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Abstract

Our goal is to detect humans and estimate their 2D pose
in single images. In particular, handling cases of partial
visibility where some limbs may be occluded or one person
is partially occluding another.

Two standard, but disparate, approaches have developed
in the field: the first is the part based approach for layout
type problems, involving optimising an articulated pictorial
structure; the second is the pixel based approach for image
labelling involving optimising a random field graph defined
on the image.

Our novel contribution is a formulation for pose estima-
tion which combines these two models in a principled way
in one optimisation problem and thereby inherits the advan-
tages of both of them. Inference on this joint model finds the
set of instances of persons in an image, the location of their
joints, and a pixel-wise body part labelling.

We achieve near or state of the art results on standard
human pose data sets, and demonstrate the correct estima-
tion for cases of self-occlusion, person overlap and image
truncation.

1. Introduction
The objective of this work is to detect and estimate the

pose of humans in single images. This problem has a long
history in computer vision, and a dominant method is tree-
structured pictorial structures [11, 12, 13, 16, 31]. These
proceed by searching for the most probable location of body
parts, estimating a per pixel cost for each part, and com-
bining the costs using dynamic programming over the tree
structure graph. Whilst pictorial structures have enabled
significant progress they have several problems, including:
(a) failing when there is more than one person in the scene,
if those people are overlapping; (b) over-counting of evi-
dence [26] – pixels can contribute more than once to the
cost function and hence multiple parts can explain the same
image area; (c) failing to model the background, resulting
in evidence being ignored as only pixels which are covered
by the model contribute to the overall probability of a given

limb configuration; (d) failing due to self or other types of
occlusion.

Recent work has attempted to overcome these prob-
lems, for example by enforcing consistency of ensem-
bles of parts [15, 23, 29] or eschewing the pictorial-
structure formulation by directly learning poselets for hu-
man parts tightly clustered in both appearance and configu-
ration spaces [3]. However although these approaches allow
for more accurate localization of joints, and deal to some ex-
tent with occlusion, they do not deal with problems (a) and
(c). In order to deal with (c), and also with self-occlusion,
the work of [6] introduced a weak background model com-
bined with a tight model of the human foreground. The
resulting method is one of the first to deal convincingly
with the problem of self occlusion and clearly demonstrates
the benefit of a background model. Others have proposed
modelling dependencies and relationships between multi-
ple people [9], which addresses problem (a), and methods
for efficiently sampling from pictorial structures [6, 11, 19].

We take inspiration from these approaches and also
leverage recent work on semantic segmentation [18], in
particular where the semantic classes correspond to human
body parts (arms, torso, etc) [24], to make the following
contributions: (i) a global energy formulation that combines
the advantages of the flexible mixtures-of-parts model [31]
with those of pixel-wise labelling methods [17, 24, 25] to
explain the background and foreground together (section 2);
(ii) an efficient algorithm for proposing candidate human
poses in an image, ensuring both coverage and diversity
(section 3); and (iii) a formulation of the energy potentials
that internally performs non-maxima suppression, induces
layout consistent solutions, and can deal with partial occlu-
sion or self-occlusion (section 4).

The outcome is the set of instances of persons in an im-
age with the location of their joints, and the pixel-wise la-
belling (segmentation) of each of their body parts. Our work
is a continuation of the theme of combining segmentation
and human pose estimation [5, 12, 28].
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Figure 1. The output of each component of the energy for an optimal Solution. The mixture-of-parts model is used to produce the set of
candidates. This figure shows two candidates that end up in the final solution, their HOG masks, body-part masks, instance color models,
the result of the texture component and final instance and body-part segmentation. Candidates consist of 16 joints (some of them could be
invisible) and the pixel-wise labelling of 11 body-part labels and background. The body-part color coding is described in Figure 2. Best
viewed in color.

