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Abstract

We discuss a model for image segmentation that is able
to overcome the short-boundary bias observed in standard
pairwise random field based approaches. To wit, we show
that a random field with multi-layered hidden units can en-
code boundary preserving higher order potentials such as
the ones used in the cooperative cuts model of [11] while
still allowing for fast and exact MAP inference. Exact infer-
ence allows our model to outperform previous image seg-
mentation methods, and to see the true effect of coupling
graph edges. Finally, our model can be easily extended
to handle segmentation instances with multiple labels, for
which it yields promising results.

1. Introduction

Interactive figure-ground segmentation is an important
problem in computer vision and image processing. Given
some user input, which typically takes the form of mark-
ing some pixels that belong to the figure or background, the
system is required to find the set of pixels that belong to
the figure. Like many other image labeling problems, inter-
active segmentation is commonly modelled using pairwise
Markov Random fields that incorporate priors on labels of
pairs of neighbouring pixels. These models allow efficient
inference of the Maximum a Posteriori (MAP) solution us-
ing algorithms such graph cuts [4, 28] but have restricted
expressive power [12].

One of the major side-effects of using pairwise MRFs for
segmentation is the short-boundary bias [20], illustrated in
Figure 1(c). It results from the fact that the standard pair-
wise model encourages smooth segmentations by penaliz-
ing the assignment of different labels to neighbouring pix-
els [1, 4]. This penalty equivalently discourages long object
boundaries. Several papers have tried to address this prob-
lem, e.g. via topology constraints [21, 30].

Jegelka & Bilmes [11] recently proposed a different ap-
proach – a cooperative graph cut model – to overcome
the short-boundary bias. Instead of favoring short object
boundaries by penalizing the number of label discontinu-
ities, their model favors “congruous” boundaries by penal-

izing the number of types of label discontinuities. This new
term is a submodular function on pairs of variables, a coop-
erative cut potential. The cost of label discontinuities does
not grow linearly with the number of discontinuities in the
labeling, as is the case in the standard pairwise model. In-
stead, the penalty is a concave function of the number of
discontinuous pairs of the particular type1. Cooperative cut
potentials can make MAP inference an NP-hard problem,
and therefore [11] propose an approximation algorithm that
still outperforms previous segmentation methods. Never-
theless, given that the algorithm yields an approximate so-
lution, it is not entirely clear whether the improvement is
an artefact of the algorithm or actually induced by a better
model. In the sequel, we will confirm the latter.

In this work, we rephrase the model of [11] and construct
an equivalent hierarchical model by using a transformation
inspired by a lower envelope representation of higher-order
potentials [13]. The model introduced here has a number
of benefits: (i) It enables us to derive an exact yet practi-
cal algorithm for MAP inference. In Section 5, we will see
that the exact results outperform results of state-of-the-art
image segmentation methods. In addition, we propose effi-
cient heuristics that, in our experiments, always return the
optimal solution. (ii) It yields a refined complexity analysis
and, in the language of parameterized complexity [8, 23],
shows that a practically useful subset of cooperative cut
problems is fixed-parameter tractable. Furthermore, an FP-
TAS is possible for a wider class of functions. (iii) The
model is well extensible to handle segmentation instances
with multiple labels, and we show promising theoretical and
empirical results. (iv) The model structure shows an explicit
connection between cooperative cuts and hierarchical mod-
els, hinting at the potential representational power of deep
models such as Deep Boltzmann Machines (DBM) [27].

2. Coupling Edges for Image Segmentation
We first introduce the standard pairwise Markov ran-

dom field (MRF) model for interactive segmentation and
the extension proposed in [11]. Let V be the set of pix-
els in the image I we want to segment, and let the set
E contain all pairs of neighbouring pixels – these are the

1We will describe the model in detail in section 2.1.
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(a) (b) (c) (d) (e)

Figure 1: (a) User-specified seeds; (b) Ground truth segmentation; (c) MAP solution of standard pairwise MRF model; (d) Global
minimum of cooperative cut energy obtained by our method. The (summed) weight of the boundary is 4849 in (c) and 11273 in (d). 95%
of the 1546 edges cut in (c) belong to 3 out of 11 types, while for (d) the 3 types include 99% of the 3932 edges cut. (e) type ID of cut
edges: colour channel C (R, G, or B) of the pixel is set to 255 if this pixel is incident to a cut edge whose type is C. The coupling potentials
Ψg for the three main edge types contribute a total penalty that is 0.35 times the pairwise penalty in (c) and only 0.2 times the pairwise
penalty in (d), and hence solutions like (d) are favored.

