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Abstract

We consider the problem of finding distinctive social in-
teractions involving groups of agents embedded in larger
social gatherings. Given a pre-defined gallery of short ex-
emplar interaction videos, and a long input video of a large
gathering (with approximately-tracked agents), we identify
within the gathering small sub-groups of agents exhibiting
social interactions that resemble those in the exemplars.
The participants of each detected group interaction are lo-
calized in space; the extent of their interaction is localized
in time; and when the gallery of exemplars is annotated with
group-interaction categories, each detected interaction is
classified into one of the pre-defined categories. Our ap-
proach represents group behaviors by dichotomous collec-
tions of descriptors for (a) individual actions, and (b) pair-
wise interactions; and it includes efficient algorithms for
optimally distinguishing participants from by-standers in
every temporal unit and for temporally localizing the extent
of the group interaction. Most importantly, the method is
generic and can be applied whenever numerous interacting
agents can be approximately tracked over time. We evalu-
ate the approach using three different video collections, two
that involve humans and one that involves mice.

1. Introduction
Social interactions are common, but they rarely take

place in isolation. Conversations and other group interac-

tions occur on busy streets, in crowded cafes, in confer-

ence halls, and in other types of social gatherings. In these

situations, before a computer vision system can recognize
distinctive group interactions, it must first detect them by

distinguishing between participants and by-standers and by

localizing them in time. This paper addresses this spatio-

temporal detection problem for cases in which the agents in

a large gathering can be reasonably detected and tracked.

We consider group interactions broadly as distinctive

space-time structural co-occurrence of individual actions.

These occur in a variety of places and over a variety of

times scales. We might want to find in a cocktail party, for

example, all three-person conversations dominated by one

Figure 1. Detecting and localizing interactions in social clutter.

Given an exemplar video of an N -person social interaction, we

seek to find similar interactions in a long input video with M > N
approximately-tracked people. For each temporal frame in the ex-

emplar, the N best-matching participants are identified separately

in each temporal unit of the input, and the matches are assigned

scores. Matching scores are accumulated over time through vot-

ing that is insensitive to tracking errors and changes in action rates,

and this produces a spatial localization of the N participating peo-

ple. Their interaction is then localized in time using an efficient

branch-and-bound search.

person for a sustained period of time. On a busy street, we

could search for all cases in which two passersby exchange

a “hello”. In a collection of hockey games, we might want

all instances of a “three-on-one”, and in nature we might be

interested in localizing instances of distinctive group inter-

actions among populations of animals, insects, or bacteria.

Each of these cases would likely require distinct algorithms

for detecting and tracking the agents, and each would bene-

fit from action descriptors that are tuned for that setting. But

beyond this, all of these scenarios can be abstracted as col-

lections of (possibly fragmented and noisy) trajectories with

accompanying time-varying action descriptors, and this is

the abstraction on which we operate.

As depicted in Fig. 1, our approach is based on matching.

Given an exemplar video of a distinctive group interaction

involving a small handful of N agents, we detect and local-

ize instances of similar interactions within a long video of

a larger gathering of M ≥ N agents. We represent a group

interaction as an ensemble of two types of time-varying

descriptors: per-agent descriptors that encode the appear-
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ance and/or motion of each agent, and relative pairwise de-

scriptors that encode the appearance and/or motion of each

agent relative to another. Matching an exemplar interaction

amounts to searching through space and time for ensembles

that are similar in some sense. This approach avoids gen-

erating explicit semantic descriptions of group interactions,

and it is advantageous when one lacks the vocabulary to pre-

cisely describe a class of interactions, or when they cannot

easily be broken down according to a pre-defined grammar.

To use our matching approach for recognition, we simply

match an input video against a labeled gallery of exemplars

and then extract a class label or ranked list of labels from

the resulting scored matches.

