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Abstract

In this work we present a new part-based object de-

tection algorithm with hundreds of parts performing real-

time detection. Part-based models are currently state-of-

the-art for object detection due to their ability to represent

large appearance variations. However, due to their high

computational demands such methods are limited to sev-

eral parts only and are too slow for practical real-time im-

plementation. Our algorithm is an accelerated version of

the “Feature Synthesis” (FS) method [1], which uses mul-

tiple object parts for detection and is among state-of-the-

art methods on human detection benchmarks, but also suf-

fers from a high computational cost. The proposed Accel-

erated Feature Synthesis (AFS) uses several strategies for

reducing the number of locations searched for each part.

The first strategy uses a novel algorithm for approximate

nearest neighbor search which we developed, termed “KD-

Ferns”, to compare each image location to only a subset

of the model parts. Candidate part locations for a specific

part are further reduced using spatial inhibition, and using

an object-level “coarse-to-fine” strategy. In our empirical

evaluation on pedestrian detection benchmarks, AFS main-

tains almost fully the accuracy performance of the original

FS, while running more than ×4 faster than existing part-

based methods which use only several parts. AFS is to our

best knowledge the first part-based object detection method

achieving real-time running performance: nearly 10 frames

per-second on 640× 480 images on a regular CPU.

1. Introduction

Detecting objects of a particular class in a given image

remains a difficult challenge for computer vision. Such a

capability can support a wide range of real-world appli-

cations from aid to the blind to pedestrian detection for

advanced driver assistance systems. Although the current

performance is improving, as reflected on standard bench-

marks like the PASCAL VOC challenge [9] and the Cal-

tech pedestrian benchmark [7], it remains poor compared

to that of human vision. Nevertheless, vision-based pedes-

trian detection technology in vehicles is already commer-

cially available [20]. Due to the limited computation re-

sources, such systems use template-based methods [18] and

are therefore limited to detecting fully visible upright pedes-

trians. Part-based methods [12, 11, 1] use object parts

with a deformable configuration to model objects, increas-

ing their ability to cope with partial occlusions and large

appearance variations compared with template-based meth-

ods. Furthermore, using a large number of parts with di-

verse appearances improves detection accuracy [1]. Evi-

dently, part-based methods are highly ranked on large scale

benchmarks [9, 7]. Such methods, however, are either lim-

ited in the number of parts modeled [11] to be able to run in

reasonable time, or are impractical in terms of run time [1].

Previous work accelerating object detection mainly fo-

cus on template-based methods [21, 5, 2, 4]. From these

approaches we adopt the well-studied sliding-window tech-

nique [21] with a “coarse-to-fine” strategy for early win-

dow elimination and location refinement [17]. Accelerating

part-based detection mostly focused on methods relying on

a small number of parts such as the Deformable Part-based

Model (DPM) [11], since computation time increases lin-

early with the number of parts. In [8] properties of the

Fourier transform are exploited to speed up the computa-

tion of linear filters such as those used in the DPM. The

Cascaded Deformable Part-based Model [10] (c-DPM) uses

a cascade of part detectors to accelerate the original DPM

and is considered the fastest part-based method available,

but is still limited in the number of parts and does not reach

real-time performance. We present the Accelerated Feature

Synthesis (AFS) algorithm, which is based on the Feature

Synthesis (FS) [1], a part-based detection method which

uses hundreds of parts in its object model. In our architec-

ture, in each image location, only the closest parts are com-

pared, and for each part, only locally maximal-appearance

positions are used for classification. In contrast, existing

part-based methods (e.g. DPM,c-DPM) consider all parts

in a dense grid of positions.

The Feature Synthesis (FS) method [1] is a particularly

flexible framework which uses hundreds of part based fea-

tures selected from feature families with increasing com-

plexity. The families of features encapsulate the appear-
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ance and relative location of one or more object parts. The