2. A joint pixel-wise and part-wise model
In this section we introduce and overview the model,

which is specified by a single energy function.
Our goal is three fold: to assign every pixel to a body

part of an instance of a person or to the background; for
each instance, to estimate the body layout in terms of joint
positions and body parts and specify their visibility; and
thirdly, to determine the number of instances. The first goal
is close to the traditional labelling problem of semantic seg-
mentation, the second is close to the pose estimation which
typically uses tree-structured pictorial structures.

In more detail, the method should predict a set of in-
stances (subset of the set of candidates), consisting of their
pose (joint positions and body parts). Correspondingly, a
pixel in the image x is labelled by the instance and the
body part that overlaps it. The notation xj = (xinstj , xpartj )

indicates that the pixel xj has two labels: one, xinstj ∈
M ∪ {B}, labelling the instance number from the set of
estimated instances M or background B, and the other
xpartj ∈ Lpart ∪ {B}, labelling which part from the set
of parts Lpart or background B overlaps it.

The model is fitted by minimizing an energy consisting
of four components:

E(M,x) = EHOG(M,xinst) + λMASKEMASK(M,x)

+ λCOLECOL(M,xinst) + λTEXETEX(xpart).

(1)

where λTEX , λMASK , λCOL are scalar weights.
We describe the components and their computation in

detail below (section 4), but for the moment first illustrate
their roles. The HOG componentEHOG(.) models the con-
tribution of a pixel to an instance of an articulated model.
For a non-overlapping set of models this component corre-

sponds to the negative sum of responses of a tree-structured
mixture-of-parts pictorial structure model of [31]. The
Body Part Mask component EMASK(.) links the model
with its body-part labelling: given a set of joint positions
from an instance of the model M , the body part mask is a
(soft) assignment of pixels to mattes of the body parts, e.g.
specifying the position and width of the arm. The Color
Model component ECOL(.) is a Gaussian mixture color
model for the foreground and background built by thresh-
olding the body part masks for the model. Up to this point
the formulation is similar to PoseCut [5]. The final term, the
Texture componentETEX(.), is a semantic segmentation of
the image into body parts and background. It is computed
independently of the instances and contributes information
on the appearance and shape of body parts. optimization
labels the pixels (with the instances and parts) and takes
account of the costs from the four terms. The outputs of
the components are illustrated in figure 1, where it can be
seen how the texture component can contribute additional
information over that provided by the instance segmenta-
tion from the color model.

The optimization proceeds by first proposing a number,
N , of candidates for the instances using the mixture-of-
parts model of [31]. Some of these candidates will survive
and appear in the final solution, and the ones that do will
have led to the minimal energy when all the components
and interactions between instances have been taken into ac-
count (during inference).

In the following section we describe the method for gen-
erating the candidate instances, and then give the details of
the component computation and inference method in sec-
tion 4.
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3. Efficiently Generating Pose Candidates
We would like to find a set of candidates – local optima,

such that they cover all the persons in the image and all
their possible poses. A proposal algorithm for this task has
already been given in [19] for the mixture-of-parts model
which iteratively estimates the (approximately) next best
solution by examining the max-margin tables and then re-
stricting the search space for the next iteration. However,
the complexity of this procedure grows at least linearly with
the number of estimated candidates. In practice if there are
e.g. 5 people present, to capture all possible poses a large
number, N , of candidates is required (N = 200 in our ex-
periments) and the running time of this method is too large.
In contrast we propose a method which takes only slightly
more time to find a large number of candidates than to find
just the best one per root node.

In [19], two poses are considered different if at least
one part is sufficiently far from the corresponding part of
the other pose. We take an alternative approach; because
the relative location and orientation of joints is modelled in
the mixture-of-parts model using T types of joints and the
search space for a given type is restricted only to a small
neighbourhood, we relax the matching constraint and con-
sider two detections different if they either differ in scale,
at least one part-type, or their root-nodes are sufficiently far
from each other. To increase the chance of capturing all
instances we restrict ourselves to the search for the best so-
lutions with at most K candidates (K = 8 here) with the
same root node.

