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Abstract

In this paper, we propose a convex optimization frame-

work for simultaneous estimation of super-resolved depth

map and images from a single moving camera. The pixel

measurement error in 3D reconstruction is directly related

to the resolution of the images at hand. In turn, even a

small measurement error can cause significant errors in re-

constructing 3D scene structure or camera pose. There-

fore, enhancing image resolution can be an effective so-

lution for securing the accuracy as well as the resolution

of 3D reconstruction. In the proposed method, depth map

estimation and image super-resolution are formulated in a

single energy minimization framework with a convex func-

tion and solved efficiently by a first-order primal-dual al-

gorithm. Explicit inter-frame pixel correspondences are

not required for our super-resolution procedure, thus we

can avoid a huge computation time and obtain improved

depth map in the accuracy and resolution as well as high-

resolution images with reasonable time. The superiority of

our algorithm is demonstrated by presenting the improved

depth map accuracy, image super-resolution results, and

camera pose estimation.

1. Introduction

In 3D reconstruction with a single camera, the accuracy

of camera pose and scene structure estimation is highly af-

fected by the conditions of input images such as noise, con-

trast, blur, and resolution. In particular, image resolution is

an important factor for achieving sufficient accuracy of vari-

ous geometry-related computer vision algorithms including

3D reconstruction, since it influence the feature detection,

localization and matching. Even in an image of a scene,

the resolutions of objects vary according to their sizes and

depths. Note that small measurement error does not bring

large errors in object position and camera pose when an ob-

ject is close to the camera, while, it does significantly when

the object is far from the camera. Therefore, it is necessary

to enhance the image resolution to reduce the sensitivity to

the image measurement error and achieve reliable and ac-

curate 3D reconstruction.

Image super-resolution, the method for enhancing image

resolution, has two different approaches: reconstruction-

based approach and learning-based approach. The

reconstruction-based approach, which is related to our ap-

proach, infers the high-resolution pixel by merging multiple

observations of a target pixel. Multiple observations are ob-

tained by finding corresponding pixels through an image se-

quence. Therefore, finding accurate pixel-wise correspon-

dences is the key for the success of the reconstruction-based

super-resolution. For general scenes, these correspondences

can be obtained up to sub-pixel accuracy using optical flow

algorithms. However, optical flow in low-resolution images

usually do not provide enough accuracy in correspondences,

producing unsatisfactory results. Some iterative methods

[4, 7] alternately estimate a high-resolution image and pixel

correspondences, and show better results. However, these

methods usually take a very large amount of computation

time, and thus they are not appropriate for real-time appli-

cations such as visual odometry and SLAM.

Note that if we employ the information about the 3D

scene geometry, the super-resolution problem can be solved

more efficiently since we can directly use it for enhancing

the accuracy of the correspondences. That is, with esti-

mated camera poses, the problem of finding pairwise pixel

correspondences through an image sequence can be con-

verted into estimating the depth value of corresponding pix-

els. Although this converted problem has an error source re-

lated to the camera pose error, because it is casted in a much

lesser dimensional solution space than the original pairwise

correspondence problem, it can be solved much easily and

faster. Therefore, depth reconstruction and super-resolution

problems are interrelated and boost each other’s accuracy.

So, in this work, we combine the depth estimation and the

high-resolution image estimation in a unified framework,

and propose a simultaneous solution to both problems.
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In the proposed method, the depth estimation and image

super-resolution are formulated with a single convex energy

function, which consists of data term and regularization

term. The solution is estimated by convex optimization of

the energy function. Although both pixel correspondences

(re-parameterized by depth) and high-resolution image are

estimated, the computational cost is not so expensive com-

pared to the conventional high-resolution image estimation

only because we do not use alternating methods like EM.

Additionally, due to the simultaneous estimation of depth

and high-resolution image, the results of the two problems

are greatly enhanced.

2. Related works

In this section, we review some works that are simi-

lar to our work in combine 3D reconstruction and super-

resolution. Then, we discuss the works on the primal-dual

algorithm for 3D reconstruction or super-resolution.