method was shown to be state-of-the-art on several hu-

man detection benchmarks [1], but suffers from a high-

computational cost making it impractical for real-time ap-

plications. Our first contribution, the Accelerated Feature

Synthesis (AFS), is a variant of the FS which proposes a

combination of several speedup strategies making multiple-

part based detection practical. Our second contribution,

is the KD-Ferns, a novel algorithm for fast approximate

nearest neighbors enabling a reduction in the number of

searched parts in each image location. The AFS algorithm

uses a coarse-to-fine strategy: first, a “coarse” part-based

detector is used to eliminate most image regions and then,

a “fine” such detector is used to detect the object in the re-

maining regions. To speed up the coarse level the KD-Ferns

algorithm is used to compare only a small subset of the parts

to each image location. In addition, for a specific part, only

a sparse set of locations is considered using spatial inhi-

bition. Finally, we modify the FS representation for ob-

ject parts to allow sharing computation between the differ-

ent parts. We evaluate the AFS on the pedestrian detection

task using the INRIA pedestrians [3] and the Caltech pedes-

trian benchmark [7]. The detection accuracy loss compared

to the FS is minor, and the AFS remains competitive with

state-of-the-art methods. We compare the run time of the

AFS with the methods evaluated on the Caltech pedestrian

benchmark. The AFS is ×4.5 faster than the part-based c-

DPM [10], and is on par with the fastest template-based

method for this benchmark, the “Fastest Pedestrian Detec-

tion in the West” (FPDW) [5].

Matching local image descriptors such as the SIFT [15]

to a pre-stored database of descriptors is a fundamental

problem in many computer vision algorithms, often facili-

tated by efficiently searching for nearest neighbors. The kd-

tree algorithm [13] is a popular method for nearest neigh-

bor search but quickly loses effectiveness in high dimen-

sions. In such cases one must resort to finding Approxi-

mate Nearest Neighbors (ANN) in which a close enough

neighbor is found with a high probability. ANN meth-

ods such as the randomized kd-trees [19] and hierarchi-

cal k-means tree [14] often rely on indexing the database

points in a tree-structure, allowing only partial traversal of

the database. Such methods often perform ANN search in

sub-linear computation time in the number of examples,

and are successfully applied to databases containing mil-

lions of examples. However, since visiting each tree node

is associated with complex operations such as updating a

priority queue [19], or a full dimensional distance computa-

tion [14], exhaustive search is in practice more efficient for

small databases. The algorithm we propose, termed KD-

Ferns, performs sub-linear runtime ANN search in practice

for small databases of high-dimensional points. This is use-

ful in particular for part based object detection in which we

need to find the nearest “part descriptors” from a relatively

small set of O(100) parts in the model. Since this operation

is done for almost every image location and in each image

scale, efficiency is highly important. In the next section we

present the KD-Ferns algorithm. In Section 3 we present the

AFS method for object detection, the experimental evalua-

tion in Section 4, and our conclusions in Section 5.

2. The “KD-Ferns” algorithm for approximate

nearest neighbor search

Consider the exact nearest neighbor search problem:

given a database of points P ⊂ R
k and a query vector

q ∈ R
k find argminp∈P ‖q − p‖. A popular search tech-

nique uses the KD-Tree data structure in which a balanced

binary tree containing the database points as leaves is con-

structed. Each node specifies an index to its splitting di-

mension, d ∈ {1, . . . , k}, and a threshold τ defining the

splitting value. Given a query q, (with q(d) denoting its

d-th entry), the tree is traversed root to leaf by computing

in each node the binary value of q(d) > τ and following

the right branch on 1 and left one on 0. Upon reaching a

leaf dataset point, its distance to the query is computed and

saved. In addition, each traversed node defined by d, τ is in-

serted to a priority queue (PQ) with a key which equals its

distance to the query: |q(d)− τ |. After a leaf is reached the

search continues by descending in the tree from the node

with the minimal key in PQ. The search is stopped when

the minimal key in PQ is larger than the minimal distance

found, ensuring an exact nearest neighbor is returned.

A “KD-Fern” is a KD-Tree with the following property:

all nodes in the same level (depth) of the tree have the same

splitting dimension d and threshold τ . The search algo-

rithm is identical to the one described for the KD-Tree but

due to its restricted form can be implemented more effi-

ciently. A KD-Fern with maximal depth L can be repre-

sented by an ordered list of dimension indexes and thresh-

olds, ((d1, τ1) , . . . , (dL, τL)). As in the KD-Tree we in-

sert each dataset point to a tree leaf. For a dataset point

p, B(p) is a binary string defining its tree position. We

now consider the inverse mapping M from binary strings

of length <= L to points in P . The domain of M can be

transformed to all binary strings of length L by concate-

nating shorter strings with all possible suffixes and map-

ping them to the same point p. Given a query q we cre-

ate its binary string B(q) by comparing it to each entry

in the list: B(q) = ((q(d1) > τ1) , . . . , (q(dL) > τL)).
p = M(B(q)) is then the dataset point in the leaf reached

