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Abstract

Motion blur frequently occurs in dense 3D reconstruc-

tion using a single moving camera, and it degrades the qual-

ity of the 3D reconstruction. To handle motion blur caused

by rapid camera shakes, we propose a blur-aware depth re-

construction method, which utilizes a pixel correspondence

that is obtained by considering the effect of motion blur.

Motion blur is dependent on 3D geometry, thus parameter-

izing blurred appearance of images with scene depth given

camera motion is possible and a depth map can be accu-

rately estimated from the blur-considered pixel correspon-

dence. The estimated depth is then converted into pixel-wise

blur kernels, and non-uniform motion blur is easily removed

with low computational cost. The obtained blur kernel is

depth-dependent, thus it effectively addresses scene-depth

variation, which is a challenging problem in conventional

non-uniform deblurring methods.

1. Introduction

Motion blur in images is an undesirable effect in vari-

ous computer vision algorithms. In particular, motion blur

is a critical issue in the correspondence problem because

motion blur destroys the structure details of images. Conse-

quently, numerous algorithms that rely on pixel correspon-

dence, such as optical flow, are severely affected by motion

blur.

The pixel correspondence is also important problem in

the image-based 3D reconstruction algorithms, e.g., stereo

reconstruction and structure from motion. Among these

reconstruction algorithms, dense reconstruction algorithms

[6, 15, 16, 22], which reconstruct dense 3D structures from

a single moving camera, frequently suffer from severe mo-

tion blur due to camera shakes because the camera keeps

moving by human hands or mobile robots. To estimate

primitive depth maps for full surface reconstruction, pixel

correspondences for two or more images have to be esti-
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Figure 1. Depth reconstruction from five blurry images: (a) Sam-

ple from real input images. (b) Result of the conventional varia-

tional depth reconstruction. (c) Result of the proposed blur-aware

depth reconstruction. (d) Deblurred image by using the estimated

depth-dependent blur kernel.

mated with high accuracy. However, motion blur degrades

the resolution of input images in a blurred direction, and

classical dense correspondence algorithms based on bright-

ness or gradient constancy fail to obtain correct pixel corre-

spondences.

To handle motion blur for 3D reconstruction, deblurring

methods, particularly video deblurring [3, 13, 21, 24], can

be used by recovering input images. However, most high-

quality deblurring methods are inadequate for fast dense re-

construction systems, because these methods typically en-

tail high computational cost but cannot handle scene-depth

variation in blur kernel estimation. Therefore, we propose a

blur-handling method for 3D reconstruction, in which blur

kernel and depth of pixel are simultaneously estimated by

adopting their dependency on each other.

A blur kernel from camera shake can be interpreted as a

trajectory of a projected 3D scene point by camera motion
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during exposure time. Thus, the pixel-wise blur kernel can

be determined in a closed form when camera motion, expo-

sure time, and scene depth are given. In other words, esti-

mating the scene depth is equivalent to estimating the pixel-

wise blur kernel when camera motion and exposure time

are known. These values are available in general dense re-

construction systems, where exposure time can be obtained

from camera hardware and camera motion can be estimated

by camera localization method.

In the proposed method, camera motion is estimated by

image registration method between a reference image and

an warped observed image using a reconstructed depth map,

similarly to other 3D reconstruction algorithms [16]. Al-

though the estimated camera motion has errors, the pro-

posed method can generate a more reliable depth map than

the conventional depth reconstruction methods that do not

consider motion blur, as compared in Fig.1 (b, c). The esti-

mated depth map can be converted into pixel-wise blur ker-

nels by using 3D geometry, and non-uniform deblurring can

then be easily achieved, as shown in Fig.1 (d). The proposed

blur kernel estimation explicitly considers scene depth, thus

it can provide improved deblurring results compared with

previous image or video deblurring methods that disregard

scene depth variation.

1.1. Related Work

Motion blur from camera shakes, rather than from object

motion, has been solved in many studies by considering

camera geometry. However, few methods utilize both

camera geometry and scene geometry, i.e., scene depth.