In designing our detection system we face two main

challenges. First, tracks may be fragmented and noisy, and

we expect the presence of outlying fragments caused by

false detections. We want an approach that can succeed in

spite of these. Second, we expect that the same type of in-

teraction can occur over different temporal extents and at

variable rates within its temporal extent, so we want an ap-

proach insensitive to these “within-class” variations. We

address these challenges using a voting-based approach, de-

picted in Fig. 1. First, the social descriptor-ensemble at each

exemplar time unit is compared separately to each time unit

of the input video, and the best-matching N participants in

each unit are identified along with their matching score (yel-

low and gray lines in Fig. 1). Second, weighted votes are ac-

cumulated from these unit-wise matches to obtain a final es-

timate of the N participants. Third and finally, the temporal

extent of the interaction is determined through an efficient

branch-and-bound search. Our designs for these three pro-

cessing stages are tightly connected to each other and to our

representation for interactions. Optimal unit-wise matching

is made possible by our restriction to second order (indi-

vidual and pairwise) action descriptors, and a metric learn-

ing procedure serves the dual role of improving voting (step

two) and enabling efficient branch and bound search (step

three).

Substantial progress has been made toward detecting ac-

tivities of a single actor [13, 24, 22, 16, 7]. For analyz-

ing interacting groups, previous approaches have consid-

ered cases in which: 1) there are no bystanders [11, 10, 3,

19, 21]; the interaction of interest is a priori localized in

time [17, 4]; or both of these simultaneously [12, 20, 15]. A

notable exception is [1], which like us, addresses the prob-

lem of localizing interactions in long videos that contain

bystanders, albeit with a less flexible representation (more

on this in Sec. 4).

We evaluate our approach using three different datasets:

1) the UT-Interaction Dataset [21]; 2) a new database of

videos from an “interactive classroom” in which students

self-organize in small group discussion (e.g. [5]); and 3) the

Caltech Resident-Intruder Mouse dataset [2].

2. Matching and Localizing Interactions
We consider a video as a sequence of T temporal units

that occur at a frequency equal to or less than the frame-rate

of the raw video data. The duration of these T units is typi-

cally between one and a few raw video frames, and it is de-

termined by the application-appropriate choice for tempo-

ral resolution of atomic action descriptors (e.g., positions,

velocities, accelerations, histograms of flow, space-time

SIFT). We assume the existence of an application-specific

detection and tracking system that outputs M space-time

tracks, which can be time-varying points, bounding boxes,

silhouettes, or something else. Due to agent entry and exit,

occlusions, and other tracking errors, not all M tracks will

persist over all T frames, and some of the M tracks may

correspond to short-lived false detections. The value of

M is thus the total number of trajectory fragments that are

identified with distinct agents.

With each track we associate ensembles of two types of

descriptors. There are TM per-time-unit dI -dimensional

descriptors {fm,t} where fm,t encodes the mth agent’s ac-

tivity at time unit t ∈ [1, T ]; and TM(M − 1) pairwise

dP -dimensional descriptors {gm,m′,t} where gm,m′,t en-

codes at time t the motion and/or appearance of agent m
relative to agent m′,m′ �= m. Loosely speaking, gm,m′,t
captures the “influence” that agent m′ has over agent m
at time t. This influence is not symmetric in general, so

typically gm,m′,t �= gm′,m,t. We use the notation Qt �
{fm,t,gm,m′,t} for the ensembles of all M tracks at time

t, and Q � {Qt}1≤t≤T for the ensembles harvested from

the entire input video. As mentioned above, the dimensions

and entries in the descriptor vectors f , g will be application

dependent, and we consider a variety of examples in our

experiments. Each exemplar video is processed in the very

same way as the input video, so that an exemplar of N ≤M
participants over S time units is represented at each time

s ∈ [1, S] by the ensemble Ds � {fDn,s,gD
n,n′,s}. We use

the analogous notation D � {Ds}1≤s≤S for the ensembles

collected from the entire exemplar.

Given a collection of exemplars and an input video, our

matching strategy is as follows. For each exemplar D, we

search through the input Q for the optimal match, identify-

ing the set of N participants and localizing their interaction

in time. The tracks corresponding to this best detection are

then removed from Q, and the procedure is repeated to find

the second-best match, and so on. This provides multiple

ranked detections for each exemplar. In the end, we have a

pool of space-time localizations from the input, with each

of these “detected interactions” associated through similar-

ity scores to one or several exemplars. To classify a detected

interaction, we simply apply the majority of the category

labels to the top-ranked exemplars associated with it. The

remainder of this section describes in detail the process of

locating the single best match for one exemplar.
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2.1. Matching between Temporal Units
The first step in our framework is to separately compute

the correspondence between the N exemplar agents at each

time s ∈ [1, S] and the optimal subset of N ≤ M of input

agents at each time t ∈ [1, T ]. We represent this N -to-M
correspondence by the N ×M binary matrix W , where the

nm-th entry wnm is one only when the nth exemplar agent

is matched to the mth input agent. Matches must be unique,

so these matrices must have one non-zero entry in each row

and at most one non-zero entry in each column: W1 = 1
and WT1 ≤ 1. We use the symbolW to represent the space

of all such matrices, i.e., W � {W ∈ {0, 1}N×M |W1 =
1,WT1 ≤ 1}.