edges in the MRF. The label of each pixel i ∈ V is given
by a binary random variable xi whose labels (0/1) denote
the label “figure”/“ground”.The set of all variables xi for
i ∈ V is denoted by x. The posterior distribution P (x|I) =
(1/Z) exp(−E(x)) of the pairwise model factorizes into
unary potentials φi(xi) and pairwise potentials ψij(xi, xj).
The corresponding Gibbs energy E is

E(x) =
∑

i∈V
φi(xi) +

∑
ij∈E

ψij(xi, xj). (1)

The functions φi encode the likelihood of pixel i belonging
to figure or ground, while ψij is a contrast sensitive prior

ψij(xi, xj) = θ(Ii, Ij)|xi − xj | (2)
= θ(Ii, Ij)(xi + xj − 2xixj) (3)

The function θ(Ii, Ij) modulates the penalty for assigning
different labels to pixels i and j based on their respective
appearances (colours) Ii and Ij .

2.1. The Short-Boundary Bias and Coupling Edges

The above pairwise model can be illustrated by a grid-
structured graph, where each potential ψij corresponds to
an edge. A labeling corresponds to a partition of this graph,
and label discontinuities between neighboring pixels corre-
spond to cut edges. The potential (1) grows linearly with the
weights θij of cut edges or neighboring pixels with differing
labels. In particular, in the special case of θ being constant,
the contribution of the pairwise potentials to the energy is a
linear function of the perimeter of the figure. This “short-
boundary” prior leads to erroneous segmentations of objects
with fine structures, as illustrated in Figure 1.

Although a large number of neighbouring pixels in such
images may take different labels, the majority of these pix-
els has a consistent appearance. For instance, in Figure 1,
most pixel pairs along the object boundary have a consistent
(brown-white) transition. Therefore, [11] proposed a prior

that penalizes not the length but the diversity of the object
boundary, i.e., the number of types of transitions. This new
potential does not suffer from the short-boundary bias.

“Diversity” is defined by partitioning the set E of pixel
pairs into groups (types) Eg (g ∈ G) of similar pairs, and
a congruous boundary uses few types. The new energy
considers all pairs of a type simultaneously and gives a
“discount” for using edges (pairs) of the same type. The
discount results from a monotonically increasing concave
function F , and the resulting energy function is

E(x) =
∑
i∈V

φi(xi) +
∑
g∈G

Ψg(x), where (4)

Ψg(x) = F
(∑

ij∈Eg
ψij(xi, xj)

)
, (5)

As the values of the pairwise penalty terms are grouped to-
gether using a higher-order potential, [11] referred to this
model as coupling edges, or cooperative cuts. It is easy
to see that the above formulation is a generalization of the
standard pairwise MRF model. If F is the identity, then the
energy in Equation (4) is equal to the standard energy (1).

In principle, unless the edge groups g have a specific
structure, the algorithms for MAP inference in the model (4)
will be indifferent and apply to any set G of groups. Edge
groups that lead to a bias for congruous boundaries can be
computed by clustering graph edges [11].

MAP Inference. Inferring the Maximum a Posteriori
(MAP) solution of the models above corresponds to min-
imizing their respective energy functions. It is well known
that the energy function (1) is submodular if all θ(Ii, Ij) ≥
0 and can then be minimized in polynomial time by solv-
ing an (s, t)-mincut problem [4]. In contrast, the higher-
order potential (5) makes MAP inference in general NP-
hard, and therefore [11] proposed an iterative bound min-
imization algorithm for approximate inference. We show
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next that higher order potentials of the form (5) can be con-
verted into a pairwise model by the addition of some binary
auxiliary variables.

3. Lower Envelope Representations for Edge
Coupling Potentials

One of the key challenges posed by higher-order mod-
els is efficient MAP inference. Since inference in pairwise
models is very well studied, one popular technique is to
transform the higher-order energy function into that of a
pairwise random field. In fact, any higher-order pseudo-
boolean function can be converted to a pairwise one, by in-
troducing additional auxiliary random variables [2, 10, 13].
Unfortunately, the number of auxiliary variables grows ex-
ponentially with the arity of the function, and in practice
this approach is only feasible for higher-order functions
with few variables. If however the higher-order function
contains inherent “structure”, then MAP inference can be
practically feasible even with terms that act on thousands
of variables [14, 12, 25, 29]. This is the case for the edge-
coupling potentials (4).