This means that most methods that utilize camera geometry

disregard the effect of scene depth variation. We briefly

review related studies on blur kernel estimation utilizing

either camera geometry or scene geometry.

Camera motion and motion blur. The relationship be-

tween the camera geometry and motion blur has been stud-

ied in multiple image deblurring [2, 13] and single image

deblurring [7, 8, 25] to address a method for removing non-

uniform motion blur attributed to camera shakes. In mul-

tiple image deblurring, camera motion is parameterized by

homography under the assumption of constant scene depth,

and blur kernels are derived from the estimated homogra-

phies. In single image deblurring, non-uniform motion blur

is represented by a finite number of basis functions that

related to camera motion or homography, and blur kernel

is solved efficiently with respect to these basis functions.

However, the above methods do not consider the effect of

scene depth variation, which is an important factor that con-

tribute to the non-uniformity of motion blur.

Joshi et al. [11] explicitly utilize a camera motion by

estimating the camera motion from inertial measurement

sensors. Their camera is equipped with accelerometers

and gyroscopes, and six degrees of freedom (DOF) camera

motion is estimated from the sensors and it generates

accurate non-uniform blur kernels. While typical image

only-based blur estimation methods have limited range of

measurable kernel size because they utilize image priors

which are valid only for a small region, [11] can handle

large size of blur kernels with the aid of additional sensors.

The limitation of this method is that it also assumes uniform

scene depth. Thus, this method is valid only for negligible

depth variation or limited types of camera motion, such as

pure rotation.

Scene depth and motion blur. To address the depth vari-

ation in blur kernel estimation, Xu and Jia [26] combined

depth reconstruction by using stereopsis with blur kernel

estimation. Since motion blur in stereo image pair is al-

most identical, a scene depth is easily estimated by clas-

sical stereo matching algorithm and the result is used in

their depth-dependent blur kernel estimation. Their depth-

dependent blur kernel estimation can be extended to sin-

gle image deblurring, however, camera motion is limited to

translation in single image cases.

In-depth studies on the relationship between scene depth

and motion blur were conducted in [5, 17], which are

closely related to our proposed method. These methods

use two or more images in estimating scene depth and

recovering deblurred images. However, these methods

differ from our method; [5] assumes sideways translational

camera motion unlike the proposed method which deals

with arbitrary camera motion, a reference unblurred image

is required in [17] while all input images can be blurred in

our method.

The proposed method considers both camera motion and

the effect of scene depth variation in handling motion blur.

Although the proposed method has limited applications be-

cause it requires multiple input images for camera motion

estimation in 3D reconstruction, the method has advantages

of both handling large blur size in [11] and handling depth

variation in [26] without requiring additional inertial sen-

sors nor a stereo camera.

2. Blur-Aware Depth Reconstruction

We convert two image blur kernel estimation problem

into a depth estimation problem by utilizing camera motion

obtained from camera localization algorithm in 3D recon-

struction. This section explains the two image motion blur

estimation strategy and then presents a method that converts

the blur kernel estimation problem into a depth estimation

problem. Finally, the two image depth reconstruction pro-

cess will be extended to multiple image depth reconstruc-

tion.

274274274



����

��

��

���� �
�
	
 �� �
� � ��� � ��


�

�

�

� ��� � �� ��
�
� �� �
�
�	


�

����� �
��������������������

Figure 2. Commutative property of blur kernels. Top and middle:

Synthesized input images In−1 and In, the estimated blur kernels

represented by motion vectors, and their commutative convolution

results. Bottom: Unblurred reference image, ground truth mo-

tion vectors of In−1 with a color map, and the root-mean-square

(RMS) error betweenW−1

0,n−1
(In−1)⊗Kn andW−1

0,n
(In)⊗Kn−1

scaled by 10.

2.1. Motion blur estimation from two images

Estimation of motion blur kernels from two images uti-

lizes the idea that applying the blur kernel of each image to

the other image results in the same cumulatively blurred im-

ages [19, 20]. Let In−1 and In be two consecutive blurred

images in an observed sequence, which have latent un-

blurred images Ln−1 and Ln, as well as blur kernels Kn−1

and Kn, respectively. The blurred image by the pixel-wise

blur kernel Kn(x, y) is represented as follows:

In(x, y) = (Ln ⊗Kn(x, y))(x, y), (1)

where ⊗ denotes the convolution operator that corresponds

to blur operation, and (x, y) represents a pixel coordinate.