The quality of a correspondence is measured by the sim-

ilarity between the individual and pairwise descriptors of

the N selected input agents and those of the N exemplar

agents. We formalize this by defining

D̂(Qt,Ds,W ) =
∑

nm

wnmdI(fm,t, f
D
n,s) +

∑

nmn′m′
wnmwn′m′dP (gm,m′,s,g

D
n,n′,t),

(1)
to be the dissimilarity between two instantaneous ensembles

under a particular matching matrix W . We use Mahalonobis

distances to compare descriptors in this expression, so that

dI(f , f
′) = (f − f ′)TΣI(f − f ′) and dP (g,g

′) = (g −
g′)TΣP (g − g′), with ΣI � 0 and ΣP � 0 positive semi-

definite matrices learned from exemplar videos as will be

described in Sec. 3.

Our immediate objective is to find the matching matrix

W ∈ W that minimizes the score D̂(Qt,Ds,W ). Letting

w be the vector formed by stacking the columns of W , the

optimization can be expressed as

min
w

cTw+wTHw, s.t. wnm ∈ {0, 1},W1 = 1,WT1 ≤ 1,

(2)

where c is a MN × 1 vector of distances between in-

dividual descriptors, dI(fm,t, f
D
n,s), and H is a MN ×

MN matrix of distances between pairwise descriptors

dP (gm,m′,t,g
D
n,n′,s)’s. This problem has integer con-

straints and is generally not convex, so we instead solve

min
w

(c+ ĉ)Tw +wT (H + Ĥ)w

s.t. wnm ∈ {0, 1},W1 = 1,WT1 ≤ 1,
(3)

where ĉ = [σ1, σ2, · · · , σMN ]T , Ĥ =
diag{−σ1,−σ2, · · · ,−σMN}, and each σi is a suffi-

ciently large number greater than
∑MN

j=1,j �=i |Hij |+Hii.

Note that Ĥ imposes a negative strictly dominant diago-

nal to H and the quadratic term Ĥ +H is strictly negative

definite. Therefore, (3) is a concave programming in the

convex unit hypercube [0, 1]N×M and will achieve its min-

imum at one of the feasible vertices. The feasible vertices,

Figure 2. The temporal neighborhood used in to compute (4). See

Sec. 2.2 for details.

meanwhile, are exactly the feasible solutions of (2), and at

these vertices, the values of the objective of (3) are equal to

those of (2) due to the cancellation brought by ĉ. Therefore,

by solving the much more efficient Problem (3) we obtain

the exact solution for the original Problem (2). We solve (3)

using the CVX toolbox [9].

For notational convenience, we define D(Qt,Ds) �
minW∈W D̂(Qt,Ds,W ) to be the similarity be-

tween ensembles Qt and Ds, and W t,s �
argminW∈W D̂(Qt,Ds,W ) to be the optimal instan-

taneous matching matrix that yields this similarity.

2.2. Voting for Participant Identification
The next step is to accumulate participant information

from noisy instantaneous matches W t,s, with the goal

of identifying a single optimal matching matrix, denoted

W ∗ ∈ W , that identifies a single consistent set of N <
M participants over the duration of the interaction being

matched. We achieve this through voting, with the intuition

being that the optimal matching W ∗ will occur relatively

frequently among the instantaneous matches {W t,s}. Each

per-unit match casts a weighted vote, and to tally these votes

we maintain two arrays both sized of |W|. Each element of

the first array counts the number of votes for a particular

matching matrix, and the corresponding element in the sec-

ond array maintains a cumulative sum of the weights for

that matching matrix.