We explain our transformation using the example of a
special cooperative cut potential:

Ψg(x) = min
{∑

ij∈Eg
θij |xi − xj |, T

}
, (6)

where T is a truncation parameter. If θij = T , then this
potential indicates whether any pixel pair corresponding to
a group g has been assigned different labels. Incorporated
into energy (4), this potential penalizes the number of types
of transitions in the boundary.

We apply the lower-envelope representation for higher-
order functions proposed by Kohli & Kumar [13] to the
function (6). Instead of using lower envelopes of linear
(modular) functions as they did, our transformation will em-
ploy lower envelopes of general second order functions. A
similar application of lower envelopes was used in [9], but
for different potentials in a different application.

Theorem 1. The problem of minimizing the cooperative cut
potential (6) is equivalent to minimizing a pairwise function
with additional |Eg|+ 1 auxiliary variables.

Proof. Our proof is constructive. First, we rewrite the po-
tential in Equation (6) as a third order pseudo-boolean func-
tion by representing it as a lower envelope of the two func-
tions f1(x) =

∑
ij∈Eg θij |xi − xj | and f2(x) = T . The

transformation relies on a switching variable hg ∈ {0, 1}:

Ψg(x) = min
hg

(
∑
ij∈Eg

θij |xi − xj |)hg + T (1− hg) (7)

= min
hg

T + (
∑
ij∈Eg

θij |xi − xj | − T )hg

= min
hg

T + (
∑
ij∈Eg

θij(xi + xj − 2xixj)− T )hg

= min
hg

T +
∑
ij∈Eg

θij(xihg + xjhg − 2xixjhg)− Thg

Each third-order term −xixjhg can be rephrased as a pair-
wise energy via an auxiliary boolean variable zij :

−xixjhg = min
zij∈{0,1}

−zij(xi + xj + hg − 2). (8)

Thus, by adding the set of binary variables z = {zij |
(i, j) ∈ Eg} and the variable hg , we have rewritten the po-
tential (6) as the quadratic pseudo-boolean function (QPBF)

Ψg(x) =T + min
hg,z

{ ∑
ij∈Eg

θij((xi + xj − 2zij)hg (9)

− 2(xi + xj)zij + 4zij)− Thg
}
.

The factor graph induced by the above transformation is
illustrated in Figure 2. This factor graph has a multi-layer
structure similar to a Deep Boltzmann Machine [27]. In
total, we need to add |G|+

∑
g∈G |Eg| auxiliary variables.

Representation of arbitrary concave functions. Above,
we have transformed the truncation potential (6) into a
quadratic pseudo-boolean function. This technique applies
to any cooperative cut potential of the form (5) for a nonde-
creasing concave function F : we express (or approximate)
F as the lower envelope of multiple linear functions, and
this envelope is represented by adding multiple potentials
of the form (6) with different values of θij and T [13, 15].
This strategy has been used to express higher order po-
tentials that are concave functions of the value of modular
function [15]. If the linearizations are chosen appropriately,
then it can be shown that our algorithm computes an FPTAS
(fully polynomial-time approximation scheme). We prove
Lemma 1 [16], using results from [7, 22].

Lemma 1. If |G| is fixed, there is an FPTAS for minimiz-
ing energy (5) with any nondecreasing, nonnegative con-
cave function F , i.e., there is an algorithm that, for any
ε > 0, runs in time polynomial in n and 1/ε and returns a
solution x with E(x) ≤ (1 + ε)E(x∗).

Asymmetric potentials. In the derivation above, we as-
sumed that ψij(xi, xj) is symmetric. Alternatively, we may
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Figure 2: (a) The Markov Random Field model for image segmentation. (b) The cooperative cut model [11]. (c) The transformed
cooperative cut model.

assume that the pairwise potentials are directed, i.e., that
ψij(xi, xj) = θ(Ii, Ij)(xi − xj)+ = θ(Ii, Ij)(xi − xixj),
and we have one potential ψij 6= ψji for each direction.
These correspond to directed edges in the graph. The po-
tentials (6) (and equally (5)) extend to directed edges too:

Ψg(x) = min
{∑

ij∈Eg
θij(xi − xj)+, T

}
. (10)

The two potentials ψij and ψji may belong to different
groups g; in that case they are discounted differently and in-
dependently. Theorem 1 can still be transferred to directed
edges too, using the same approach:

Corollary 1. The cooperative cut potential (10) is equiva-
lent to a pairwise potential with |Eg|+1 auxiliary variables.

