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Abstract

In this work, we consider images of a scene with a
moving object captured by a static camera. As the ob-
ject (human or otherwise) moves about the scene, it re-
veals pairwise depth-ordering or occlusion cues. The goal
of this work is to use these sparse occlusion cues along
with monocular depth occlusion cues to densely segment the
scene into depth layers. We cast the problem of depth-layer
segmentation as a discrete labeling problem on a spatio-
temporal Markov Random Field (MRF) that uses the motion
occlusion cues along with monocular cues and a smooth
motion prior for the moving object. We quantitatively show
that depth ordering produced by the proposed combination
of the depth cues from object motion and monocular occlu-
sion cues are superior to using either feature independently,
and using a naı̈ve combination of the features.

1. Introduction

We consider a time-series of images of a scene with mov-

ing objects captured from a static camera, and our goal is to

exploit occlusion cues revealed as the objects move through

the scene to segment the scene into depth layers. Recover-

ing the depth layers of a scene from a 2D image sequence

has a number of applications. Video surveillance often has

a fixed camera focused on a scene with one or more mov-

ing objects. As objects move through the scene over time,

we recover a layered representation of the scene. This aides

tasks such as object detection and recognition in the pres-

ence of occlusions since one can reason about partial obser-

vations of an occluded object with a better 3D understand-

ing of the scene [6, 15, 22]. In addition, a layered represen-

tation of the scene is useful in video editing applications,

such as composing novel objects into the scene with occlu-

sion reasoning [30] and changing the depth of focus [24].

An image sequence captured from a dynamic (moving)

camera allows one to leverage powerful stereo matching

cues to recover the depth and occlusion information of the

scene. However, these cues are absent in the case of a

static camera. For single images, monocular cues help re-

veal useful depth information [8, 10, 12, 13, 23, 28, 31, 32].

In this work, we consider a set of images with moving ob-

jects captured from a static camera. As the object moves it

is either occluded by or occludes a portion of the scene,

consequently revealing sparse pairwise ordering relation-

ships [3, 29] between the moving object and the scene, and

reveals long-range pairwise cues between the two regions

of the scene it simultaneously interacts with. These pair-

wise cues are powerful, but sparse, which makes our goal

of extracting dense pixel-level depth layers a hard problem.

In this work, we cast the problem of depth-layer segmen-

tation as a discrete labeling problem on a spatio-temporal

MRF over the video. We accumulate the pairwise ordering

cues revealed as the object moves through the scene and

include monocular cues to propagate the sparse occlusion

cues through the scene. We over-segment the background

scene (which has no moving objects) and construct a

region-level MRF with edges between adjacent regions.

In each frame, we identify the pixels corresponding to

the moving object and add a node corresponding to each

moving object for every frame of the video. We add

temporal edges between the corresponding moving object

nodes across frames, allowing us to encode a smooth

motion prior for the moving object. As the object moves

about the scene, we detect motion occlusion events and

add edges between the background scene node and the

corresponding moving object node, including long range

edges between two background scene nodes to encode the

pairwise depth-ordering or occlusion cues. An overview

of our proposed formulation for a single moving object is

shown in Figure 1, with the extension to handle multiple

objects in Section 3.4.

Contributions. Our paper, for the first time, proposes

a framework for recovering depth layers in static camera

scenes by combining depth-ordering cues from moving ob-

jects and cues from monocular occlusion reasoning. Our

approach works with any moving object (human or other-

wise) and extends to multiple objects moving in the scene.

We show that this depth layer reasoning out-performs the

current state-of-the-art in terms of depth-layer recovery.
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(a) (b) (c) (d)

Figure 1: Overview. (a) Ground-truth top view, black triangle shows the camera looking up at a scene with the red moving object region

following the path shown in the red arrow; (b) Shows the background scene in the orange box and two frames from the input sequence

where the red object interacts with the background regions to reveal pairwise depth-ordering cues such as red occludes green, blue occludes

red; (c) A graph constructed over the background regions is shown in the orange box. Each colored node corresponds to the respective

colored region in (b). The red nodes correspond to the moving object with a node for every frame f in the input sequence ({1, 2, . . . , F}).