Typically the inference methods for graphs with the
structure of a tree are solved using dynamic program-
ming [31]. Starting from the leaf nodes going towards the
root node for each location and type of the part the best lo-
cations and types of its children are estimated. To find the
best K candidates differing by at least one type of a child,
we need to estimate for each location and type of the part
its top K constellation (types and locations) of all its chil-
dren. In the first step we find the best location of a child
for each type of a child, and take the top K solutions for
this location and type. This step is only approximate; these
K solutions are only a good approximation of the real top
K solutions, which can be obtained by merging all lists for
each location given the type of a child. Thus, we get T lists
(one for each type) with K ordered solutions each. These
lists are merged and top K of these TK solutions are kept.
This can be done in O((K + T ) log T ) by iteratively esti-
mating the next top solution and keeping the set of T lists
ordered by their top solution. In the second step the parent
has to merge its response for each type with the top K so-
lutions of each child. Thus, we need to find the top K sums
from K lists of K items, taking one item from each list.
This can be solved [2] in O(PcK logK), where Pc is the
number of children of the parent. Each node remembers the

back tracks by remembering the indexes of the subtrees of
each child without any need of copying whole trees of so-
lutions. The final set of candidates is obtained by merging
whole trees of solutions of suppressed root nodes.

In practice for T = 5 and K = 8 (as used in the ex-
periments) the running time of brute force search for the
best location of a child of each type is much more expen-
sive (especially in case of the sub-cell accuracy) than the
sorting and merging steps together and the algorithm takes
only 1.5× more than the search for just one best solution per
root node. This is mainly because the pairwise deformation
costs are calculated on the fly and not kept in memory.

To obtain also candidates with hidden parts, the set of
types is altered with an additional hidden type, correspond-
ing to the invisible joint whose children are also hidden. Its
response is a constant and takes no deformation cost. Using
this hidden type allows for candidates which have certain
joints either outside of an image, occluded by another ob-
ject or person, or self-occluded.

4. Implementation Details
In this section we describe how each component of

the model energy (1) is computed, and then the inference
method for the model.

4.1. The HOG component

Our formulation is built upon the state-of-the-art
mixture-of-parts model [31]. The classifier takes the form:

H(P, t) =
∑
p∈P

∑
c∈p

w(p,tp)
c · h(c) +R(P, t), (2)

where h(c) is the HOG feature vector for a cell c, P is the
set of joints (parts) p, t is the vector of the types of joints
modelling orientations, where for each part p and its type
(orientation) tp there is a different weight vector w(p,tp),
and R(P, t) is the layout consistency term, modelling the
likelihood of combinations of types and their relative loca-
tions. The weight vectors w(p,tp) and the parameters of the
layout consistency term are learnt using a linear SVM.

Our goal here is to transform the cell-wise mixture-of-
parts model to a pixel-wise formulation. We do this in two
stages, by first rewriting the form of (2), and then using this
to define the pixel wise energy. By extending the definition
of the weight vectors as w(p,tp)

c = 0 if c /∈ p the classifier
response can be rewritten as:

H(P, t) =
∑

c∈
∪

P

wP,t
c · h(c) + bP,t, (3)

where wP,t
c =

∑
p∈P w

(p,tp)
c and bP,t = R(P, t). Thus,

given the set of latent parameters (locations and types of
joints) the form of the classifier is the same as the form of
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a standard HOG detector [7]. Each candidate model m is
defined by the locations and types of parts m = (P, t) and
has its own associated HOG weight vector wm and bias bm.

We now define the pixel-wise cost in terms of (3) as

EHOG(xinst) =
∑
j∈V

ψHOG(xinstj )+
∑

m∈M
(−|cm|bm)δ(m)

(4)
where V are the pixels, and δ(m) indicates the presence
of a model m in the labelling (i.e. δ(m) = 1 if ∃j ∈
V, s.t. xinstj = m ) and δ(m) = 0 otherwise), |cm| is the
size of the HOG cell in pixels and

ψHOG(xinstj ) =

{
−wm

cm(j) · h(c
m(j)) if xinstj = m ∈ M

0 otherwise,
(5)

where cm(j) is the corresponding cell of a model m for
a pixel j. Note, the first term of (4) transfers from HOG
cells of the candidate models to the pixels they cover, and
the second term adds a contribution to the cost if the model
covers any pixel in the image.