2.1. 3D reconstruction and image super resolution

In [1, 9, 14, 5], the close relationship between super-

resolution and 3D scene structure is pointed out and their

cooperative solution is studied. In [9], the super-resolution

is formulated with the calibrated 3D geometry and solved

using the MAP-MRF framework. Occlusions are effec-

tively handled in their super-resolution method using depth

information, but super-resolution does not contribute to

depth map estimation in this method. In [14], a method

for increasing the accuracy of 3D video reconstruction us-

ing multiple static cameras is presented. The 3D video is

composed of texture images and 3D shapes, and increasing

their accuracy is achieved by simultaneous super-resolution

using MRF formulation and graph-cuts. High-quality tex-

ture and 3D reconstruction is presented in [5] where texture

and shape of a 3D model are alternately estimated with joint

energy functional. Compared to [5] our work has more chal-

lenging settings in which neither accurate camera motions

nor initial pixel correspondences are available.

The work most closely related to ours with respect to its

objective is [1]. The authors formulate a full frame super-

resolution problem combined with a depth map estimation

problem, and attempt to enhance the results of both prob-

lems. However, their solution is not fully simultaneous but

follows an EM-style alternating method instead. They fix

the current high-resolution image for the estimation of the

depth map, and vice versa. Graph-cut and iterated con-

ditional modes (ICM) are used for the depth and high-

resolution image estimation, respectively, for each iteration,

which result in an inevitably large computation cost. In con-

trast, we search the globally optimum solution directly with

a single convex energy function and achieve very fast opti-

mization speed for dense real-time 3D reconstruction.

2.2. Primal-dual algorithm for 3D reconstruction
and super-resolution

The formulation of our algorithm is based on the varia-

tional approach, especially the primal-dual algorithm [2, 3,

6]. The first-order primal-dual algorithm is a very effective

tool for convex variational problems due to its paralleliz-

able characteristics. The algorithm has been used in vari-

ous computer vision problems, with the wide use of parallel

computing acceleration such as general-purpose computing

on graphics processing units (GPGPU).

The first-order primal-dual algorithm has been applied

recently for the 3D reconstruction and super-resolution

problems. In [10] and [13], a dense 3D reconstruction

is studied and its real-time implementations are demon-

strated. They used conventional energy functions consist-

ing of photometric consistency-based data term and L1 or

Huber norm-based smoothness term, but achieved a break-

through performance in computation time using the primal-

dual algorithm combined with the GPGPU implementation.

In [15], the first-order primal-dual algorithm is applied

to the super-resolution problem. The reconstruction-based

super-resolution is formulated by image downsampling,

blurring, and warping, and then the latent high-resolution

image is estimated with the Huber norm regularization.

This method achieves a fast computation of high-quality

super-resolution comparable to other methods, but has cer-

tain limitations such that highly accurate initial image warp-

ing is required and no updating procedure is involved in es-

timating the super-resolution.

Our novel combined 3D reconstruction and super-

resolution algorithm is also formulated in the first-order

primal-dual framework. However, unlike [10] and [13],

the proposed super-resolution combined framework enables

more accurate depth map estimation with respect to its res-

olution. Our image super-resolution is also accelerated by

finding pixel correspondences in a depth domain instead of

optical flows between images with the help of camera ge-

ometry obtained from the 3D reconstruction.

3. Model

In this work, we propose a new energy function for a

simultaneous estimation of depth map and high-resolution

image. The inputs are M × N size low-resolution image

sequence Ij ∈ R
MN and their corresponding camera poses

Pj ∈ SE(3) with j ∈ {0, ..., J}. Let g ∈ R
s2MN be

the latent super-resolution image with the gray scale, and

d ∈ R
s2MN be the latent inverse depth map, where s is the

predefined upscale factor. The solution of g and d is esti-

mated with respect to the reference view P0. The energy

function to solve this problem is composed of the data cost

Edata based on the photometric constancy and the regular-

ization cost Ereg for smoothing undesirable artifacts. With
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Figure 1. The relationship between the low-resolution input se-
quence Ij and the super-resolution image g, induced by the depth
map d: The photometric consistency should hold for Ij and the
simulated low-resolution image D ∗B ∗ g.

the parameter λ which controls the degree of regularization,

the energy function has the form E(g,d) = Ereg+λEdata.