The weight of each vote is determined by two fac-

tors. The first is the dissimilarity between the descriptor-

ensemble of the exemplar and that of the matched input

agents D(Qt,Ds). The second is a measure of temporal

consistency, with the intuition being that if the N -subset of

agents is matched at temporal pair (t, s) is correct, the same

N -subset of agents should be matched for other pairs (t′, s′)
in small temporal neighborhoods of the exemplar and in-

put video. We measure this using the �1 distance between

matching matrices: ||W t,s −W t′,s′ ||1. These two factors

are combined to provide a vote’s weight as

v(W t,s) =
∑

(t′,s′)∈N (t,s)

(‖W t,s−W t′,s′‖1+1)D(Qt′ ,Ds′),

(4)
whereN (t, s) is a temporal neighborhood of (t, s) in which

we enforce the consistency and it is depicted in Fig. 2,
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where the pair (t, s) is shown in black square and the neigh-

borhood is shown as shaded area.

1. Clear both accumulator arrays;

2. For each t ∈ [1, T ], s ∈ [1, S], increment the count for the

matching matrix W t,s by 1, and increase the sum of weights

in the companion array corresponding to W t,s by v(W t,s);

3. Identify a subarray of matrices receiving more than S
2

counts,

and normalize the sum of weights in the companion subarray

by corresponding counts;

4. Report the matching matrix W ∗ to be the one in the subarray

receiving the minimum normalized sum of weights.

Algorithm 1: Voting procedure for identify the participants

(i.e., the best overall matching W ∗).

As a result, the voting procedure is shown in Algorithm

1, where in the last two steps we find among those match-

ing matrices which receive a substantial number of supports

from instantaneous matchings the best matching W ∗ with

the lowest average dissimilarity to the exemplar. This idea

is also illustrated in Fig. 1, where a thick matching line in-

dicates a strong similarity (low weight v), and the agents

receiving the lowest average weight are selected as partici-

pants.

2.3. Branch-and-Bound Temporal Localization
Our third step is to determine the starting time Ts and

ending time Te (1 ≤ Ts < Te ≤ T ) of the interac-

tion. For this purpose, after the participants are deter-

mined through the best matching W ∗, we recompute for

all (t, s) pairs the dissimilarities under this best matching

D̂(Qt,Ds,W
∗), between the interaction of the individu-

als selected by W ∗ at time t and the exemplar at time

s. We then compute D∗(t) = mins D̂(Qt,Ds,W
∗), the

minimal dissimilarity of the input interaction by the se-

lected participants at time t to the entire exemplar, and

s∗(t) = argmins D̂(Qt,Ds,W
∗), the time in the exemplar

at which the input at time t exhibits this maximum similar-

ity.

If the N selected agents in the input perform the same

interaction during Ts ≤ t ≤ Te as those in the exemplar

during 1 ≤ s ≤ S, they will be visually similar and tem-

porally aligned: The minimum-scores D∗(t) will be small

for Ts ≤ t ≤ Te, and each minimum-score time s∗(t) will

be in the same relative location in [1, S] as t is in [Ts, Te].
Our aim is to design an objective function that encodes

preferences for both to enable efficient temporal search for

the optimal Ts and Te. As interactions occur at variable

rates within their temporal extent, we use a temporal pyra-

mid to efficiently measure alignment in a way that also re-

spects these variations. The pyramid contains L levels in-

dexed by l ∈ [0, 1, · · · , L − 1] and equal-length cells at

the lth level indexed by i ∈ [0, 1, · · · , 2l − 1]. The indi-

cator 1(t ∈ C(Ts, Te, l, i)) is one whenever t occurs in the

ith cell of the lth level of the pyramid over [Ts, Te], and

1(s ∈ C(1, S, l, i)) is the analogous indicator for the exem-

plar. Then, when considering an input interval [Ts, Ts] we

measure alignment for each time-pair (t, s) using

k(t, Ts, Te, s, 1, S) �
L−1∑

l=0

2l∑

i=1

1(t ∈ C(Ts, Te, l, i))1(s ∈ C(1, S, l, i)).
(5)

Let (ts, te) be the true, unknown starting and ending

times of the detected interaction in the input video, and sup-

pose that the input descriptor-ensemble over this interval

exactly matches that of the exemplar. To determine good

estimates for the interval (ts, te) we define a cost that is

a product of the temporal alignment and visual similarity

summed over the candidate interval:

f(Ts, Te) �
Te∑

t=Ts

k(t, Ts, Te, s
∗(t), 1, S)(D∗(t)− 1). (6)

As will be described in the next section, we use metric

learning to ensure that the dissimilarities D∗(t) are driven

toward 0 in the true interval [ts, te] and toward 2 otherwise.