To understand the design of these costs, note that for an
unoccluded person this energy is −|cm|(wm ·h(cm)+bm).
We restrict the weights to be non-negative, so a candidate
will appear in the solution if the mixture-of-parts classifier
response is positive w.r.t. the bias bm (note, the bias is nega-
tive in general as it has to prevent false negative human de-
tections across the image). Indeed, the HOG model can be
interpreted as the scalar product for each cell, wc ·h(c), pro-
viding evidence for the detection hypothesis, and the bias
b as the threshold needed to accept the hypothesis. The
evidence should not be taken into account from occluded
parts of the object, and thus a significantly occluded object
would be unable to provide sufficient evidence, larger than
the threshold. The restriction, that each pixel may belong to
at most one candidate, leads to a non-maxima suppression
of the candidates.

4.2. The Body part mask component

Given the location of the joints, it is possible to predict
the body part segmentation to a good approximation. We
achieve this by learning a classifier to predict whether each
pixel belongs to each body part given the location of all
joints. The output is a soft body-part likelihood for each
model m. For a given model m the multi-class classi-
fier Hm

part(j) predicts the likelihood that each pixel j has
a body-part label b ∈ {B} ∪ Lpart.

The intuitive way to incorporate this potential in the ran-
dom field framework would be to add it as a simple unary
potential, assigning a cost Hm

B (j)−Hm
xpart
j

(j) if the pixel j

takes a model label m and the body-part label xpartj . How-
ever, that would lead to an undesired bias, caused by each
pixel, where the most probable label is not background.

Suppose we use only the HOG and body part mask compo-
nents. Because the mask is independent of the image data, it
should not change the ordering of the HOG candidates. In
the other words, if the labelling agrees with the body-part
mask prediction, the energy for each candidate should be 0.
Thus, we need to balance the bias of all foreground pixels
and the unbiased potential takes the form:

EMASK(M,x) =
∑
j∈V

(Hm
B (j)−Hm

xpart
j

(j))+
∑

m∈M
C(m)δ(m),

(6)
where C(m) is defined as:

C(m) =
∑
i∈V

max
p∈{B}∪Lpart

(Hm
p (j)−Hm

B (j)). (7)

If the final labelling agrees with the most probable body
part mask, then it sums up to zero; if some pixels do not
agree, they are penalized based on the difference of body-
part likelihoods for the estimated and present label.

The classifier is based on the standard multi-class boost-
ing approach of [27], where the classes here corresponds
to the set of body-part label and background. The feature
vector computed for each training pixel i consists of signed
distances d(i) in x and y from each joint, and signed dis-
tances from each limb and axis of a limb. All distances are
relative to the size of the object determined by the longest
limb (all limbs are about the same size). Because the joints
(and limbs) may be occluded, we double the number of the
decision stumps d(i) ≥ θ and d(i) < θ used as the weak
features, where both conditions are by definition not sat-
isfied for an occluded part or limb. For the weak classi-
fier, the tests include, e.g. is there a shoulder further than θ
from this point, and is there a shoulder closer than θ from
this point, so that the algorithm can distinguish between the
cases, when the shoulder is visible and when it is not. In
the evaluation stage, the classifier predicts the likelihood of
a pixel taking each body-part label or background.

4.3. The Color component

Color component ensures the solutions, where the color
models of the foreground and the background are different,
are preferred. It is self-trained for each instance using Gaus-
sian mixture model [21] initialised using the mask estimated
as in section 4.1. The associated energy takes the form:

ECOL(M,x) =
∑
j∈V

ψCOL(xinstj ) +
∑

m∈M

C(m)δ(m),

(8)
where

ψCOL(xinstj ) =

{
− log

pm
j (F )

pm
j (B) if xinstj = m ∈ M

0 otherwise,
(9)

pmj (F ) and pmj (B) are the probabilities of fore-
ground respectively background, and C(m) =
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∑
j∈V max(log(pmj (B) − log(pmj (F )), 0) is the balancing

term, removing the self-training bias as in section 4.1.