The super-resolution image g can also be the color, but we

use the gray scale notation here for simplicity and show the

color image results in the experiment section.

3.1. Data cost

We start with the relationship between the high-

resolution image g for the reference image I0 and the low-

resolution image Ij from an adjacent view. With the cam-

era internal parameter K including the focal length and

the principal point, the reprojected 3D position X of pixel

(x, y) in I0 with the inverse depth d(x, y) by the refer-

ence camera P0 is given by X = 1
d(x,y)K

−1 · (x, y, 1)�,

and its projection to the adjacent view with Pj is calcu-

lated as h(KPj,0
1

d(x,y)K
−1 · (x, y, 1)�), where Pj,0 =

PjP
−1
0 and h is the dehomogenization function such that

h((x, y, z)�) = (x/z, y/z). Fig. 1 illustrates these rela-

tionships.

For notational simplicity, the non-bold characters g and

d are used for the pixel-wise values g(x, y) and d(x, y), re-

spectively, and their corresponding dual variables later. We

define the image warping W(Ij ,d), which transforms the

image Ij to the reference image I0, using the pixel projec-

tion and reprojection discussed above,

W(Ij ,d)(x, y) = Ij(h(KPj,0
1

d
K−1 · (x, y, 1)�)). (1)

Then, by the photometric consistency between the reference

image and the adjacent image, the equation

I0(x, y) = Ij(h(KPj,0
1

d
K−1·(x, y, 1)�)) =W(Ij ,d)(x, y)

(2)

holds for all j ∈ {0, ..., J} if the inverse depth d has the

exact value. By incorporating the image resolution degra-

dation model, the equation

(D ∗B ∗ g)(x, y) = I0(x, y) =W(Ij ,d)(x, y) (3)

also holds for all j ∈ {0, ..., J}. Here, D and B are the

downsampling and the blurring operator, respectively. From

the equality in Eq. (3), we can set our objective which finds

an optimum value of g and d, such that

argmin
g,d

J∑
j=0

‖D ∗B ∗ g − {W(Ij ,d)}‖1. (4)

To find the optimized value of d through an iterative up-

date, we apply the first-order Taylor expansion toW(Ij ,d)
to approximate a change in imageW(Ij ,d) with respect to

a small change of depth at the initial value d0,

W(Ij ,d) � W(Ij ,d0) +
∂

∂d
W(Ij ,d)

∣∣∣∣
d=d0

· (d− d0).

(5)

Then, our objective (4) can be rewritten as a linearized form,

argmin
g,d

J∑
j=0

‖D ∗B ∗g−{W(Ij ,d0)+ Ijd · (d−d0)}‖1,

(6)

where Ijd is the simplified notation of the image derivative
∂
∂dW(Ij ,d), which can be calculated pixel-wise using the

chain-rule,

Ijd =
∂W(Ij ,d0)

∂d
=

∂W(Ij ,d0)

∂x

∂x

∂d
+

∂W(Ij ,d0)

∂y

∂y

∂d
.

(7)

The blur kernel B is predefined with the simple Gaus-

sian blur model, with the standard deviation s and the ker-

nel size of (s−1)1/2. To handle the downsampling operator

D efficiently, we upscale the low-resolution input images to

the high-resolution size sM × sN as Ij ∈ R
MN → Îj ∈

R
s2MN using bicubic interpolation and perform the opti-

mization process with the resized image space Rs2MN . The

resulting data cost then has the form,

Edata =

∫
X,Y

ρ(g,d)

=

∫
X,Y

J∑
j=0

‖B ∗ g− {W(Îj ,d0) + Îjd(d− d0)}‖1.