We omit the pixel coordinate notation (x, y) for images In
and Ln as well as the blur kernel Kn for notational sim-

plicity. For the two blur kernels Kn−1 and Kn as well as

the reference unblurred image L0, the following equality

should hold by the commutative property of convolution:

L0 ⊗Kn−1 ⊗Kn = L0 ⊗Kn ⊗Kn−1, (2)

and it gives the approximation between two frames In−1

and In with small changes:

W−1
0,n−1(In−1)⊗Kn ≈ W

−1
0,n(In)⊗Kn−1, (3)

where W0,n is the image warping function such that Ln =
W0,n(L0). An example of estimated blur kernels and their
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Figure 3. Proposed motion blur model: The colored dots represent

the pixel positions of a 3D scene point X for each time n, and the

intensities at these positions are represented by L. The convolution

of pixel intensities along with the thick arrows corresponds to the

blurred kernelsK which results in the blurred intensity I . The blur

kernel K corresponds to a part of pixel motion v in an exposure

time.

convolution results are illustrated in Fig. 2. Based on Eq.

(3), we can derive the objective function to determine the

correct values of Kn−1 and Kn.

There are four unknowns,W0,n−1,W0,n,Kn−1, andKn

in Eq. (3), but the dependency of blur kernel on the warp-

ing functions can reduce the number of actual unknowns.

Let vn = [un, vn]
� be the 2D motion vector update that

corresponds to the warping function Wn−1,n, such that

Ln = Wn−1,n(Ln−1) ≡ Ln−1(x + un, y + vn). Without

motion blur, the warped image Ln from Ln−1 by a small

motion vn can be approximated by the second-order expan-

sion [14]:

Ln =Wn−1,n(Ln−1)

≈ Ln−1 + JLn−1
vn +

1

2
v
�
nHLn−1

vn,
(4)

where the matrices JLn−1
and HLn−1

represent the Jaco-

bian and Hessian matrices, respectively, for the image Ln−1

with respect to the x and y axes.

When motion blur is considered in the image warping

between two images as shown in Fig. 3, the blurred and

warped image In from Ln−1 is approximated with addi-

tional coefficients as follows [12, 18]:

In =Wn−1,n(Ln−1)⊗Kn

≈ Ln−1 + aJLn−1
vn +

1

2
bv�nHLn−1

vn.
(5)

The coefficients a and b are determined by the exposure

time τ ,

a =
τo + τc
2τc

, b =
τ2c + τcτo + τ2o

3τ2c
, (6)

where τo and τc denote open and close time of the camera

shutter, respectively. Time τ = 0 in capturing the image In
corresponds to time τ = τc in capturing the previous image

In−1. If the exposure time is infinitesimal, then τo = τc
holds, and Eq. (5) is equivalent to Eq. (4). Reference [18]

provides the detailed derivation of this approximation.
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As shown in Eq. (5), which represents the parametriza-
tion of the blurred image I by using motion vector v, the
objective function that satisfies condition (3) can be formu-
lated by using only the motion vectors vn−1 and vn. First
we formulate the objective function from Eq. (3),

argmin
Wn−1,Wn,Kn−1,Kn

∥
∥W

−1

0,n−1(In−1)⊗Kn −W
−1

0,n(In)⊗Kn−1

∥
∥
1
.

(7)

By substituting Eq. (5) into Eq. (7) for both In−1 and In,

we can obtain the objective function with respect to vn−1

and vn as follows:

argmin
vn−1,vn

‖(In−1 + aJIn−1
vn)

− (In + (a− 1)JInvn−1 − av�n−1HInvn−1)‖1.

(8)

The detailed derivation of Eq. (8) is presented in the Ap-

pendix. The first term in Eq. (8) approximates the blurred

appearance of In−1 by the blur kernel of In, and the sec-

ond term approximates the warped and blurred appearance

of In, by warping W−1
n−1,n and the blur kernel of In−1, re-

spectively.

