007. 3

[39] J. Wu and et al. Fast asymmetric learning for cascade face
detection. IEEE PAMI, 2008. 1, 3

[40] R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades
for face detection. In ICCV, 2007. 1, 2, 4

[41] C. Zhang and Z. Zhang. A survey of recent advances in face
detection. Technical Report MSR-TR-2010-66, Microsoft
Research, 2010. 1

[42] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast human
detection using a cascade of histograms of oriented gradi-
ents. In CVPR, 2006. 1, 2, 4

347334733475