with query q. For small enough dataset sizes |P | the entire

mapping can be stored in a memory-based lookup table with

2L entries, and computing M(B(q)) can be done in a sin-

gle table access. The priority queue can also be efficiently

implemented using bin-sorting due to the limited number

of possible values, L. The downside is that a balanced tree
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(a)KD-Fern (b)KD-Tree (c) AFS algorithm (d) Fragment Example
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Figure 1. Space partition for 6 points in 2D using the KD-Fern (a) and the KD-Tree (b) construction algorithms. (c) Accelerated Feature

Synthesis (AFS) detection algorithm flow. First level processes a full scale pyramid of the image while the second level processes only

regions around candidate locations from level 1 and returns the final detections. (d) Fragment example. An example of a selected

appearance fragment (blue rectangle) within the training image it was extracted from. The grid represents the spatial bins of size b× b used

for computing the local gradient orientation histograms and the SIFT descriptor of the fragment.

with the KD-Fern property does not necessarily exist, and

therefore the maximal depth L is no longer logarithmic in

|P |. A new construction algorithm is therefore required.

The original KD-tree construction algorithm is applied

recursively in each node splitting the dataset to the created

branches. For a given node, the splitting dimension d with

the highest variance is selected, and τ is set to the median

value of p(d) for all dataset points in the node p. The

KD-Fern construction algorithm (Algorithm 1) sequentially

chooses the d, τ for each level using a greedy strategy. In

each level the splitting dimension is chosen to maximize the

conditional variance averaged over all current nodes (line

1) for increasing discrimination. The splitting threshold is

then chosen such that the resulting intermediate tree is as

balanced as possible by maximizing the entropy measure of

the distribution of dataset points after splitting (line 3(b)).

Figure 1 shows the resulting data space partition obtained

using the KD-Fern construction algorithm (a) for a toy set

of six points in 2D, alongside the KD-Tree partition (b).

KD-Ferns basically partitions the space to hyper-rectangles.

In analogy to the randomized KD-trees [19], we extend our

method to randomized KD-Ferns, in which several ferns are

constructed randomly. Instead of choosing the splitting di-

mension dl according to maximal average variance (line 1) a

fixed number of dimensions Kd with maximal variance are

considered, and dl is chosen randomly among them. An ap-

proximate nearest neighbor is returned by limiting the num-

ber of visited leafs.

3. The Accelerated Feature Synthesis

The Accelerated Feature Synthesis (AFS) is a sliding

window object detection method, based on the Feature Syn-

thesis (FS) [1] method. We start by describing the FS

method. In the FS, a part-based classifier model C dis-

criminates sub-image windows Is of fixed size wx × wy

as tightly containing the object or not. C is trained us-

ing a sequential feature selection method and a linear-SVM

classifier. C is parameterized by F , a set of classifier fea-

tures, R, a set of rectangular image fragments extracted

Algorithm 1 The KD-Fern construction algorithm

Input: A dataset, P = {pj}
N
j=1 ⊂ R

n. Output:

((d1, τ1) , . . . , (dL, τL)): An ordered set of splitting dimensions

and thresholds, dl ∈ {1 . . . n}, τl ∈ R.

Initialization: l = 0 (root level). To each dataset point p ∈ P , the

l length binary string B(p) represents the path to its current leaf

position in the constructed binary tree. Initially, ∀p.B(p) = φ.

Notations: NB(b) = |{p|B(p) = b}| is the # of points in the

leaf with binary representation b. p(d) ∈ R is entry d of point p.

While ∃p,q such that: p �= q and B(p) = B(q) do:

1. Choose the splitting dimension with maximal average

variance over current leafs:

dl+1 = argmaxd

∑
b∈{0,1}l

NB(b)
N

·Var{p|B(p)=b} [p(d)]

2. Set Max Entropy = 0

3. For each τ ∈ {p(dl+1)|p ∈ P}

(a) Set ∀{p ∈ P} : B′(p) = [B(p), {p(dl+1) > τ}]

(b) Set Entropy = −
∑

b∈{0,1}l+1

NB′ (b)

N
· ln

NB′ (b)

N

(c) if (Entropy > Max Entropy) :

• Set Max Entropy = Entropy. Set τl+1 = τ ,

Set B = B′.