The black edges enforce the observed pairwise depth-ordering, for instance between the green-red nodes at f = 1, and blue-red nodes at f =

2. The red edges enforce a smooth motion model for the moving object; (d) Shows the inferred depth layers, white = near and black = far.

2. Related work

Research in cognitive science has shown that humans

rely on occlusion cues to obtain object boundaries and

depth discontinuities even in the absence of strong image

cues such as edges and lighting [17, 25]. Recovering oc-

clusion boundaries in a scene is a classic problem that has

been a topic of wide interest. We focus on prior work with

the similar setting of static camera scenarios. We broadly

classify these works into learning-based approaches and

approaches that purely rely on motion occlusion cues

revealed by the moving object.

Learning-based approaches. Prior work has explored

learning-based approaches for estimating the depth of the

scene [8,10,12,14,23,28,31,32] and estimating depth order-

ing [13, 16] from a single image for 3D scene understand-

ing. Recent work has shown objects (clutter) in the scene

to aid better depth estimation of the scene [9, 11] through

affordances.

Moving beyond single image scenarios to image se-

quences, Fouhey et al. [5] showed that the pose of people

interacting with a cluttered room can be used to obtain

functional regions and recover a coarse 3D geometry of

the room. Our work is complementary to this work, and

in particular is agnostic to priors about the type of moving

object and the type of scene (indoor or outdoor). In other

words, we do not require a human as the moving object. We

relate back to prior research in cognitive science that show

that occlusion cues we observe are agnostic to any prior

about the object. We use these sparse, yet strong occlusion

cues revealed by the moving object to aid the dense depth

layer segmentation of the scene.

Depth layers from motion occlusion. We work with a

single static camera image sequence that precludes us from

using algorithms for multiview occlusion reasoning using

a moving object [7]. We focus on segmenting a scene

captured by a single static camera into depth layers using

occlusion cues revealed by the moving objects. Our work

is inspired by the work of Brostow et al. [3] and Schodl

et al. [29] who use pairwise occlusion cues to “push” and

“pop” the regions of the scene affected by the moving

object to obtain depth layers at each frame. A limitation of

these works is that they reason only about the portion of the

scene the object interacts with, leaving behind huge por-

tions of the scene at an unknown depth. In addition, since

the interaction with each region is treated independently it

leads to excessive fragmentation of the scene as we show in

Section 4. This fragmentation can be partially avoided [29]

by making the (possibly over-restrictive) strong assumption

that the moving object stays at a constant depth. Our model

includes a more reasonable model of object motion.

In summary, we revisit depth layers from occlusions and

address limitations of prior work via a unified framework

that leverages sparse depth-ordering cues revealed by the

moving object and gracefully propagates them throughout

the whole scene.

3. Algorithm

We formulate the task of segmenting the scene into depth

layers as a discrete labeling problem. In this section, we

first describe our formulation as applied to a scene with a

single moving object and then extend the same framework

to handle multiple moving objects in the scene.

3.1. Spatio-temporal graph

Background scene segmentation. We refer to the scene

without any moving objects as the background scene.

We use a calibration stage to obtain a clean background

image without any moving objects. In the absence of the

calibration stage we take advantage of the static camera

scenario and obtain an estimate of the background image

as the median image over the video. Given the background

image we obtain an over-segmentation using mean shift

segmentation [4] to give us about 300 superpixels. We treat

this segmentation as a stencil of background superpixels
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(a) Object in-front-of background scene region

(b) Object behind background scene region

Figure 2: Pairwise depth-ordering cues. Left image shows the

background scene segmentation and the right image shows an in-

termediate frame segmentation with the moving object segment.

(a) A region in the background is covered by the moving ob-

ject (white ellipse) indicating that the moving object occludes the

background region; (b) Observing that the boundary correspond-

ing to the background region (white pixels in black ellipse) does

not change when the moving object comes in contact with it re-

veals that the moving object is occluded by the background region.

It also reveals new relationships via transitivity; the chair occludes

the object and at the same instant the object occludes regions on

the wall; therefore the chair occludes the regions on the wall.

that applies to each frame of the video.