4.4. The Texture component

The Texture component consists of potentials used for
the semantic segmentation problem, the multi-feature Tex-
tonBoost [17, 25], the body-part super-pixel terms as in [17]
and the pair-wise term is the usual contrast dependent Potts
model. Even though the performance of this component
is not very high on its own, it can reliable distinguish be-
tween torso and arms and resolve several ambiguities of the
mixture-of-parts model.

It consists of potentials used for the semantic segmenta-
tion problem: the multi-feature TextonBoost [17, 25], the
body-part super-pixel terms as in [17] and the pair-wise
term is the usual contrast dependent Potts model.

4.5. Inference

We wish to minimize the energy (1) in order to deter-
mine: the set of instances M with their layout (joints,
parts), as well as a pixel-wise labelling of the image ac-
cording to whether the pixels belong to a part (e.g. lower
arm of instance 1) or background. The optimization cannot
be carried out directly, and we proceed in two stages: first,
finding the number and joint position of the instances; and
second, with this restricted set of label possibilities, deter-
mining the best pixel labelling (i.e. assigning the pixels to
parts or background).

In the first stage we have N human pose candidates (ob-
tained as described in section 3). For each candidate we
compute the potentials EHOG, EMASK and ECOL. The
potential ETEX is independent of the candidates and is
evaluated once for the entire image. We start by labelling
everything as background and iteratively adding the next
best candidate. The quality of each candidate is determined
by calculating the energy after α-expansion [4] over the 11
body-part labels and background (i.e. 12 labels in total).
The first stage is complete once no more instances can be
added to the solution without increasing its energy.

In the second stage the optimization is over all the se-
lected candidates to refine the solution. Again, α-expansion
is used, but now over a remaining label set of size 1 + 11×
the number of selected candidates. The α-expansion is re-
peated unil convergence. This procedure can determine par-
tially overlapping instances and self-occlusion.

5. Model Evaluation

We performed experiments on two standard pose esti-
mation data sets – the Buffy [12] and Image Parse [31] data
sets.

5.1. Data and annotation

The Buffy data set. We use the standard Buffy data set
of [12] consisting of 748 images from episodes s5e2 – s5e6,
with episode s5e3 used for training, episode s5e4 for vali-
dation and episodes s5e2, s5e5 and s5e6 for testing.

For the purposes of training and evaluation, we add the
following additional annotation to each image: all visi-
ble locations of 16 joints (head-top, head-bottom, left/right
shoulders, elbows, wrists, waists, hips, knees and ankles)
for all instances in an image; and a pixel-wise instance and
12-label body part (background, head including neck and
hair, left/right torso, upper arms, forearms, thighs, lower
legs) segmentations, i.e. the joints, instance and body-part
pixel-wise labellings are provided for all images. Largely
occluded persons are marked as hard and ignored for the
evaluation. Figure 2 shows samples with this annotation.

Model training and execution. Each individual compo-
nent of the model (the HOG, texture, color and body part
mask potentials) is trained separately using this annotation.
The HOG component is trained using the approach of [31],
the texture component using the learning methods described
in [17], the color model using a mixture of 10 Gaussians as
in [21], and body part mask using the method described in
section 4.1. The top 200 candidates are used in the experi-
ments, 8 at most with the same scale and the same root node.
The weights λTEX , λCOL and λMASK are hand-tuned on
the validation set using grid search. With these parameters
the optimisation takes approximately 4 minutes per image
on one 3 GHz core.

The Image Parse data set. The Image Parse [31] data
sets consist of 305 images; each containing only one person
and a labelling of 14 joints. 100 images are used for training
and the others for testing. The data set does not contain
pixel-wise labellings, so the texture and foreground mask
potentials trained on the Buffy data set are also used for this
data set.