4. l = l + 1

from training images, and W = {Wf} the linear clas-

sifier weights. Computing C(Is) ∈ R, the classification

score of sub-image Is proceeds as follows. For each frag-

ment r ∈ R the “fragment similarity map” ar(x, y) repre-

sents the appearance similarity of r to each (x, y) position

in Is. ar(x, y) is computed as the inner-product between

the 128-dimension SIFT descriptor [15] of r and that of

the image fragment in position (x, y). Subsequent stages

use a list of spatially sparse fragment detection locations

Lr = {lk = (xk, yk)}Kk=1
computed by finding the K = 5

top local maxima in ar. The appearance score of each lo-

cation l ∈ Lr is then ar(l). Each feature f ∈ F is a func-
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tion f : Is �→ R, computed using the fragment detections

Lr of one or more fragments r. Each feature f represents

different aspects of object-part detections. From the fam-

ilies of features suggested in [1], we use in the AFS only

ones which significantly contribute to performance: Glob-

alMax, Sigmoid, Localized, LDA and HoG component

features. For example, a localized feature is computed as:

f(Is) = maxl∈Lr G(ar(l)) · N (l;μr, σI2×2) where N is

a 2D Gaussian function of the detection location l and G,

a learned sigmoid function on the appearance score. Such

features represent location sensitive part detection, attaining

a high value when both the appearance score is high and

the position is close to a preferred part location μr, simi-

lar to parts in a star-like model [11]. For more details on

computing the features please refer to [1]. The final classi-

fication score is a linear combination of the feature values:

C(Is) =
∑

f∈F (Wf · f(Is)). We next describe the AFS

method for detecting objects in full images focusing on the

major modifications relative to the FS.

Single fragment descriptor. The original FS uses image

fragments r ∈ R with different sizes and aspect ratios, all

represented by a 128-dimensional SIFT (4 × 4 spatial bins

and 8 orientation bins), and therefore the spatial bin size

Bx, By is different for each fragment and equal to the frag-

ment size |r|x, |r|y divided by 4. In order to share the com-

putation of local orientation gradient histograms between

many fragments we use at most two different spatial bin

sizes B{x,y} = b in our representation, but keep the differ-

ent fragment sizes. For orientation we use |ori| = 8 orien-

tation bins. We eliminate the spatial histogram smoothing

from the original SIFT to speed up the computation. The

result is for each fragment r a variable dimension descrip-

tor SIFTb(r) with dimension k(r) = |r|x
b
· |r|y

b
· 8. An

example of a selected fragment is illustrated in figure 1(d).

We denote by C = (F,R,W ) a classifier model as defined

previously with this modified fragment descriptor.

The input of the AFS is a full sized image Im and the

output is the object detections represented by a set of bound-

ing boxes at multiple locations and scales in the image and

their classification scores. The AFS algorithm flow (see

Figure 1(c)) is composed of a two-level coarse-to-fine cas-

cade. The coarse level uses the sliding window methodol-

ogy. It uses a trained coarse classifier C1 = (F1, R1,W1)
to compute the classification score for a dense set of sub-

windows sampled in scale and position space. For a spe-

cific scale, sub-windows are sampled on a regular grid with

a spatial stride s = s1 pixels. Image locations which re-

ceived a large enough score are then passed to the second

level. Around each such location a local region is defined

and sub-windows are sampled in that region on a finer grid

with stride s = s2 and processed by the second level with

classifier C2 = (F2, R2,W2) to produce the final classifica-

tion score. At the end a standard non-maximal suppression

(NMS) stage identical to the one described in [1] is used to

locate the locally maximal detections. Computing the clas-

sification score for each sampled sub-window is similar for

both cascade levels. We refer to this procedure as a one-

level detection (blue rectangles in Figure 1(c)). The input

to the first-level detection is the entire scale pyramid of Im

and to the second level detection only the candidate image

regions. We represented both types of input by a set of rect-

angular image regions {I}. Since each region is indepen-

dently processed we describe the one-level detection for a

single image region I (|I| = n×m). Denote by A = m · n
the area of I . Performing one-level detection using classifier

model C(F,R,W ) is composed of three sequential stages

that compute the following intermediate results: local gra-

dient orientation histograms, fragment similarity maps and

classification scores, as we describe next.