Moving object segmentation. Given the superpixel stencil

for the background scene, we update this superpixel map

for every frame by identifying the pixels corresponding

to the moving object via background subtraction. We

model the appearance of the background using a per-pixel

Gaussian distribution (Ap) centered at the mean color

(RGB space) of the pixel across the whole video. Given

Ap, for every frame we estimate the likelihood for each

pixel belonging to the background. We label pixels with

background likelihood above 90% as confident background

pixels and below 10% likelihood as confident moving

object pixels. Using these as confident initial seeds, we

learn an appearance model for the background (BG) and

the moving object (FG). The moving object segmentation

is obtained using iterative graph-cuts [1, 2, 20] updating

the BG/FG color models with each iteration similar to

GrabCut [27]. Figure 2 shows examples of the moving ob-

ject segmentation overlaid on the background segmentation.

After this stage, we have the background scene super-

pixel map and the moving object segmentation for each

frame. A region-level MRF is constructed over the back-

ground scene superpixels where each superpixel is a node

with an edge to adjacent superpixels. We add a node corre-

sponding to the moving object for every frame of the video

and add temporal edges connecting the moving object nodes

on adjacent frames. This graph is illustrated in Figure 1(c).

3.2. Pairwise depth-ordering cues

The object moving through the scene is either oc-

cluded by or occludes portions of the scene. We refer

to these as motion occlusion events. In our superpixel

representation of the scene, we accumulate the pairwise

cues using a matrix we call Occlusion Matrix (O) where,

Oi,j ∈ {−1, 0,+1} indicates the relationship between

superpixel i and superpixel j i.e., {i occluded by j, no cue,

and i occludes j}, respectively. O is a skew-symmetric

matrix i.e., Oi,j = −Oj,i. The matrix is updated at every

frame of the video using detected motion occlusion events

or using learnt monocular cues in absence of occlusion cues.

Motion occlusion cues. Low-level cues revealed by the

moving object in the scene serve as sparse, yet strong pair-

wise depth-ordering cues. We work with the abstract su-

perpixel representation of each frame and use cues similar

to prior work [3] to obtain pairwise relationship between

the moving object segment and the superpixel it interacts

with. The cues are intuitive, given a background region the

moving object is interacting with, we use the moving object

pixels and the boundary pixels of the background region to

infer whether the object moved in-front-of this region or be-

hind this region, respectively, as illustrated in Figure 2.

We update the corresponding entry of the occlusion

matrix with Oi,j as +1 to indicate that superpixel i oc-

cludes superpixel j and set Oj,i to −1. In addition to the

pairwise depth-ordering cues between the moving object

and the superpixel it is interacting with, we also enforce

transitivity while updating the matrix. If the object is

occluded by a region of the background scene and is si-

multaneously occluding several regions of the background

scene, via transitivity it establishes a pairwise relationship

between the occluding background region and each of

the other background regions as shown in Figure 2(b).

More formally, if m refers to the moving object segment

simultaneously involved in motion occlusion events with

superpixels k and l then, Ok,m = +1 and Ol,m = −1,

implies Ok,l = +1. This provides a strong depth-ordering

cue between k and l. In addition, since k and l are not

constrained to be adjacent superpixels, long-range edges

between non-adjacent superpixels are also a result.

Monocular cues. We use monocular cues to provide evi-

dence about occlusions for the other regions of the scene.

Given the superpixel map for each frame, we use the work

of Hoiem et al. [13] that uses learnt priors to determine

which of two adjacent superpixels occludes the other. For

each frame, we first update the occlusion matrix using the

motion occlusion cues where available and update the ma-

trix for all the other spatially adjacent superpixels using the

monocular cues. We do not enforce transitivity here since

the monocular cues are not as reliable as motion occlusion
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Figure 3: Spatial pairwise term ES
ij . If i occludes j, the pairwise

term will encourage that i takes a depth label closer (lower label)

than j via a large penalty for the red terms and zero penalty for the

blue terms. See Section 3.3 and Eqn 2 for details.

cues. The occlusion matrix serves as the observations for

modulating the terms of the energy function described be-

low.