(8)

Fig. 2 shows an example of the convexity of data cost

ρ(g,d) for different image points. The shape of the cost

function is obviously convex, but the shape of the function

varies from image point to point according to the image gra-

dient. In a low texture region, the data cost is dominated by

the high-resolution intensity g than the depth d. Therefore,

regularization is required to get a more plausible solution

for depth d.
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Figure 2. The shape of data cost ρ(g,d) for textured (left) and
untextured (right) region.

3.2. Regularization

For image intensity g and inverse depth d, we use a

Huber norm based regularization to get a smoothed and

discontinuity-preserved result. The Huber norm for g is de-

fined by following pixel-wise function:

‖∇g‖αg
(x, y) =

⎧⎨
⎩
|∇g|2

2αg
, if|∇g| ≤ αg

|∇g| −
αg

2 , if|∇g| > αg

, (9)

where ∇ is the linear operator that computes derivatives of

x and y direction. The Huber norm for ‖d‖αd
is defined in

the same way. In our implementation, we set αg = αd =
0.001.

By combining the data cost (8) and the regularization (9),

we get our objective energy function E(g,d),

E(g,d) =

∫
X,Y

‖∇g‖αg
+ ‖∇d‖αd

+ λρ(g,d). (10)

In the next section, we describe the solution of this energy

function.

4. Solution

4.1. Initial depth estimation

In the data cost (8), the first-order Taylor expansion,

which can only handle a small update for g, and d is ap-

plied. This step requires the starting point of optimization

to be close to the global optimum. The initial value of g can

be easily obtained by upscaling the input image at reference

view using simple bicubic interpolation. However, the ini-

tial value of d should be estimated using the low-resolution

input sequence.

The cost function for initial depth estimation is easily

obtained from Eq. (8) and (10) by replacing B ∗ g and

Îj with the low-resolution images I0 and Ij , respectively,

and removing the regularization on g. The resulting energy

function for low-resolution depth map ď is

E(ď) =

∫
X,Y

‖ď‖αd
+ λ

J∑
j=1

‖I0 − {W(Ij , ď0)

+Ij ď · (ď− ď0)}‖1.

(11)

The equation (11) is actually a conventional formulation

for depth map estimation. The optimization of this energy

function is almost similar to the optimization of Eq. (10),

which will be explained below, so the optimization of (11)

is skipped here. The limitation of a small update also holds

for Eq. (11). Thus, a coarse-to-fine approach is used to ap-

proach the global optimum of d gradually by starting from

an arbitrary initial solution, e.g., filled with 1.0. The depth

result obtained at the finest level is upscaled using bicubic

interpolation and is fed to the optimization of (10) as an

initial value.

4.2. High-resolution image and depth estimation

Now we will describe a solution of Eq. (10) based on

the first-order primal-dual optimization algorithm. By in-

terpreting our objective function (10) as the primal-dual for-

mulation, we can rewrite it as a generic saddle point prob-

lem with the dual variables p and q, which corresponds to

g and d, respectively:

min
g,d

max
p,q
〈∇g,p〉+ 〈∇d,q〉 + λ‖ρ(g,d)‖1

−δP(p)−
αg

2
‖p‖22 − δQ(q)−

αd

2
‖q‖22,

(12)

where 〈·, ·〉 denotes the scalar product, and the functions

δP and δQ are the indicator functions given as δP(p) ={
0, if ‖p‖∞ ≤ 1

∞, if else.
and δQ(q) =

{
0, if ‖q‖∞ ≤ 1

∞, if else.
,

respectively.

This problem can be optimized through the iteration,

(p,q)n+1 = Rp,q

(
(p,q)n + σ∇(ḡ, d̄)n

)
(g,d)n+1 = Rg,d

(
(g,d)n − τ∇∗(p̄, q̄)n

)
(ḡ, d̄)n+1 = 2(g,d)n+1 − (ḡ, d̄)n.

(13)

where the operator∇∗, the conjugate of ∇ as∇∗ = − div,

computes the divergence [2], and ḡ and d̄ are the interme-

diate variables for the convergence of algorithm. The initial

value (g,d)0 is obtained from Section 4.1, and (p,q)0 is set

to zero. The operatorsRp,q andRp,q are the resolvent op-

erators that search lower energy values using subgradients.