Local gradient orientation histograms. The first stage

computes the image local gradient orientation histograms

of I for spatial bins of size b × b corresponding to the bin

size used to describe fragments r ∈ R. We first compute

the gradient orientation and magnitude in each pixel. We

then compute for each of the 8 orientations θ ∈ ori a map

of orientation energy Eθ of size n×m. A single computed

gradient with orientation θ′ contributes its magnitude to the

two closest orientation bins weighted inversely by the dis-

tance from θ′ to their centers as in the original SIFT. We

then compute for each orientation energy map Eθ at each

location on a grid with stride s, the energy sum in a spatial

bin of size b × b. Since this is a simple un-weighted rect-

angular summation it can be efficiently implemented using

integral images. The output is a (n
s
× m

s
× 8) hyper-image

where each hyper-pixel is an 8 component gradient orien-

tation histogram of the corresponding spatial bin. The time

complexity of this stage is composed of the time it takes to

compute the gradients and image integrals (O(A)), and the

gradient histograms (O( A
s2
)).

Fragment similarity maps. In this stage we compute

for each fragment r ∈ R with bin size b its similarity with

the image in a dense set of locations. Given the position

x, y in the image region I , the similarity is the dot prod-

uct: ar(x, y) = SIFTb(r) · SIFTb(I([x, x+ |r|x], [y, y +
|r|y])). We compute this measure for positions x, y sam-

pled on a regular grid with stride s. For each fragment

we pre-compute SIFTb(r). Computing SIFTb(I([x, x +
|r|x], [y, y + |r|y])) is made efficient using the gradient ori-

entation histograms for bin size b computed in the previous

stage. It remains to get the pre-computed values for bin

centers located in the rectangle corresponding to image po-

sitions [x, x+ |r|x], [y, y + |r|y] from each orientation map

and concatenate them into one vector.

Denote by Rk the subset of fragments r ∈ R with SIFT

dimension k. The time complexity of this stage for all frag-

ments r ∈ Rk is O(k · |Rk| · A
s2
). We introduce a significant
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speedup at the first-level detection by computing ar(x, y)
for each image location (x, y) only for fragments r which

are the most similar to that image location, setting the score

for the rest to zero. This is possible using the following

observation: since a feature is later computed using only

several local maxima (Lr) of the fragment r similarity in

the entire detection window, setting positions in which r is

not maximal relative to other fragments to zero, will rarely

change Lr (and the feature value). To find the most similar

descriptors we search a KD-Ferns structure constructed in

advance for all descriptors of r ∈ Rk, with N << |Rk|
trees. In each search we use the N (not necessarily unique)

leafs returned by the KD-Ferns search, as the most similar

descriptors to that particular image location. The complex-

ity is then reduced to O(k ·N · A
s2
).

Classification scores. We compute classification scores

for each sub-window Is of size (wx,×wy) in image I po-

sitioned on a grid with stride s. The features f(Is) and

classification score C(Is) are computed as previously de-

scribed. For each part-based feature f relying on appear-

ance fragment r we compute Lr from the map ar. We

obtain a significant reduction of considered part locations

by using only |Lr| = K = 1 locally maximal fragment

detections per window instead of K = 5. This is a form

of spatial inhibition in which the strongest fragment detec-

tion suppresses the nearby detections, producing a much

sparser set of detections. The HoG-component features are

not based on fragments and are fast to compute directly

from the local gradient orientation histograms. An addi-

tional speedup is gained by using pre-stored lookup tables

for computing the geometric score N(l;μr, σI2×2)) of each

location l ∈ Lr. The computation can then be accomplished

in time O(|R|· A
s2
) for obtaining local detection maxima and

O(|F | · A
s2
) for computing the feature and classifier score.

In general |R| and |F | are of the same order, and the com-

plexity is therefore O(|F | · A
s2
).

Coarse and fine detection levels. Consider running

one-level detection, applied to all scales (coarse level) or

all regions (fine level), with a total pixel area of Â. By

adding the time complexity for each of the three stages

above we get: O(Â + Â · (k̄N + |F |) · 1

s2
) where k̄ =

averager∈R(k(r)) · |vals(k(r))|. To make the first level

faster we therefore use a larger stride s, shorter fragment

descriptors k̄ (by taking a larger spatial bin size b) and less

features |F | in the coarse classifier C1. The result is a coarse

(large s, b) first-level detection running at several orders

of magnitude faster than the second-level detection, which

uses a fine classifier C2 with parameters set to reach the best

classification accuracy. Each of the two classifiers C1, C2

used in the two corresponding detection levels is indepen-

dently trained on a set of cropped positive and negative ex-

amples {ITrain
s }. To train each classifier we compute for

each example f(ITrain
s ) for a large set of candidate fea-

tures {f} using all stages above applied to a single window.