3.3. Energy minimization problem

The goal given the sparse pairwise depth-ordering con-

straints is to obtain dense depth-layers. One approach is

a greedy algorithm where the whole scene starts at layer-0

and with every pairwise depth-ordering constraint regions

of the scene are “pushed” and “popped” [3] to obtain the

final labeling. Hoiem et al. [13] use a graph with bound-

aries between superpixels are nodes connected to adjacent

boundaries to encourage continuity and closure. Jia et al.
[16] use image junctions as nodes to obtain a globally con-

sistent depth ordering using a minimum spanning tree. In

this work, we use superpixels as nodes in the graph. This

allows us to directly obtain the depth-layer labeling, and

also incorporate long range edges between nodes.
We formulate depth layer segmentation as a discrete la-

beling problem where every superpixel is assigned a depth
label {1, 2, . . . , L} where L is some pre-defined yet large
set of discrete labels1. The labels are depth-ordered from
closer to the camera moving away i.e. {1 < 2 < · · · <
L}. We formulate this multi-label segmentation problem as
an energy minimization problem over the spatio-temporal
graph obtained in the previous stage. The graph is a col-
lection of n + F nodes, where n nodes correspond to the
background scene and F nodes correspond to the moving
object with one node for the moving object for each of the
F frames of the video. Our goal is to obtain a labeling
X = {X1, X2, . . . , Xn+F }. We define an energy function
over the graph as follows:

E(X ) =
∑

i∈1,...,n+F

Ei(Xi) +
∑

(i,j)∈NS

ES
ij(Xi, Xj)

+
∑

(i,j)∈NT

ET
ij(Xi, Xj) (1)

where Ei(Xi) is the unary term indicating the cost of

assigning a depth layer to a node, ES
ij(Xi, Xj) is the spatial

1In all our experiments we set L = 40. An over-estimate of L allows

for enough layers for the background scene. Increasing L beyond 40 did

not affect performance but added to the computational complexity.

Figure 4: Temporal pairwise term ET
ij . The penalty (β) increases

as we go away from the diagonal encouraging a smooth motion of

the object across depth layers. See Section 3.3.

pairwise term updated by the motion occlusion cues and

the monocular cues between interacting regions (NS),
and ET

ij(Xi, Xj) is the temporal pairwise term updated by

the object motion model between the temporal edges (NT ) .

Unary term (Ei). The unary term measures the cost of

assigning a particular depth label to a node. We use a

uniform likelihood across all labels since a node does not

prefer one label over another. However, we note that the

moving object can move between two background regions

that are in adjacent depth layers. To address this, we ensure

that the background regions only take odd or modulo-2

labels, which makes an intermediate layer between two

depth layers available for the moving object. We do so

using hard constraints where the background region pays

infinite penalty for choosing an even numbered depth label.

Spatial pairwise term (ES
ij). The spatial pairwise term

encodes the pairwise depth-ordering observations we accu-
mulate within the occlusion matrix. Consider two regions
(nodes) i and j, using the cues we discussed in Section 3.2
let us suppose we know that region i is occludes region j
i.e. Oi,j = +1. Intuitively, the pairwise term for the edge
between i and j must encourage i to take a depth label that
is smaller than (closer) j. To accomplish this, our pairwise
term has the form of an lower triangular matrix where a
large cost is incurred for region i taking a depth label larger
than region j. We make this term contrast sensitive using

the score from a coplanar classifier (δfi,j) that indicates how
likely i and j are coplanar using the relative region-level
features similar to [21] for each frame f . More formally,

ES,f
ij (Xi, Xj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−log
(

1+O
f
i,j

2

)
∀Xi < Xj

γ Xi = Xj

−log
(

1+O
f
j,i

2

)
∀Xi > Xj

ES
ij(Xi, Xj) =

∑
f∈F

(
ES,f

ij (Xi, Xj)× exp (−δfi,j)
)

(2)

where, ES,f
ij is the pairwise term for frame f , Of

i,j is the

occlusion relationship between region i and j in frame f of

the image sequence. The summation over pairwise terms

over all frames helps capture the evidence between two
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nodes over the whole sequence. The factor γ is a bias that

keeps the solution away from the trivial solution of a single

depth layer for the whole scene2. The form of the spatial

pairwise term is illustrated in Figure 3.

Temporal pairwise term (ET
ij). The temporal pairwise

term penalizes label disagreement between the moving ob-

ject node across frames and encourages a smooth motion

for the moving object, illustrated in Figure 4. The pairwise

penalty is similar to the standard Pott’s model, except with

an increasing penalty (β) as we go away from the diago-

nal3. Given the depth label of the moving object in one

frame, smooth motion is encouraged by making the node

pay a lower cost to switch to nearby depth labels but larger

penalty for more drastic changes in the depth label. Phys-

ically, this motion model assumes that the object does not

abruptly change in depth as it moves through the scene.