2.2. Motion blur estimation to depth estimation

Although the objective function is reduced to determin-

ing pixel-wise motion vectors vn−1 and vn, this problem

remains ill-posed because only one pixel correspondence is

given for the quadratic equation (8) of two variables. There-

fore, an additional constraint has to be incorporated to elim-

inate the ambiguities in vn−1 and vn. The ambiguities in

motion or blur kernel estimation given two images has been

addressed in several previous works [10, 19, 20]. For ex-

ample, the directions of the blur kernels of two images are

assumed to be known [20]; otherwise, additional input im-

ages are used to refine the motion vectors of the two blurry

images [19]. The proposed method utilizes a camera mo-

tion and exposure time as additional constraints to resolve

the ambiguity in motion estimation. The use of camera mo-

tion has a similar advantage as that of using known blur

directions in [20]. However, the assumption of known cam-

era motion is more general than the assumption of known

blur direction because the former can address non-uniform

blur kernels and any type of pixel motion, such as curved

pixel motion caused by camera rotation.

When camera motion and exposure time are known, the

estimation of pixel-wise blur kernels from two images is

converted into an estimation of pixel-wise depth value. In

the proposed method, exposure time τo and τc are provided

by camera hardware, and camera pose at τ = τc is obtained

from the registration-based camera localization algorithm.

Let Pτ
n ∈ SE(3) be the six DOF camera pose at time τ

for the nth image, which is represented by the special Eu-

clidean group in three dimensions, and let d be the inverse

depth of pixel (the pixel coordinate notation is also omitted

for simplicity) with respect to the unblurred reference im-

age L0. We utilize inverse depth, which is a reciprocal of

depth, because inverse depth has better convergence prop-

erty in estimation than the original depth [4].

The 2D motion path of the projected pixel point (xτ
n, y

τ
n)

at time τ corresponding to inverse depth d is represented as

follows:

(xτ
n, y

τ
n) = h(K((Pτ

n)
−1 ·X)),

X =
1

d
K
−1 · (x, y, 1)�,

(9)

where h(·) is the dehomogenization function, such that

h((x, y, z)�) = (x/z, y/z), K is the camera intrinsic ma-

trix, and X is a 3D scene point corresponding to pixel (x, y)
at the reference image. The product of inverse camera pose

P
−1
t and the 3D scene point X is defined as follows:

(Pτ
n)
−1 ·X = (Rτ

n)
�
X− (Rτ

n)
�
T

τ
n, (10)

where R
τ
n and T

τ
n are camera rotation and translation, re-

spectively. Eq. (9) shows that the blur kernel K in Eq. (3)

can be calculated by using 3D geometric quantities only.

Thus, the kernel estimation problem is reformulated into an

estimation problem of inverse depth d.

Eq. (9) shows that the pixel motions vn−1 =
(xτc

n−1, y
τc
n−1) − (xτc

n−2, y
τc
n−2) and vn = (xτc

n , yτcn ) −
(xτc

n−1, y
τc
n−1) are functions of inverse depth d. The objec-

tive function with respect to d can be derived by substitut-

ing Eq. (9) into the original objective function (8). To solve

the objective function by means of the convex optimization

framework, we linearize the relationship between the pixel

motions vn−1, vn and a small update value of depth Δd

using the Jacobian matrices Jvn−1
=

[
∂vn−1

∂d

∂un−1

∂d

]�
and

Jvn
=

[
∂vn
∂d

∂un

∂d

]�
as:

vn−1 = Jvn−1
Δd = Jvn−1

(d− d̄),

vn = Jvn
Δd = Jvn

(d− d̄).
(11)

where d̄ is an initial estimate of d. The objective function

with respect to d is derived from Eq. (8) and Eq. (11) as

follows:

argmin
d

‖In−1 − In + {aJIn−1
Jvn

+ (1− a)JInJvn−1
}

· (d− d̄) + {aJ�
vn−1

HInJvn−1
}(d− d̄)2‖1.

(12)

Therefore, the motion blur estimation problem is now rep-

resented by the depth estimation problem.