We then use the exact same FS training procedure described

in [1] to select the features and learn their weights W .

4. Experimental Results

To qualitatively evaluate the proposed object detection

method we chose the pedestrian detection task due to the

high availability of benchmarks and tested methods [7, 3]

and due to the practical need for real-time detection. The

AFS pedestrian detector used throughout the following ex-

periments was trained on the INRIA pedestrians dataset [3].

Fine Classifier. We trained the second-level fine clas-

sifier C2 as following. An initial fragment pool consisting

of 40, 000 fragments was used, in sizes ranging from 8× 8
to 80 × 32 pixels. Half of the fragments (the smaller ones)

were represented using spatial bin size b = 4 pixels and the

other half using b = 8. The stride for detection was s2 = 4
pixels. In the training stage a total number of 500 features

of the different families were selected. We refer to this clas-

sifier as AccFeatSynth_L2.

Coarse classifier. The first-level coarse classifier C1

was trained with an initial pool of 20, 000 fragments all

with size 32 × 32 pixels and with a single bin size b = 16.

The stride for detection was s1 = 8. The trained classi-

fier is composed of 200 selected features belonging to all

families out of which 90 were part based and the rest are

HoG-components. To speedup the part-based feature com-

putation we used the KD-Fern algorithm which computes

the similarity of each fragment descriptor with only 25 can-

didates in each location. The details of the implementa-

tion of the KD-Fern are presented at the end of this section.

For an input image we create a pyramid with 5 full-octave

scales and 4 scales per octave. The full image AFS detection

method with both levels is denoted by AccFeatSynth

in the following evaluation graphs. We next present per-

window and full image evaluation of the AFS.

Per-window evaluation. We evaluate the final classifier

AccFeatSynth_L2 using the per-window evaluation on

the INRIA pedestrian dataset as specified in [3]. This type

of evaluation allows a fair one-to-one comparison of the per-

formance of the AFS with the original FS which is too slow

to run on full images (the full image FS results shown in [1]

use another classifier as a first level cascade and process

the returned windows only). The results are shown in fig-

ure 2(a). The AFS achieves 6.5% miss rate at 10−4 false

alarms per window (FPPW), which is a small decrease in

performance compared to the original FS (FeatSynth:

5.6% miss rate at 10−4 FPPW). Although there are several

methods better in the per-window evaluation, the failure of

per-window performance in predicting full-image detection

performance which is the true objective is discussed in de-

tail in [7]. This is also the case for the AFS which is ranked

highly in the full-image evaluation.
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(a) INRIA per-window (b) Caltech test-all (c) Caltech test Scale=Medium
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Figure 2. (a) INRIA dataset per-window results. Miss rate versus false positives per window. See [1] for details on the evaluated methods

(b) Results on the full Caltech pedestrian test dataset. In parenthesis: the log-average of miss rates between 10−2 and 100 false positives

per image (c-f) Caltech pedestrian test on several partitions. See [7] for more details on the dataset and the evaluated methods.

Full image evaluation. The Caltech pedestrian bench-

mark [7] is divided into 10 different sessions containing

movies taken from a moving vehicle. The test portion of

the set which we used for evaluation consists of sessions

S6 − S10. This is the largest available set for pedestrian

detection containing over 100, 000 frames of video with

155, 000 instances of pedestrians in difficult real world sce-

narios. To reach the full range of annotated pedestrians in

the dataset we used a ×3 up-scaling of the images.

We also evaluated the effect of using geometric context.

The AccFeatSynth+Geometry restricts the searched

locations using “weak-geometry” constraints. Using known

camera calibration and assumptions on the height of pedes-

trians it is possible to significantly narrow the space of win-

dow locations searched. This is not possible in the Cal-

tech pedestrian dataset since the positioning of the camera

in each session is slightly different. However, since camera

positions are roughly similar, we can obtain some bounds

on possible pedestrian locations in the image. We used the

Caltech pedestrian training set to gather statistics on the

height of each bounding box and its bottom y-axis image

position, and fitted piece-wise linear bounds to this distri-

bution. This allows us to narrow the scale search for bound-

ing boxes starting at specific image y-positions. We show

results with geometry (AccFeatSynth+Geometry) and

without it (AccFeatSynth).