3.4. Handling multiple moving objects

Here, we extend the formulation (single moving object)

to handle multiple moving objects. Consider the example in

Figure 5(a) with the region corresponding to the two mov-

ing objects in the scene shown in blue and red overlay. In

case of k moving objects, we add k nodes (a node for each

moving object) for each frame of the video. The result-

ing spatio-temporal graph for the example is shown in Fig-

ure 5(b). We have an edge between the moving objects as

shown in the frame, f = 2 when the objects cross path. We

obtain their pairwise depth-ordering using the cue that when

the two objects are in contact, the taller object, i.e., the ob-

ject with a larger bounding box height, occludes the smaller

one. This assumes that the moving objects are the same size

in real world; however, more sophisticated classifiers could

be used. We modify the unary term to reflect that there are

multiple moving objects. In the single object case we used

a modulo-2 representation of the depth labels that put hard

constraints on the background regions to take only alternate

depth labels allowing for the moving object to lie between

two background region layers. In case of k moving objects

in the scene we extend this to a modulo-(k+1) representa-

tion that allows the k objects to lie between two adjacent

background region layers. Given this graph, the definition

of the energy function is the same as Section 3.3.

3.5. Inference

In our energy function, each energy term by itself is

weak. For instance, the unary term does not provide an

affinity of a node towards a particular label but restricts the

labels the background regions can take; the spatial pairwise

term bounds the possible labels the adjacent node can take

based on the label of the current node. However, the com-

2We set the bias γ = −log(0.5) for our experiments.
3β = 50 for our experiments.

(a)

(b)

Figure 5: Multiple moving objects. (a) The background scene is

shown in the orange bounding box. The two moving object seg-

ments for intermediate frames are overlaid in red and blue; (b) The

spatio-temporal graph constructed. The spatial graph correspond-

ing to the background scene is shown within the orange bounding

box and the two nodes for each frame corresponding to the moving

objects are shown using the red and blue nodes. See Section 3.4.

bination of these terms is powerful. The intuition behind

the goal of inference is to find a depth labeling that satis-

fies as many pairwise interaction terms and motion model

terms as possible. We perform inference using sequen-

tial tree-reweighted max-product message passing (TRW-

S) [19]. The algorithm scales linearly with the number of

frames and quadratically in the worst case with the number

of superpixels (i.e., fully connected graph).

4. Experiments
In this section, we discuss the dataset, the evaluation

metric, followed by our quantitative and qualitative results.

4.1. Dataset

Our first dataset (SET-A) contains 24 videos with a sin-

gle moving object. 18 videos are from the publicly avail-

able multiview video dataset by Guan et al. [7] that include

a person moving through the scene captured from multiple

viewpoints. Each of these multiview videos serves as a test

video for our scenario. The dataset has 6 additional videos

with two clips from the movie ‘Sound of Music’.

Our second dataset (SET-B) contains 9 videos from the

publicly available video dataset by Guan et al. [7] with two

people walking in the scene. In the single object scenario,

the moving object segmentation and correspondence across

frames was achieved using background subtraction, how-

ever, this is not trivial for multiple objects. While we believe

that there is scope to leverage prior work on multiple object

tracking to achieve this task automatically, in this work we

provide correspondence and manually segment the moving

objects on 30 frames for each video using GrabCut [27]. An

example is shown in Figure 5(a).

We manually obtain a pixel-level ground-truth depth

layer segmentation for each of the background scenes us-
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ing the depth-layer annotation tool by Hoiem et al. [13] and

then map it to the background scene superpixel map by la-

beling all the pixels within a superpixel with the dominant

label. An example is shown in Figure 6. We make all the

data publicly available on our website5.

It is worth pointing out that the ground surface has no

clear ‘ground-truth’. In particular, our instruction to the

ground-truth annotator was that any object that stands on

the ground surface occludes the ground surface as a basis

for evaluations. Preprocessing to perform ground segmen-

tation could be an alternate approach to add more seman-

tics to the framework. However, this does not change the

problem formulation or the improvement we obtain over the

state-of-art.