4. Exact MAP Inference in Deep Fields
To perform MAP inference, we now aim to minimize the

derived QPBF and compute

arg min
x

E(x) = arg min
x

∑
i∈V

φi(xi) +
∑
g∈G

Ψg(x), (11)

or arg min
x,h,z

∑
i∈V

φi(xi) +
∑
g∈G

νg(x, hg, z)

where νg(x, hg, z) =

T+
∑
ij∈Eg

θij((xi+xj−2zij)hg−2(xi+xj)zij+4zij)−Thg

It is well known that submodular QPBFs can be mini-
mized exactly in polynomial time by transforming them
to an equivalent (s, t)-mincut problem [18, 2]. However,
these results do not apply to our energy, because it con-
tains non-submodular terms that make QPBFs NP-hard to
minimize in general. That said, a number of methods
have been proposed for minimizing such functions approx-
imately [2, 3, 26]. But the problem (11) contains one addi-
tional binary variable per edge zij and per group of edges

hg , and this large number makes any such direct relaxation
approach computationally very expensive.

However, only the terms (xi + xj)hg make the energy
(11) non-submodular; all other terms of the function are
submodular. If we fix the value of the variables hg , then the
non-submodular pairwise terms (xi+xj)hg become linear,
and the resulting submodular energy function can be mini-
mized exactly and efficiently. As there are only few hg , we
compute the MAP solution of the overall energy by finding
the global minimum for each possible assignment of the hg
using a graph cut algorithm [5]. Even more, if we fix the
hg , we can directly use Equation (7) and do not need to ex-
plicitly implement the zij variables. The complexity of this
algorithms is O(τ(|V|, |E|)2|G|) where τ(n,m) is the com-
plexity of computing a single st-mincut in a graph with n
nodes and m edges, and |G| is the number of edge groups.

Efficient computation using dynamic graph cuts. To
speed up the search over all possible assignments of hg we
use a dynamic max-flow algorithm [17] that rapidly solves
a set of related max-flow problems. The dynamic algorithm
is particularly effective when the max-flow problems are
similar to each other, and therefore we order the subprob-
lems of minimizing the projections so that they only differ
in the value of one hg . Moreover, we sort the variables hg
in decreasing order with respect to the total weight of edges
that correspond to type g and make variables with lower
weight change their value more often than those with higher
weight. These heuristics accelerate the exhaustive search by
a factor of 5 to 100 depending on the problem instance.

In addition, we investigate three greedy heuristics that
are polynomial in the number |G| of types:
Greedy: Start with all hg = 1, and iteratively switch the

label of that hg whose switch to zero decreases the en-
ergy most; repeat until there is no more improvement.

Descent: Like Greedy, but applying the switch whenever
it improves the energy without searching for the best
switch.

1-pass: Pass over all variables hg only once, applying all

197219721974



switches that decrease the energy.
All of these heuristics require testing whether changing the
value of a particular variable hg will reduce the energy.
This test can be performed efficiently by computing min-
marginals via dynamic graph cuts [17].

Inference by Truncation. If we want to avoid search-
ing over all assignments of the group indicator variables
hg , then we can alternatively employ the common heuristic
of simply pruning out the non-submodular terms, here the
terms (xi + xj)hg , from the energy [19, 24]. This trunca-
tion results in an under-approximation of the energy since
the deleted terms contributed a positive cost. Minimizing
the remaining energy using graph cuts, we obtain solutions
h∗ and x∗. If h∗g = 0 or x∗i = x∗j = 0 for all (i, j) ∈ g, then
x∗ is the MAP solution since no additional cost is added
by the missing terms. For our energies here, pruning is not
necessary since the exact algorithm is fast enough, and we
do not truncate in the sequel.

4.1. Multiple labels

Equivalently to binary MRFs, our higher-order models
can be extended to variables xi ∈ L that take labels in
a discrete space L. One way to generalize the potentials
(5) to multiple labels is to define label-sensitive couplings
Ψg(x) =

∑
`∈L F`(

∑
ij∈Eg ψij(xi, xj)1[xi=`]). Using an

analogous approach as in the binary case, we introduce aux-
iliary variables hg,`. As in the binary case, fixing all vari-
ables hg,` makes the energy pairwise and the potentials met-
ric, and techniques such as the α-expansion algorithm [6]
apply. Again, we iterate over the hg,`, and the same heuris-
tics for speed-ups as above can be used.