Figure 2 summarizes the evaluation on the Caltech set

using the suggested methodology [7]. The evaluation uses

the PASCAL criteria of a minimal 0.5 ratio between the

intersection and the union of ground truth and detection

bounding boxes. The DET curves plot the miss rate as a

function of the number of false positives per image (fppi)

on a log-log scale. Curves are compared by computing

the log-average of the miss rates between 10−2 and 100

fppi. All other presented methods were also trained on the

INRIA training set allowing a fair comparison in terms of

available training data. The AccFeatSynth achieves

85% log-average miss rate on the entire set (figure 2(b))

comparable to 83% achieved by the state-of-the-art method

multiFtr+Motion [22] which combines several types

of features including motion cues. The methods corre-

sponding to the Deformable Part-based Model (DPM) are

denoted by Lat-SVM1 and Lat-SVM2 achieve 94% and

88% log-average miss rates respectively. As discussed

in [7], the medium range, defined in this set as pedestrians

occupying between 30 and 80 image pixels in height, is

the most relevant section of the dataset for the automotive

case. In this portion of the dataset (figure 2(c)) the

AccFeatSynth+Geometry is the second best perform-

ing method (78%), close to the leading one, ChnFtrs [6]

(77%), and the AccFeatSynth performs similarly

(79%). An interesting experiment is to test the sensitivity

to different levels of occlusions using the available anno-

tations: no occlusion, partially occluded (= 1% − 35%
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occlusion) and heavily occluded (= 35%−80% occlusion).

We expect multiple-part based methods to be less sensitive

to higher levels of occlusions compared with template based

methods or methods with only several parts. Indeed, the

AccFeatSynth,FeatSynth,AccFeatSynth+Geo.,

have a clear advantage for occluded pedestrians (ranked

in places 5, 3, 1 respectively), an advantage that gradually

decreases for partial occlusion and no occlusion. This

may suggest combining template-based methods for un-

occluded pedestrians with part-based methods for handling

occlusions.

Runtime evaluation. We measured the speed of our

detection method implemented in C++ on a Intel Core i7-

2600K@3.4Ghz computer with 8GB RAM similar in speed

to that used to measure the methods we compare to in [7].

Figure 3(a) shows the log-average miss rate versus running

time of all the methods tested on the Caltech dataset on

pedestrians over 100 pixels. In this setting our method pro-

cesses the original 640×480 without image up-scaling. The

AccFeatSynth is the fastest method, running in 105 mil-

liseconds per frame, close to 10 frames per second (fps),

with 38% log-average miss rate. The second setting, de-

fined as “reasonable” in [7] (pedestrians over 50 pixels

which are not no heavily occluded) requires us to up-scale

the image by a factor of 2. In this setting (Figure 3(b))

our method is the second fastest running at 1.72 fps with

65% log-average miss rate, preceded only by the FPDW [5]

method (2.67 fps), which is a template-based method for

pedestrian detection. In both settings our method pro-

vides an excellent accuracy and speed combination. Ta-

ble 1(right) provides a breakdown of the AFS average run-

time using a single thread on the 640 × 480 Caltech test

images. The running time for the Cascaded Deformable

Part-based method (c-DPM) [10] is not reported for the Cal-

tech dataset, and we therefore measure it ourselves using

the provided code (voc-release4, 1 component with

8 parts person model). The running times, summarized

in table 1(left) (rows 1 and 2, single-thread), show that

our method is ×4.5 faster than the provided implementa-

tion of the c-DPM, which is currently considered the fastest

part-based detection method implementation. Using geom-

etry runtime speed is further increased by ×2.6 on a sin-

gle thread (third row of table 1(left)). Our multi-thread im-

plementation (without geometry), independently processes

different scales in parallel achieving a X2.5 speedup with 4

threads (bottom row), and reaching the stated 105 ms/frame.