2.3. Depth reconstruction using multiple images

The proposed two view depth reconstruction can be eas-

ily extended to multiple view depth reconstruction in a man-

ner similar to that of other multiple image reconstruction
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methods [16, 22]. The use of multiple images provides

more accurate depth results by mitigating the effect of im-

age noise. The objective function for the depth reconstruc-

tion of multiple images is defined as the minimization of

the sum of the differences between the first image I1 and

the other images In considering their blurred appearances.

Given that Eq. (12) is valid only with consecutive im-

age indices n − 1 and n, we should modify Eq. (12) to

define the differences between the first image I1 and other

images In for n �= 2. To this end, we warp the first im-

age I1 to simulate the (n − 1)th image In−1, such that

I ′n−1 = W1,n−1(I1). The warping functionW1,n−1 is cal-

culated by projecting and reprojecting the pixel of the first

image by using Eq. (9). We can then replace In−1 in Eq.

(12) with I ′n−1 and replace vn−1 with v1. By summing the

differences of all image pairs, we can obtain the following

objective function for multiple image depth reconstruction:

argmin
d

N∑
n=2

‖I ′n−1 − In + {aJI′
n−1
Jvn

+ (1− a)JInJv1
}

· (d− d̄) + {aJ�
v1
HInJv1

}(d− d̄)2‖1.

(13)

Considering that the image warping W1,n−1 using Eq.

(9) requires estimated depth, we first estimate the initial

depth by using two consecutive images I1 and I2 with

N = 2. We then gradually increase N to improve the depth

accuracy. This procedure is combined with the coarse-to-

fine approach described in the next section.

3. Variational Optimization for Depth Recon-

struction

To solve Eq. (13) for all image pixels, we define the en-

ergy function comprising the data and regularization terms

with a scale parameter λ, such that E = Ereg + λEdata.

From Eq. (13), the pixel-wise data cost ρ(d, w) for the data

term Edata =
∑
∀x,y ρ(d, w) is defined as follows:

ρ(d, w) =
1

N − 1

N∑
n=2

‖I ′n−1 − In + {aJI′
n−1
Jvn

+ (1 − a)

·JInJv1
}(d− d̄) + {aJ�

v1
HInJv1

}(d− d̄)2 + βw‖1,

(14)

where w and β are the temporal illumination change term

and its coefficient, respectively, which are widely used in

classical optical flow formulations. For pixel noise and tex-

tureless regions we use the Huber regularization [9] given

by

Ereg(d, w) =
∑
∀x,y

|∇d|αd
+ |∇w|αw

, (15)

where ∇ denotes the gradient operator, and |∇|α denotes

the Huber norm defined by

|∇|α =

{
|∇|2

2α , if |∇| ≤ α

|∇| − α
2 , if |∇| > α

. (16)

The overall energy function for solving the depth map d has

the form,

E =
∑
∀x,y

|∇d|αd
+ |∇w|αw

+ λρ(d, w). (17)

We utilize the fixed values of parametersαd = αw = 0.005,

β = 0.002, and vary the parameter λ depending on a scene.

The minimization of Eq. (17) is effectively achieved by

using the first-order primal-dual algorithm [1], which is de-

signed for the optimization of continuous variable convex

functions. Given its fast convergence property, the algo-

rithm is widely used in various applications that require

fast optimization performance. The optimization procedure

starts with an arbitrary initial depth d̄ and gradually updates

d by using the coarse-to-fine warping scheme described in

Alg. 1. The coarse-to-fine warping scheme is employed be-

cause solving Eqs. (12) or (13) by using the optimization

method is valid only for the small update Δd. The Jacobian

matrix Jvn
and the Hessian matrix Hvn

are calculated for

instance of every warping in outer iteration, but not for ev-

ery update of latent variables d and w to save computational

cost. The method for building blur kernel K from depth d
will be described in Section 4.