This means that the summand in (6) considered as a func-

tion of t assumes a negative value in the desired interval

ts ≤ t ≤ te and a positive value otherwise, as denoted as

q(t) and depicted in the bottom of Fig. 1. This ensures that

the function f achieves the global minimum if and only if

the interval [Ts, Te] is exactly aligned to the desirable in-

terval [ts, te]. As a result, f(Ts, Te) satisfies the “quality

function” requirements described in [14] that enables the

use of an efficient branch-and-bound search for the globally

optimal interval (Ts, Te) without the need for an exhaus-

tive sliding window. We detail the search algorithm and its

rationale in the technical report [18].

We have described the approach to locate the single best

match for one exemplar. Though it operates on continuous

tracks that are achievable in all experiments in Sec. 4, the

process can also handle moderately broken tracks by setting

the descriptor values of missing temporal units to be suffi-

ciently large (or small) so as not to be matched with any

exemplar agents. As long as the number of missing units is

small, correct matches still dominate during voting. Then,

D∗(t) and s∗(t) can be interpolated from adjacent units.

3. Descriptor Metric Learning
As mentioned in Sec. 2.1, we learn matrices ΣI , ΣP for

the Mahalanobis distances dI(f , f
′) and dP (g,g

′), so that

the learned metrics can: 1) enhance discrimination between

exemplar categories by ensuring that distances are smaller

when descriptors are drawn from roughly the same temporal

location within a labeled exemplar of the same category, and

larger otherwise; and 2) enhance the accuracy of temporal
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Figure 3. Constraints used in discriminative metric learning. Each

row is an annotated two-cell exemplar with markers representing

instantaneous descriptor-ensembles at each time unit. For discrim-

ination between interaction categories, distances between ensem-

bles of the same class (red circles and red squares) should be small

whenever they occur in the same cell number; and distances for

different classes (red vs. yellow) should be large. For effective

and efficient temporal localization, distances between ensembles

at labeled times and unlabeled “background” times (black circles)

should be large, and all distances should be offset by −1.

localization by ensuring that distances between labeled en-

sembles and unlabeled “background” ensembles are large.

The combination of 1) and 2) leads to more accurate spa-

tial localizations of participants (i.e. better W ∗ as discussed

in Sec. 2.2), and induces the “quality function” conditions

required for efficient temporal localization by branch-and-

bound (Sec. 2.3). We achieve all of these benefits simulta-

neously by using an adaptation of the Large Margin Nearest

Neighbor (LMNN) framework [23].

For each application scenario, we use a training set of ex-

emplar videos—possibly having varying numbers of agents

N—that are annotated with start/end times, category la-

bels, N -agent correspondences between exemplars of the

same category. We use unlabeled time units in the videos

as “background” samples. Intuitively, the learned metrics

should satisfy the six types of constraints shown in Fig. 3.

This figure depicts three different exemplar videos in which

a subset of time units have been labeled as being distinc-

tive interactions of two different classes. In this example,

each labeled exemplar is shown as being divided into two

cells; these correspond to the lowest level of the temporal

pyramid described in Sec. 2.3. The first three constraints

in the list enhance discrimination between categories, while

the last three enhance the accuracy of temporal localization.

Offsetting all of the distances by −1 ensures that the sum-

mand in (6) assumes proper negative values as required for

branch-and-bound search.

We enforce these constraints through an LMNN frame-

work by constructing two collections from our database ex-

emplars. The collection P contains all pairs of instanta-

neous interaction ensembles that are of the same category

(red circles and red squares in Fig. 3) and occur roughly in

the same temporal location within the interaction instances

(i.e., in the same cell of the lowest level of the temporal

pyramids), together with their “ground-truth” matchings.