5.2. Evaluation measures

We assess the performance of the algorithm using three
standard performance measures: the PCP measure for hu-
man layout prediction as introduced by [12], this assesses
the part-wise aspect of the model; and two measures of se-
mantic segmentation accuracy to assess the pixel-wise as-
pect – these are the pixel-wise recall per class (i.e. the pro-
portion of the pixels of each class that are correctly classi-
fied out of the pixels belonging to that class), and the in-
tersection over union per class as used in the VOC chal-
lenge [10]. Since most pixels are background, the aver-
age of the pixel-wise recall over classes is more affected by
mislabelling a body part pixel as background than the other
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A)

B)

C)

D)

E)

Figure 2. Additional labelling provided for the Buffy data set.
Different colors correspond to different instances. In cases where
the instances are highly occluded (such as C) or difficult to dis-
tinguish, the joints are not labelled, and the body-part pixels are
labelled as hard (black) and ignored for training and evaluation.
Some of joints are labelled as half-visible (sometimes because
they are too close to the boundary) and ignored for evaluation too.
Limbs with at least one such joint are shown white.

Method Head Torso U Arms L Arms Overall
[8] 83.4 84.0 70.5 50.9 68.2
[22] 81.9 85.1 81.1 53.6 72.8
[15] 99.6 99.6 93.2 60.6 84.5
[31] 98.9 99.6 95.1 68.5 87.6

Our method (2 labels) 100.0 100.0 97.1 73.9 90.3
Our method (12 labels) 100.0 100.0 97.5 75.4 90.9

Table 1. PCP performance on the Buffy data set. A comparison
with the state of the art. The joint formulation leads to a signif-
icant improvement mainly on the lower arms, where the method
of [31] struggles to get a good score. The performance was eval-
uated using the code of [12] on the original upper-body ground
truth.

way around. A consequence of this class bias is that over-
segmenting the parts (e.g. people appear fatter than veridi-
cal) scores more highly than under-segmenting. The inter-
section over union does not suffer from this problem. Ex-
periments on the Buffy data set were carried out for both
2 label (person & background) and 12 label (body parts &
background).

5.3. Results

We compare our method to the state of the art methods
in both the part-wise and segmentation aspects.

For the pictorial structure measures, the comparison to
the state-of-the-art methods for the Buffy data set in the
loose-PCP measure is given in table 1, and for the Image
Parse data set for the strict- and loose-PCP measures in

Method H
ea

d

To
rs

o

U
L

eg
s

L
L

eg
s

U
A

rm
s

L
A

rm
s

O
ve

ra
ll

[1] (strict) 75.6 81.4 63.2 55.1 47.6 31.7 55.2
[14] (strict) 76.1 85.4 73.4 65.4 64.7 46.9 66.2
[31] (strict) 77.6 82.9 69.0 63.9 55.1 35.4 60.7
[20] (strict) 73.7 88.8 77.3 67.1 53.7 36.1 63.1

Our method (strict) 75.1 83.9 71.0 63.9 56.8 33.9 61.0
[31] (loose) 93.2 97.6 83.9 75.1 72.0 48.3 74.9
[20] (loose) 92.5 98.9 90.1 79.6 68.8 48.1 76.5

Our method (loose) 92.7 98.0 86.1 75.1 72.9 47.6 75.4

Table 2. Strict- and loose-PCP performance on the Parse data
set (implementations of [20] and [31] respectively). The perfor-
mance of our method is not significantly different from the state-
of-the-art. There is less opportunity for the joint model to show its
power as images do not contain overlapping or occluded people.

table 2. See further discussion on the evaluation measures
in [20]. The incorporation of all components leads to a sig-
nificant improvement on the Buffy data set, however, the
method did not improve on the Image Parse data set, proba-
bly because the texture and mask potentials were trained on
a different data set with different distribution of poses.

For the semantic segmentation performance, table 3
gives a quantitative comparison of our results on the Buffy
data set for the two measures with the results from [17]
and various subsets of the components. Our method signif-
icantly outperforms the baseline texture component alone,
and any combination of components. The result obtained
by the mixture-of-parts model mapped into segmentation
(HOG + Mask) does not use the pixel-wise data and thus
can not get the person boundaries exactly. Adding a color
model resolves this problem. Texture potentials are good at
distinguishing between limbs and torso, and thus help to re-
solve ambiguities in estimation of joints and their visibility.
See the discussion about the pros, cons and failure cases in
the caption of figure 3 and figure 4.