4.2. Evaluation

We evaluate the performance of the algorithm as the
accuracy of pairwise ordering between the regions of the
background scene. Using the background superpixel map
we translate the ground-truth depth layers into the ground-
truth occlusion matrix (Ogt), which gives the pairwise
depth-ordering between any pair of superpixels. Let the fi-
nal occlusion matrix from the algorithm be O′. Given the
two matrices, we evaluate the performance of the pairwise
ordering between the superpixels by accumulating concor-
dant pairs, discordant pairs, and compute the accuracy as4,

Concordant pair (i, j) : Ogt
i,j = O′

i,j

Discordant pair (i, j) : Ogt
i,j �= O′

i,j (3)

Accuracy =
#Concordant pairs

#Concordant pairs +#Discordant pairs

The accuracy measure evaluates the performance of the

algorithm over all pairs of regions in the scene. This gives

an average score of 25.2% across our dataset even when the

whole scene is given a single depth layer. We obtain a met-

ric focused only on the occlusion boundaries by comput-

ing the precision and recall of the algorithm evaluating the

fraction of recovered occlusion boundaries that are the true

occlusion boundaries and the fraction of the true occlusion

boundaries recovered by the algorithm, respectively.

Our problem is similar to that of inferring a rank ordered

list of entries. We use two standard metrics to evaluate the

performance of pairwise ordering, Kendall tau correlation

coefficient (τ ) and Kendall tau distance (τd) [18, 26]. In

particular, we use the variant of Kendall’s tau (Tau-b) that

accounts for ties within the list, because pairs of superpixels

can take the same depth label. τ measures the similarity be-

tween orderings and has range [−1,+1], the higher the co-

efficient the better. τd is a measure of the distance between

the orderings and has range [0, 1], the lower the better.

4 #x = number of x

(a) Background scene (b) Ground-truth (c) Estimated

Figure 6: (a) Background scene, (b) manually labeled ground-

truth depth layers for the quantitative analysis and (c) estimated

depth layers using our algorithm. White = near, black = far.

4.3. Quantitative results

We quantitatively evaluate the performance of our algo-

rithm, comparing with several baselines. First, we compare

with prior works that use only motion occlusion cues [3]

or only monocular cues [13]. We then evaluate the perfor-

mance of a naı̈ve combination of the motion occlusion and

monocular cues using a greedy algorithm similar to [3]. We

first use all the motion occlusion cues to obtain the pairwise

depth-ordering and then use the monocular cues to update

the pairwise orderings only for adjacent superpixels that do

not yet have a pairwise ordering constraint to obtain the fi-

nal depth labeling. This baseline does not enforce a global

consistency in combining the cues. In our full algorithm,

we use a spatio-temporal graph to combine the two cues

and enforce global consistency. In addition to evaluating

the performance of the proposed algorithm (full), we eval-

uate a variant of the proposed algorithm where we drop the

temporal links that enforce a smooth object motion.

Tables 1 and 2 summarize the results. We see that us-

ing motion occlusion cues alone (ROW-1) performs the

worst, for two main reasons - fragmentation of the scene

due to the greedy algorithm [3] and sparsity of the cues

i.e., it only reasons about regions the object interacts with.

Monocular cues (ROW-2) do better because it reasons about

the whole scene and encourages global consistency with a

graph model [13]. While the naı̈ve combination of the cues

(ROW-3) performs better than only motion occlusion cues,

it performs poorly in comparison to using only monocular

cues, due to fragmentation and lack of global consistency.

Even without temporal links (ROW-4), we outperform

the baselines in each metric. This clearly indicates that our

improvements are not based on tracking per se, and shows

our algorithm is applicable to scenarios like time-lapse se-

quences. Finally, in both test sets, our full proposed ap-

proach (ROW-5), gives an additional boost in performance

and significantly outperforms all the other algorithms in

each metric. Across the datasets, the proposed algorithm

achieved the best performance in 19 out of 24 videos in

SET-A and 8 out of 9 videos in SET-B.