The collection M is comprised of ordered triples (h, k, l)
in which ensemble h is the same category as ensemble k

Figure 4. For the classroom dataset, pairwise descriptors for

groups comprised of (a) three or more participants, and (b) two

participants. See text for details.

and ensemble l is either of a different category or back-

ground. Having defined these two collections, each Ma-

halanobis metric is found by solving

min
ΣI ,ΣP

∑

(u,v)∈P
D̂(Du,Dv,Wu,v) + γ

∑

(h,k,l)∈M
ξh,k,l,

s.t.D̂(Dh,Dl,W )− D̂(Dh,Dk,Wh,k) ≥ 2− ξh,k,l,

ΣI � 0,ΣP � 0, ξh,k,l ≥ 0,

(7)

where Wu,v is the “ground-truth” matching for pair (u, v)
and W is an arbitrary matching1. The minimization over ei-

ther ΣI or ΣP is exactly a LMNN problem [23], and we ap-

ply LMNN multiple times to learn a distinct pair (ΣI ,ΣP )

for each value of N that exists in the training set.

4. Experiments
We evaluate our approach on three datasets, two that in-

volve humans and one that involves mice. The datasets are

very different from one another, with distinct types of indi-

vidual and pairwise descriptors that are appropriate for that

environment. In all experiments we use four-level temporal

pyramids for the interactions and we set the time unit to be

half the duration of the cells in the lowest level. Neighbor-

hood sizes tw and sw are taken as a quarter of the length of

a cell on the bottom of the pyramid2.

Classroom Interaction Database. We collected and anno-

tated a new database of videos capturing students’ behaviors

over five hour-long sessions in an interactive classroom. As

shown in the left-most images of Fig. 7, the students are

seated in a regular lecture hall and are observed by a cam-

era array with non-overlapping fields of view. The class-

room is “interactive” because at various times throughout

the lecture students are invited to engage in ad-hoc group

discussions about problems provided by the instructor (see,

e.g., [5]). The ad-hoc groups can form within and across

1It is useful to add to the collection M additional triples in which l
is derived from same-category same-cell pairs but with permuted incor-

rect matching matrices. In this case D̂(Dh,Dl,W ) in (7) is replaced by

D̂(Dh,Dl, W̄h,l), where W̄h,l is the permuted incorrect matching.
2When the neighborhood extends out of video boundary, we only con-

sider the cells within the boundary and normalize the vote by the number

of cells actually involved.
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Figure 5. (a)(b)(c) ROC curves for identifying the participants of

an two-person, three-person, and four-person interactions using

the proposed approach and baselines. (d) Temporal localization

accuracies using the proposed approach with and without metric

learning, using individual and/or pairwise descriptors.

seating rows, and detecting them is a challenge because the

number of by-standers is much larger than the number of

participants (M is between 10 and 20 while N is between

2 and 4), video quality is limited (low light, 15fps), and

the visual cues for interaction are quite subtle. The abil-

ity to automatically detect such interactions is important for

education researchers, however, since it can help in under-

standing how students self-organize into groups, and which

geometric configurations of groups lead to improved educa-

tional outcomes [5].

We applied an OpenCV face detector and generated

long tracks of the bounding boxes using a combination of

OpenCV mean-shift tracking and optical flow. In consulta-

tion with education experts, we manually identified the par-

ticipants and start/end times of all two-person, three-person,

and four-person interactions, obtaining 254 two-person, 112

three-person, and 16 four-person interactions in total. We

defined interaction categories based on the geometric con-

figurations of the participants: three categories for 2-person

interactions (same row; different rows with left agent in

front; different rows with right agent in front) and four cat-

egories for 3-person interactions. Samples of these exem-

plars can be found in the columns (c1)-(c3) of Fig. 7. The

annotated interactions range from a few seconds to tens-of-

seconds in length. Since the raw videos arise from five dif-

ferent hour-long session, we adopt a leave-one-session-out

evaluation scheme in partitioning training samples (exem-

plars) from test samples (inputs). Also, for each split of the

data we manually eliminate the false detections and tracks

Figure 6. Average classification accuracies and false positives for

two-person and three-person interactions (Individual and/or pair-

wise descriptors, with or without metric learning (ML)).

in the exemplars, while leaving them present in the test sam-

ples.