6. Conclusion
In this paper we have shown that, given appropriate train-

ing, it is possible to achieve Kinect style body part labelling
and layout in color images (despite not having depth infor-
mation). Furthermore, we have for the first time covered
the case of multiple, possibly interacting, human instances
in quite varied and unconstrained poses. The formulation
of a joint model covering foreground and background has
effectively dealt with all of the problems we listed in the
introduction for pictorial-structures, e.g. over counting of
data and failure to take account of background evidence.
Furthermore our combined method provides state of the art
results both for pose and segmentation. This richer output
opens up new applications for human parsing and segmen-
tation algorithms, e.g. for analysis of clothing [30].
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Texture [17] (recall) 87.3 88.1 86.6 38.7 91.2 77.0 47.4 32.7 41.3 27.0 19.7 48.7 35.8 41.8 0.2 1.2
HOG + Mask (recall) 85.8 85.2 86.5 48.4 86.3 61.2 70.1 59.2 56.4 36.9 45.2 67.4 40.5 38.5 9.5 9.6

HOG + Mask + Color (recall) 88.4 90.3 86.5 54.8 91.4 61.4 72.7 63.0 61.7 47.7 54.0 70.7 43.9 41.9 25.6 23.0
All (recall) 92.3 95.3 89.2 55.5 96.8 64.5 71.9 63.5 63.0 46.5 53.6 70.6 46.5 45.0 23.3 20.4

Texture [17] (int / union) 72.5 85.0 60.0 26.2 86.3 57.5 25.0 23.0 22.2 16.4 13.2 28.8 20.1 20.5 0.2 1.1
HOG + Mask (int / union) 69.0 82.2 55.7 30.1 82.6 41.5 36.8 30.5 33.8 23.8 26.4 36.5 18.0 19.5 5.6 6.0

HOG + Mask + Color (int / union) 75.3 87.1 63.5 37.1 87.6 49.4 44.1 38.7 42.1 30.7 33.8 44.3 22.6 23.8 14.1 14.2
All (int / union) 84.3 92.7 76.0 42.7 92.8 59.3 50.5 46.3 49.6 35.5 39.7 50.7 28.1 29.5 15.3 15.2

Table 3. Pixel labelling performance on the Buffy data set. Results are given for both recall and intersection over union measures. The first
3 columns correspond to the performance on the 2-label problem, and the remainder on the 12-label problem. The incorporation of pose
into the random field framework leads to a significant improvement of the performance. The weights are optimised for the intersection
over union measure, which is more suitable for this data set because of a significant imbalance of the body part classes (dominated by
background). Surprisingly, the incorporation of texture potentials improved the intersection over union measure also for the lower legs,
even though there is insufficient training data to learn them well. The improvement is mainly because the texture potentials give a much
better definition of the instance boundary.
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Figure 3. Qualitative results on the Buffy data set. The first three columns are the pictorial structure pose, instance segmentation and
body-part segmentation obtained using our method; the last three columns are the corresponding ground truth. The method can naturally
handle multiple instances. The algorithm successfully estimated the large majority of the instances and the locations of their joints.
Furthermore, there are examples of partial occlusion by another person (A right, C left), a background object (C left) and self-occlusion
(B right, C right). Some of the images also demonstrate failings, including: a phantom hallucinated instance (F left), a missed part in an
uncommon location (F right), incorrect visibility of the part (B right, H right), limb assigned to a wrong person (D left / right), a missed
instance due to a large occlusion (I middle) or an insufficient number of candidates for images with too many instances (K middle).

Figure 4. Qualitative results on the Image Parse data set. Due to an insufficient size of images we run the experiments using only 2
labels (person vs background) in the segmentation body-part domain. We restricted the algorithm to report only a pose of a single person.
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