4.4. Qualitative results

We show qualitative results obtained using only motion

occlusion cues, only monocular cues and the proposed algo-

rithm in Figure 7. Figure 7(b) shows the ground-truth depth
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Single moving object Accuracy (%) Precision (%) Recall (%) F-measure Kendall tau coefficient Kendall tau distance

(SET-A) [0.0, 1.0] [-1.0, 1.0] [0.0, 1.0]

Only motion cues [3] 38.2 40.0 38.3 0.39 +0.01 0.40

Only monocular cues [13] 49.0 55.1 50.0 0.52 +0.15 0.33

Naı̈ve [3] + [13] 42.1 46.3 38.8 0.42 +0.03 0.36

Proposed (No temporal) 54.9 60.8 55.4 0.58 +0.33 0.26
Proposed (Full) 56.5 62.6 57.5 0.61 +0.36 0.24

Table 1: Quantitative results and comparisons for the single moving object scenario (SET-A). Each measure is averaged across the videos

in the dataset. ROW-1 shows the performance when we use only the motion occlusion cues [3]; ROW-2 shows the performance when we

use only the learnt monocular cues [13]; ROW-3 shows the performance of a naı̈ve combination of the motion occlusion and monocular

cues; ROW-4 shows the performance of the proposed approach but without the temporal links enforcing the object motion model; Finally

ROW-5 shows the performance of the full proposed approach that combines the motion occlusion and monocular cues into one framework.

In summary, the proposed algorithm (in green) outperforms the other algorithms in each metric.

Multiple moving objects Accuracy (%) Precision (%) Recall (%) F-measure Kendall tau coefficient Kendall tau distance

(SET-B) [0.0, 1.0] [-1.0, 1.0] [0.0, 1.0]

Only motion cues [3] 40.5 43.4 40.7 0.42 +0.02 0.37

Only monocular cues [13] 50.9 55.6 50.7 0.53 +0.20 0.35

Naı̈ve [3] + [13] 45.1 54.2 43.0 0.48 +0.06 0.36

Proposed (No temporal) 56.3 60.3 55.5 0.58 +0.30 0.26
Proposed (Full) 58.2 62.4 59.1 0.60 +0.33 0.24

Table 2: Quantitative results and comparisons for the multiple moving objects scenario (SET-B). The rows are the same algorithms as

Table 1. The proposed approach (in green) outperforms the other algorithms in each metric.

layers for each scene. We first observe the drawback of us-

ing only motion occlusion cues in Figure 7(c), such as the

fragmentation in the labeling due to the greedy algorithm

and the unknown layer for pixels untouched by the mov-

ing object (in blue). Using the monocular cues results in a

better dense labeling but errors due to the image-based fea-

tures exist, Figure 7(d). In contrast, the proposed algorithm

achieves a better labeling of the scene as seen in Figure 7(e).

In particular, we see that occlusion cues captured in the mo-

tion occlusion cues but missing in the monocular cues such

as the tree occluding the background in ROW-1, the chair

and box occluding the background in ROW-2, 4, the pillars

in ROW-5 are all carried forward to improve the result using

the proposed algorithm. Errors due to pairwise cues unseen

by the moving object but present in the monocular cues are

carried forward to the final result (ROW-3, 6). In ROW-6 the

proposed algorithm favors smoothness instead of the exces-

sive fragmentation found from the motion occlusion cues.

The sensitive stage of the algorithm is foreground segmen-

tation (background subtraction) especially in case of scene

irregularities such as specular surfaces and thin structures

(computer monitor in ROW-2 Figure 7), which can lead to

errors in the sparse occlusion cues. In our work, we han-

dle this using the MRF over all the regions and incorporate

temporal dependency via smooth motion of the moving ob-

ject. We make a joint solution given all the (soft) occlusion

cues, reducing the errors in comparison with prior work that

make hard decisions using occlusion cues.

5. Conclusions
We have presented an algorithm to combine the sparse,

yet strong motion occlusion cues revealed by moving

objects in a static scene along with monocular cues for

occlusion reasoning in a unified framework. The proposed

framework uses pairwise ordering cues that even extends

to other algorithms to obtain monocular occlusion cues.

The results show that the proposed approach improves the

performance of prior approaches, and handles multiple ob-

jects moving in the scene. We make these manually labeled

depth layers and the manual multiple object segmentation

across frames publicly available, which are also useful in

evaluating tasks such as multiple object co-segmentation5 .
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