We use a coarse representation of the head pose as the in-

dividual descriptor. Specifically, we compute the Histogram

of Oriented Gradient (HOG) feature within each temporal

unit and each detection box, and train nine one-versus-all

SVMs on these HOG features to estimate the likelihood of

nine head poses (front, left, lower-left, lower-front, lower-

right, right, back-right, and back-left) for a new face in the

input. The nine-dimensional likelihood vector serves as our

individual descriptor. Meanwhile, we derive the pairwise

descriptor for three or more individuals based on the geo-

metrical configurations of the bounding boxes. As shown

in the left panel of Fig. 4(a), for a pairwise descriptor of

target m relative to target m′ among five targets, we com-

pute the distances ri between all others and m, and the rel-

ative angles ai between the connecting vectors and
−−→
mm′,

and combine all these geometric quantities into a pairwise

descriptor gm,m′,t. When computing gn,n′,s in the input

(right panel of Fig. 4(a)), we align
−→
nn′ against

−−→
mm′ and

predict the locations of the three individuals (shown in red),

and compute the true distances zi and relative angles bi by

locating the nearest individuals to the predicted locations.

This pairwise representation achieves invariance under sim-

ilarity transforms. For two-person interaction, we simply

use the distance and the relative angles against the right hor-

izontal axis (Fig. 4(b)).

We begin by looking at accuracy of detection, where we

ignore the inferred interaction categories and simply mea-

sure the systems ability to detect when an interaction has oc-

curred. Fig. 5 (a–c) show detection ROC curves for differ-

ent group sizes with various parts of the system turned off.

This includes using only one of the individual or pairwise

descriptors, and using metric learning (optimized ΣI ,ΣP )

or not (ΣI and ΣP set to identity matrices). Using all parts

of the system yields the best results, and we note that perfor-

mance improves as the number of participants N increases.

The latter is due to the fact that interaction patterns are more

salient when more pairwise information is available.

Next, we study classification performance for 2-person
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Figure 7. Examples of social interaction detection and matching

on the classroom interaction database. Each row is an example

of detecting a salient interaction from an input. (a) the input;

(b) detected social interaction; (c-1) to (c-3) top three associated

database exemplars that support the detection. (Blocked faces cor-

respond to students who did not consent to their images appearing

in publications.)

and 3-person interactions, where we measure the accuracy

of inferred interaction categories. (Due to the small num-

ber of 4-person interactions in our dataset, we did not de-

fine categories for them.) As before we do this with various

parts of the system turned off, and Fig. 6 shows the aver-

age true positive rates versus false positives when further

classifying detected interactions into the three or four cate-

gories. Again we see that performance improves when more

parts of the system turned on. We can also draw a contrast

with the detection results of Fig. 5 where the pairwise fea-

tures are substantially more important than the individual

ones. This difference diminishes in Fig. 6, likely because

we are measuring performance on correctly-detected inter-

actions, where head pose provides stronger evidence than

spatial configuration. An improved head-pose estimator or

a more sophisticated description of body pose can be ex-

pected to further improved classification performance. Fi-

nally, we investigate the temporal localization performance,

for which we compute the ratio of the intersection to the

union of the estimated interval and the annotated interval,

and we show the averages in Fig. 5 (d).

Fig. 7 shows some successes and failures of detection

and matching. The second row shows a false detection (blue

dashed box), where two people are not interacting but ex-

hibit head poses similar to those of an interaction. In the

fourth row, a three-person interaction is correctly identified

even though the third associated exemplar is from a differ-

ent category (two looking right). In the other rows, two-

person and three-person interactions are correctly detected

and matched with exemplars.

Additional results related to computational cost can be

found in the technical report [18].

UT-Interaction Dataset. For comparison to the state-

of-art, we evaluate our approach on the UT-Interaction

dataset [21]. We follow the protocol defined in previ-

ous work [21, 1]: 20% of available interaction annota-

tions are used as exemplars for training, and the remain-

ing (non-annotated) sequences are used for testing. For in-

dividual descriptors, we use 32-dimensional histogram of

spatio-temporal features developed by [6] in each unit and

each bounding box, which is constructed by applying PCA

to a k-means-clustered, 500-word vocabulary. For pair-

wise descriptors, we use the difference between two 32-

dimensional histograms computed for each of the two hu-

mans. The optical flow is computed using OpenCV, and

histograms are comprised of 8 directions and 4 magnitudes.

Training examples are manually examined to ensure error-

less per-human bounding boxes, and for testing, we use an

off-the-shelf human detector [8], and associate the detected

boxes across frames to form continuous tracks.