τ and σ are constants that control the convergence of primal

and dual variable, respectively. The resolvent operators will

be discussed in more detail.

Our regularization term (10) is a typical form used in [2].

Thus, the resolvent operator of the dual variables is a pixel-

wise projection

Rp,q(p, q) =

(
p

max(1, |p|)
,

q

max(1, |q|)

)
. (14)

On the other hand, the data cost has a difference with the

standard form in previous primal-dual algorithm applica-

tions. This difference comes from the summation of abso-

lute value in the data cost for image sequence. Since we use
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a L1 norm for the difference between two images, there are

some critical (non-differentiable) points in their summation.

Therefore, these non-differentiability should be handled in

the optimization procedure. The minimization of similar

cost function is introduced in [13], but the solution space

of [13] is for the depth map only, so the minimization can

be efficiently achieved by evaluating and sorting all criti-

cal points. On the other hand, the solution space of our

problem is composed of depth map and image intensity, so

there are J2 critical points. Searching them is not straight-

forward, and thus optimization by evaluating and sorting

critical points is inefficient. Instead, the general gradient

descent and critical point searching are combined to accel-

erate the minimization procedure.

Let per-image data cost ‖ρj(g,d)‖1 = ‖B ∗ g −

{W(Îj,d0)+ Îjd · (d−d0)}‖1, then we can write ρ(g,d)
as

ρ(g,d) =

J∑
j=0

‖ρj(g,d)‖1 =

J∑
j=0

sgn(ρj(g,d)) · ρj(g,d),

(15)

where sgn(·) is a signum function. Then the derivatives of

(15) are calculated as

∂ρ(g,d) =

J∑
j=0

sgn(ρj(g,d)) ·

(
1,−Îj

�

d

)
. (16)

We divide the domain of resolvent operator based on the

cost ρ and the magnitude of gradient ‖∂ρ‖22, and apply the

gradient descent search and critical point search,

Rg,d(g, d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(g, d)− τλ
(
∂ρ(g, d)

)
,

if ρ(g, d) > τλ‖∂ρ(g, d)‖22

(g, d)−
ρ∗

j (g,d)·∂ρ
∗

j (g,d)

‖∂ρj∗ (g,d)‖
2

2

,

if ρ(g, d) < τλ‖∂ρ(g, d)‖22

, (17)

where

j∗ = argmin
{j|ρj(g,d)·sgn(∇ρ(g,d))>0}

‖ρj(g, d)‖1. (18)

The operation of the second case in (17) is searching the

closest critical point with a lower cost value by (18), and

moving the variable to this critical point. By iterating Eq.

(13) and checking the amount of changes in total cost (10),

we can terminate the iteration and can get the final results

of g and d.

5. Implementation of 3D Reconstruction

5.1. Camera localization

To use the proposed depth map estimation and super-

resolution algorithm in the single camera 3D reconstruction

system, the camera localization algorithm needs to be incor-

porated. Before the depth map is estimated for an initial few

frames, we rely on the sparse point feature-based SLAM for

camera localization. After the initial depth map is created,

the image registration method similar to the 2.5D image reg-

istration in [10] is used between the input frame and the pre-

warped image from the estimated high-resolution image and

depth map to estimate a new camera pose PJ+1 as:

PJ+1 =argmax
P

∫
X,Y

‖g(x, y)−

IJ+1(h(KPP−1
0

1

d
K−1 · (x, y, 1)�)‖.

(19)

The optimization of this function can be achieved by pre-

dicting PJ+1 using the motion dynamics and iteratively

approaching to optimum value using the gradient-based

method.

There are advantages to estimating a camera pose using

high-resolution image g. The image registration can be ro-

bust to image degradation such as image noise, downsam-

pling, and blurring. Since the input images are the degraded

version of a scene by those effects, the recorded images are

different from the real appearance of the scene. The esti-

mated image g can be regarded as the most probable appear-

ance of a real scene, because it is estimated from a number

of instance images.