Algorithm 1 Warping and updating for depth reconstruc-

tion

1: Initialization: d = d̄
2: repeat

3: Resize images and depth map to finer level

4: for n = 2 to N do

5: I ′n−1 ←W1,n−1(I1)⊗Kn

6: In ←W−1
n−1,n(In)⊗K1

7: end for

8: repeat

9: Update depth d by solving Eq. (12)

10: until Hit max iteration

11: Update initial value: d̄← d
12: until Reach the finest level

Image warping by approximation using the Jacobian and

Hessian matrices limits the warping to a simple 2D trans-

lation, but the intermediate warping and blurring in the

coarse-to-fine warping scheme (line 5 and 6 in Alg. 1) en-

ables handling of a curved motion path caused by cam-

era rotation. Consequently, the proposed depth-based blur

model can address more general motion blur compared with

[19], where the blur kernel was assumed to be linear.
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4. Deblurring by using Estimated Depth

This section describes building blur kernels from the es-

timated depth for deconvolution-based image deblurring.

Similar to the projective motion path model in [23], we rep-

resent the blur kernel Kn at pixel (x, y) as a set of pixel

positions {(xτi , yτi), i ∈ 0, ...,M}, which corresponds to

the motion path of pixel (x, y) during exposure time as well

as the weight kn(x
τi , yτi) for each pixel position. The su-

perscript τi denotes the M number of uniformly discretized

intervals for exposure time τ , such that τi = τo +
τc−τo
M

i.
The blurred image In can then be represented by

In(x, y) =

M∑
i=0

L(xτi , yτi)k(xτi , yτi)n. (18)

The weight of blur kernel should satisfy the constraint∑M
i=0 kn(x

τi , yτi) = 1 to preserve the image intensity, thus

we have kn(x
τi , yτi) = 1/(M+1) for all i. To calculate an

intermediate pixel position (xτi , yτi) by using Eq. (9), we

interpolate an intermediate camera pose Pτi
n from the input

camera poses P
τc
n−1 and P

τc
n on the manifold of SE(3) as

follows:

P
τi
n = exp(

1

τc
(τo

τc − τo
M

i)ΔP) ·Pτc
n−1, (19)

where ΔP is the camera motion between two input images,

such that ΔP = log(Pτc
n · (P

τc
n−1)

−1).
The blur kernel generated by this method is used for

image warping in depth reconstruction as well as deblur-

ring after obtaining the final depth map. Notably, deblur-

ring is not essential for our 3D reconstruction, and we can

optionally deblur input images for further computer vision

tasks. By using the estimated kernel Kn for each pixel,

Richardson-Lucy deconvolution with total variation regu-

larization is performed similarly to [23]. Given that the

pixel’s motion path in images for 3D reconstruction is un-

complicated, a small number of Richardson-Lucy iterations

(less than 50) are sufficient to obtain satisfactory deblurring

results.

5. Experiments

In the experiment, the analysis of several important pa-

rameters is initially presented, then the comparative eval-

uations of the proposed method with other methods with

respect to depth reconstruction, optical flow estimation, and

deblurring then follow. The results of proposed method are

obtained from gray scale images.

5.1. Analysis of the initial depth value

The initial value of depth for the proposed depth re-

construction is important, because the depth estimation is

solved by variational optimization combined with a coarse-

to-fine scheme. Therefore, the optimization performance
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Figure 4. Depth maps for synthesized image set by using different

initial depth values d̄ at the coarsest level. The arbitrary initial

values yield almost the similar depth results.
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Figure 5. Improvement of depth map accuracy for real sequence

by increasing the number of input blurry images.

is tested by varying the initial value of depth, as shown in

Fig. 4. The initial value d̄ is uniformly assigned to all pixels

at the coarsest level. We can verify that the optimization is

not excessively sensitive to the initial value and converges

to similar results for an arbitrary initial depth value only if

the initial depth is not extremely far from the true value.

5.2. Analysis of the number of input images

The performance gain achieved by multiple real images

is shown in Fig. 5. The use of multiple images generally

provides a more accurate depth map for real noisy data.

However, this is invalid when motion blur occurs in the im-

age sequence. With motion blur, finding the pixel corre-

spondences becomes more difficult as the number of image

increases because motion blur varies for each image. Mean-

while, the proposed blur-handled depth reconstruction pro-

vides a more accurate depth map as the number of input

images increases.