Table 1. Classification accuracies and false positive (FP) rates for

the proposed method and baselines on the UT-Interaction dataset.
Accuracy ([21], [1], ours) FP Rate ([21], [1], ours)

Hug (0.875, 0.904, 1.00) (0.075, 0.055, 0.00)

Kick (0.750, 0.775, 0.875) (0.138, 0.108, 0.063)

Point (0.625, 0.663, 0.750) (0.025, 0.025, 0.088)

Punch (0.500, 0.632, 0.750) (0.201, 0.154, 0.138)

Push (0.750, 0.782 , 0.750) (0.125, 0.101, 0.138)

Shake Hands (0.750, 0.789, 1.00) (0.088, 0.060, 0.00)

Average (0.708, 0.758, 0.854) (0.108, 0.083, 0.071)

Table 1 compares recognition accuracy and false-alarm

rates to those of previous work [21, 1]. For our system, we

consider one database exemplar at a time, compute its max-

imal response over the input video, and claim a true posi-

tive only when both the class-label and the identified partic-

ipants are simultaneously correct. Otherwise a false positive

is indicated for that exemplar class. By these measures, our

approach provides improved accuracy and competitive false

positive rates. Next we study detection in terms of both tem-

poral localization and participant identification. For tempo-

ral localization, we follow the protocol of [1] by indicat-

ing a true-positive when there is correct classification and

more than a 50% ratio between the intersection and union

of the estimated temporal interval and the ground-truth. We

achieve a slightly smaller area under ROC curve than the

two baselines, as shown in Table 2, but point out that differ-

ences are hard to interpret because the temporal boundaries

are somewhat ambiguous for the consecutively-executed in-

teractions in the dataset. To assess participant identification,

we enforce a stricter true-positive criterion that requires

100% correct identification instead of the 50% value used

in [1] and our system still outperforms the method of [1].

We attribute this to the fact that we explicitly discriminate
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interactions and participants in the form of tracks of bound-

ing boxes, while [1] does not do so but simply explains an

input using a non-discriminative generative model.

Table 2. Area under ROC curve for the proposed method and the

baselines on UT-Interaction dataset.
[21] [1] ours

Temporal Localization 0.91 0.94 0.89

Participants Identification N/A 0.87 0.93

As before, we disable components of our system to ex-

plore the effectiveness of combining both individual and

pairwise descriptors, and using metric learning. The per-

formance comparison is show in Table 3. It is interesting

to see the pairwise descriptor plays a more crucial role for

this dataset: A significant performance drop arises when we

only consider individual action descriptors.

Table 3. Classification accuracies and false positive (FP) rates

comparison on UT-Interaction dataset for evaluating the effective-

ness of different components of the proposed approach: Individual

and/or pairwise descriptors, with or without metric learning (ML).
Individual only pairwise only Both

Accur. w. ML 0.688 0.813 0.854

Accur. w/o ML 0.647 0.750 0.771

FP Rate w. ML 0.125 0.096 0.071

FP Rate w/o ML 0.163 0.113 0.083

Caltech Resident-Intruder Mouse Dataset. As an appli-

cation to agents other than humans, we also evaluate our

approach in the mouse dataset of [2]. Details about the eval-

uation can be found in the technical report [18].

Conclusion. We introduced a voting-based approach for

detecting and localizing small-group interactions within

larger social gatherings. The approach is based on match-

ing against exemplars, and it avoids the need for any ex-

plicit semantic description of a group interaction. Since it

operates on agent tracks, it is also quite flexible and can be

applied in many different multi-agent scenarios, provided

that the environment-specific individual descriptor and the

environment-specific pairwise descriptor are properly de-

fined. As practical detection and tracking continue to im-

prove, we expect the opportunities for this type of analysis

to expand.

We represent group interactions as collections of indi-

vidual and pairwise descriptors (1st and 2nd order), and

our results suggest that this is effective for groups of up to

four agents. Higher-order interaction descriptors may play

a more important role for larger interacting groups, and this

may be a useful future research direction as new datasets

become available. It may also be worth considering more

flexible schemes for breaking an interaction into parts. We

use a simple combination of descriptor collection and tem-

poral pyramid, but one could imagine using a (learned) tree

of space-time parts, analogous to how spatial parts-based

models are used for object detection.
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