5.2. Map management

Our method estimates an inverse depth map instead of

3D points of sparse features or full 3D surface; hence, the

map does not increase continuously. The depth map is re-

constructed for some selected keyframes, and the relation-

ship between depth maps is calculated and stored as a rela-

tive representation [8]. Although the depth map-based rep-

resentation does not provide a visually attractive 3D surface,

it has the advantage that the depth map merging step which

takes large amount of computation is not required in this

representation.

When the overlap between the reconstructed depth map

and the current input image goes below threshold, then we

perform a new depth map and high-resolution image esti-

mation. The overlapped depth map is propagated to new

depth estimation and used as an initial value. The relative

pose between the previous keyframe and the new keyframe

is stored, and the current camera pose is set to identity. The

camera poses for subsequent frames are estimated with re-

spect to the current keyframe’s pose.

6. Experiments

We implement the proposed algorithm using NVIDIA’s

CUDA for GPGPU parallelization, and test the implemen-

tation using 3.3GHz quad core processor and GeForce GTX
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Figure 3. Depth map estimation and super-resolution results on the synthesized low-resolution image sequences Bull, Poster, Sawtooth,
and Venus in [11]. (a) Original images. (b) Synthesized low-resolution images. (c) Super resolution images. (d) Ground truth depth. (e)
Depth map without super-resolution. (f) Depth map with super-resolution.

�����"�#���"#������ ����$��#��� ��" �%������ ����&����� ���%�� ����'�����(������"

������)��*%�+�,�������� �!����)��-� ��,��������� �������#%��*%�+�,�������� �������#%��-� ��,���
Figure 4. Comparison of super-resolution results (× 4) on the synthesized Venus sequence with other super-resolution methods.

570 which has 480 stream processors. The algorithm per-

formance is evaluated by three factors; super-resolution re-

sult, depth map estimation result, and registration error for

camera localization. We evaluate our algorithm by perform-

ing a quantitative analysis using synthetic data and a feasi-

bility test using real image sequence.

6.1. Results on simulated data

We use images and depth maps from [11], which have

no occlusion information. For a given high-resolution im-

age and its ground truth depth map from a reference view,

the low-resolution image set is synthesized by warping and

downsampling the high-resolution image. The virtual cam-

era motion is simulated with a combination of arbitrary

translation and rotation, and 20 low-resolution images of

one-fourth scale (for example, 109 × 96 size for Venus

image data) are obtained. The super-resolution image and

depth map are estimated with their original scale, and their

errors with respect to ground truth are calculated.

Fig. 3 shows our results on the synthetic data. The low-

resolution images and depth maps Fig. 3-(b, e) are obtained

by bicubic interpolation of the input images and initial depth

maps. From the results of the proposed algorithm shown

in Fig. 3-(c, f), we can see the improved depth map re-
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Table 1. PSNR (in dB), SSIM (Structural similarity, closer to 1 is better), and computation time (in second) of various super-resolution
algorithm.

Image Bicubic [12] [16] Seq. Flow+SR Seq. Depth+SR Sim. Flow+SR Sim. Depth+SR

Bull
PSNR 15.69 16.08 16.59 16.78 16.76 16.82 16.83
SSIM 0.77 0.7762 0.79 0.78 0.78 0.79 0.79

Poster
PSNR 13.71 12.69 13.98 13.65 13.67 13.85 13.87
SSIM 0.54 0.57 0.57 0.56 0.56 0.57 0.57

Sawtooth
PSNR 12.67 12.63 13.17 12.91 12.86 13.20 13.19
SSIM 0.66 0.67 0.69 0.67 0.67 0.69 0.69

Venus
PSNR 15.14 14.75 15.66 15.74 15.74 15.87 15.86
SSIM 0.71 0.71 0.72 0.72 0.72 0.73 0.73

Avg. comp. time - 22.93 1.21 19.05 1.625 18.26 0.97

sult as well as super-resolution image. In the closed-up

region, the low-resolution input image has a degraded tex-

ture which makes depth estimation difficult. By recovering

high-resolution texture using super-resolution, we can also

recover the correct depth map.