5.3. Comparison of depth reconstruction results

The blur-robustness of the proposed algorithm is verified

by comparing the depth reconstruction results with the con-

ventional variational depth reconstruction implemented by

removing the blur-handling parts of the proposed method.

First, we test each method for unblurred sequence to show

that each implementation works correctly as shown in Fig. 6

(a, c). We then test the methods for blurred sequence to

compare their robustness to motion blur, as shown in Fig. 6
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Figure 6. Depth reconstruction for synthetic and real sequences respectively comprises six unblurred (a, c) and blurred (b, d) images. From

top to bottom: Input images, variational depth reconstruction without blur handling, and the proposed blur-robust reconstruction.
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Figure 7. Comparison of optical flow and deblurring results. (a)

Input image and ground truth motion vector of synthetic data and

two input images of real data. (b) Blur-robust optical flow method

in [19]. (c) Proposed method.

(b, d). The RMS error of the estimated depth are measured

for the synthesized images and presented in the figure.

5.4. Comparison of optical flow results

The effectiveness of the proposed blur handling is

demonstrated by comparing the optical flow results, i.e.,

vectorvn, with those of other blur-robust method for optical

flow. We convert the estimated depth into motion vectors by

using Eq. (9) and then compare the motion vectors with the

results of the blur-robust optical flow method in [19] to eval-

uate the pixel correspondence accuracy between images. As

described in Section 2.2, two additional images are used in

[19] as additional information, whereas camera motion is

used in our method. The optical flow results are compared

in Fig. 7 with the average endpoint error (EPE), and deblur-

ring results from the estimated motion vectors are shown

to verify the optical flow accuracy. By re-parameterizing

the optical flow to depth, the proposed method is found to

be capable of handling more complex shape of motion blur

and thus achieves improved results.

5.5. Comparison of deblurring results

Finally, the deblurring results for real image data by the

proposed method and the multiple image deblurring method

from [24] are presented in Fig. 8. The input image has a sig-

nificant depth variations in a vertical direction, which can-

not be addressed by conventional video deblurring methods.

Thus, the input blurry image is partially recovered. On the

other hand, the proposed method successfully removes the

motion blur by using the depth-aware blur kernels.

6. Conclusion

The blur-robust 3D reconstruction method was presented

in this paper. The approximation technique for blurred

appearance of image was successfully combined with the

depth map estimation framework based on the variational

optimization. Our geometry-combined blur estimation en-

abled handling of scene depth variation and large blur ker-

nels, which are difficult in traditional image-only-based de-

blurring methods. The proposed method can be applied to

not only multiple image 3D reconstruction, but also video

deblurring only if the camera is calibrated for its intrinsic

parameters.
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Figure 8. Deblurring results for real image: (a) Sample image from input sequence. (b) Result of [24]. (c) Result of the proposed method.

Appendix

Derivation of Eq. (8). First we applyW0,n to both sides of

Eq. (3) for simplification, which yields

W0,n(W
−1
0,n−1(In−1))⊗Kn =W0,n(W

−1
0,n(In))⊗Kn−1

⇒Wn−1,n(In−1)⊗Kn = In ⊗Kn−1.

(20)

From the approximation of Eq. (5) to the left-hand side of

Eq. (20) up to the first-order, we have

Wn−1,n(In−1)⊗Kn ≈ In−1 + aJIn−1
vn, (21)

Similarly, applying Eq. (5) to the right-hand side of Eq.

(20) yields

In ⊗Kn−1 =W−1
n−2,n−1(Wn−2,n−1(In)⊗Kn−1)

≈ W−1
n−2,n−1(In + aJInvn−1),

(22)

and by Eq. (4), we have

W−1
n−2,n−1(In + aJInvn−1)

≈(In + aJInvn−1)− J(In+aJIn
vn−1)vn−1

=In + aJInvn−1 − (JIn + av�n−1HInvn−1)

=In + (a− 1)JInvn−1 − av�n−1HInvn−1.

(23)

By subtracting the two terms, we have the objective func-

tion as presented in Eq. (8).
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