KD-Ferns evaluation. In the AFS coarse level the KD-

Ferns search is used to reduce for each image location the

number of candidate model fragments for which similar-

ity is computed. We construct a KD-Fern structure with

N = 25 trees from the coarse-level database of 90 fragment

descriptors, each of length 32. At detection time, the de-

scriptor at a single position serves as an input query descrip-

tor to the KD-Ferns algorithm, which returns the N clos-

est candidates according to the search algorithm described

in 2. N was chosen as the smallest number which main-

tains the performance when considering all candidates. We

did a separate experiment to compare the KD-Ferns with ex-

isting approximate nearest neighbor (ANN) algorithms and

with naive exhaustive search for searching our fragment de-

scriptor database. For this comparison, we use the {ε, δ}-
ANN task: find with probability δ a neighbor with euclid-

ian distance d which is not larger than (1 + ε) · d∗ where

d∗ is the distance to the true nearest neighbor. We compare

with two ANN algorithms: the hierarchical k-means tree al-

gorithm [14] and the randomized kd-trees algorithm [19].

These algorithms were shown to best perform on similar

tasks in [16], which also provides an efficient C++ imple-

mentation of the algorithms (FLANN) which we use here.

As the searched database we use our 90 fragment descrip-

tors set. The test query set consists of 50, 000 fragment

descriptors densely sampled from caltech dataset images,

as the ones used in our detection system. Using the KD-

Ferns algorithm constructed as described above, we achieve

a ε = 0.1, δ = 0.94 performance on the test set. Using a

separate set of training queries, we automatically tune the

optimal parameters (in terms of running time) of the kd-

trees and k-means tree algorithms for achieving this {ε, δ}-
approximation. The optimal randomized kd-trees uses 5
trees and the hierarchical k-means tree uses the “gonzales”

initialization and a branching factor of 6. In [16] an auto-

matic algorithm and parameter tuning is suggested, but for

this dataset this algorithm always chooses the naive exhaus-

tive search which is faster. Using profiling tools we ana-

lyzed why for our database these algorithms fail to run in

sub-linear time. Each of these algorithms does reduce the

number of query to database descriptor comparison, but has

additional cost in traversing the trees and updating priority

queues. For small databases (up to several hundred frag-

ment descriptors in our experiments), this additional cost is

higher than the saved cost of comparing descriptors. At test

time, we optimize the running time of these two algorithms

by limiting the number of visited leafs to the minimal num-

ber required to provide the {ε, δ}-approximation. The run

time test was conducted on a single thread, using the same

hardware described previously. The results are summarized

in table 1(Right): the KD-Fern algorithm is×2.4 faster than

exhaustive search, and ×8.6,×3.4 faster than the kd-trees

and k-means tree respectively. When used in the AFS for

candidate reduction the KD-Ferns provides a ×1.5 speedup

of the fragment similarity map stage.

5. conclusions

We presented the AFS, a method for multiple-part based

object detection running in real-time. We also introduce

KD-Ferns, a new ANN search algorithm particularly effi-

cient for searching small multi-dimensional datasets. In the
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Caltech run-time ms per frame

c-DPM (1 thread) 1164

AFS (1 thread) 252.1

AFS+Geo. (1 thread) 125

AFS (Multi-thread) 105

run time (ms) Level 1 Level 2 Both levels

Local orient histograms 96.1 13.7 109.8

Fragment similarity maps 9.7 41.9 51.6

Classification score 37.4 53.3 90.7

Total 143.2 108.9 252.1

ANN Method run time microsec/query

Randomized kd-trees 4.756

Hierarchical k-means tree 1.896

Exhaustive search (linear) 1.323

KD-Ferns 0.553

Table 1. Left. Running times in milliseconds per frame for Cascade DPM [10] (c-DPM) and for the Accelerated Feature Synthesis (AFS)

using single thread, geometry constraints and multi-thread. Middle. Runtime breakdown (average ms) of the AFS on Caltech 640 × 480
images, for each level in the cascade and each processing stage using a single thread. Right. ANN method run time comparison in

microseconds per query. Run time is averaged over 1000 measuring iterations and over 50K queries.
(a) Accuracy vs. runtime for pedestrians over 100 pixels (b) Accuracy vs. runtime for pedestrians over 50 pixels

Figure 3. Runtime evaluation Log-average miss rate versus the runtime of each detector on the caltech test 640 × 480 images for: (a)

pedestrians over 100 pixels, (b) pedestrians over 50 pixels. See [7] for details on comparison methodology and compared methods.

future we plan to extend the AFS by incorporating a multi-

component model and large scale training for pushing for-

ward state-of-the-art complex object detection.
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