Various methods for the super-resolution are tested to an-

alyze the accuracy and efficiency of our algorithm. To test

the contribution of simultaneous estimation, we replace our

simultaneous formulation with the sequential method. In

the sequential algorithm, the energy function (10) is mini-

mized with a fixed g obtained from the bicubic interpolation

of reference view, and then g is estimated with the obtained

d fixed. The result of sequential method is shown in Fig. 4-

(f), where we can see the limitation of sequential methods

in the quantitative analysis in Table 1.

The efficiency of depth based formulation for super-

resolution is also verified by comparing the results and

computation time with the pairwise correspondence (opti-

cal flow) based formulation in which the optical flow vec-

tors between the reference view and the other view are es-

timated simultaneously. The objective has a form similar to

Eq. (6) as follow:

argmin
g,v1,...,vJ

J∑
j=0

‖D∗B∗g−{W(Ij,vj)+Ij
�
vj
·(vj−vj0)}‖1,

(20)

whereW(Ij ,vj) is the image warping by flow vj , and Ijvj

is the image derivative in the x and y direction, respectively.

The results are shown in Fig. 4-(g), together with its se-

quential estimation version in Fig. 4-(e). Fig. 4-(g) shows

very similar accuracy with the proposed algorithm shown in

Fig. 4-(h), but it and its sequential version take much more

computation time due to their high dimensional (2× J +1)

solution space. Table 1 summarizes the PSNR, SSIM, and

computation time for each algorithm, together with the re-

sults from other high-performance super-resolution algo-

rithms [12] and [16] whose executables are available for

public.

6.2. Results on real sequence

Different from the synthesized data, our real data have

camera pose errors because it is estimated from the real im-

age sequence. Therefore, the effect of camera pose error in
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Figure 7. Plot of registration error for camera localization with
high-resolution and low-resolution image and depth map for out-
door sequence.

our algorithm can be analyzed using a real data set. A wide

FOV camera is used for the effective 3D reconstruction, and

the radial distortion is removed in advance. Fig. 5 shows the

reconstructed depth map and super-resolution images, and

Fig. 6 shows the comparison of various super-resolution al-

gorithms previously discussed in the simulated data experi-

ments. The results indicate that the camera pose error is not

an important error factor for super-resolution.

6.3. Camera localization performance

We test an improvement of the camera localization per-

formance, measured by registration error from Eq. (19)

through the image sequence. For a fair comparison, the

original input images are used in the registration error calcu-

lation, because super-resolution images can reduce the pho-

tometric errors by themselves. Thus, only the depth map

and the camera pose can affect the registration error, and the

system which has a consistent depth map and camera trajec-

tory through the whole sequence will have a lower average

registration error. The plot of registration error for indoor

sequence is shown in Fig. 7. The average per-pixel regis-

tration error (with intensity interval [0, 255]) with the high-

resolution estimation is 1.430, whereas it is 1.752 for the

camera localization with low-resolution images and depth

map.

7. Conclusions

A novel optimization framework for simultaneous super-

resolution and depth map estimation is proposed. Two

closely related problems are formulated by a single con-

vex problem using the camera geometry and solved effi-
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Figure 5. Depth map estimation and super-resolution results on the real image sequences. (a) Input images. (b) Super resolution images.
(c) Depth map without super-resolution. (d) Depth map with super-resolution.
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Figure 6. Comparison of super-resolution results on the real image sequences.

ciently by the first-order primal-dual algorithm. Our si-

multaneous solution gives results comparable to other high-

performance algorithms for each problem, but takes much

less computation time. Thus, the proposed framework can

be applied to real-time 3D reconstruction systems for im-

proving their accuracy. In our future work, more sophis-

ticated super-resolution models, including occlusion, and

geometry-aware downsampling, and their optimization will

be discussed. We are also interested in investigating the use

of depth sensors to facilitate better depth solution.
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