Lemma 2. The multi-label model can be reduced to a non-
submodular pairwise model analogous to the binary model.
If |L| and |G| are constants, then, with the help of |L||G|
auxiliary variables, we can compute an exact expansion
move in polynomial time.

Theorem 2. The expansion move algorithm for co-
operative multiple-label potentials of the form (5) re-
turns a solution x that is a 2c-approximation to the
optimal solution x∗: E(x) ≤ 2cE(x∗), for c =
max`1,`2,g F

′
`1

(0)/F ′`2(
∑
ij∈Eg θij).

Theorem 2 is proved in [16]. We tested the algorithm
on the MSRC data set. The example results in Figure 5
show that label-sensitive coupling improves detailed seg-
mentations in the multi-label case too.

5. Experiments
We compare the performance of the proposed model and

algorithms to state-of-the-art methods for image segmen-
tation. Following [11], we use the problem of interac-
tive binary image segmentation and their “twigs and legs”

Figure 3: Potential used in the experiments (Eqn. (12)).

dataset2. In the experiments, we use piece-wise linear cou-
pling functions F with one breakpoint of the form

Ψg(x) = (12)

λmin

∑
ij∈Eg

θij(xi − xj)+,
∑
ij∈Eg

αθij(xi − xj)+ + θg


where θg = ϑ

∑
ij∈Eg θij , and ϑ, α ∈ (0, 1]. The three

parameters have the following effect: λ controls the weight
of the high-order potentials relative to the unary ones, α
defines the slope after the breakpoint, and ϑ controls the
position of the breakpoint which is located at θg

1−α , depicted
in Figure 3. Like [11], we use the directed potentials (10).

The unary potentials are computed by fitting a Gaus-
sian mixture model with 5 components to pixels of seed
regions. We use an 8-neighbor graph structure and
contrast-dependent Potts pairwise potentials θij = 2.5 +
47.5 exp(−0.5‖Ii − Ij‖2/σ), where σ is the mean of the
color gradients in the image. Edge types are obtained by k-
means clustering of graph edges. The feature of an edge
(i, j) used for clustering is the three-dimensional vector
Ii − Ij of RGB differences. Edges between identically col-
ored pixels form an extra type in which discontinuities are
penalized linearly, i.e., θg0 =

∑
ij∈Eg0

θij . We compare the
standard MRF approach, the iterative algorithm in [11], the
new exact algorithm and the three heuristics.

Qualitative and Quantitative Evaluation. Figures 4 and
5 show qualitative results of different algorithms on the bi-
nary and multi-label image segmentation problems. The ex-
act solutions of the cooperative cut potentials extract fine
structures much better than the standard model, and slightly
improve on the approximate solutions. Table 1 displays a
quantitative comparison. We use the following criteria:
Energy: energy (4) averaged over the data. The energy for each

image is normalized such that 0.0 is the global minimum
and 1.0 is the energy for the MAP labeling of the standard
pairwise MRF.

2http://ssli.ee.washington.edu/˜jegelka/cc/
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ε = 0.300% ε = 0.134% ε = 0.125%

ε = 0.963% ε = 0.619% ε = 0.578%

ε = 6.729% ε = 0.374% ε = 0.378%

ε = 0.432% ε = 0.230% ε = 0.171%

(a) (b) (c) (d) (e)

Figure 4: Qualitative results of different algorithms and models. (a) Images from the dataset; (b) Ground truth segmentation;(c) MAP
solution from a standard pairwise MRF model; (d) result of the iterative approximation from [11]; (e) Global minimum of cooperative cut
energy (4) obtained by our method. ε denotes the percentage of incorrectly labeled pixels.

Time: average running time, including time for building the re-
quired data structures, executing the algorithm and exclud-
ing I/O operations. All algorithms are implemented in C++,
using the min-cut/max-flow algorithm from [5]3.

Hamming: pixel-wise Hamming distance to the ground truth.
The distance is divided by the number of labeled pixels in
the image and then averaged over the data.

Twig: Hamming distance computed on the hand-labeled thin
structure regions from [11]

HAC: Hamming distance Averaged over Class size, where the
penalty for mislabeling a pixel is inversely proportional to
the number of pixels of that class in the ground truth labeling.

JD: Jaccard distance between the set of foreground pixels in the
current segmentation and the corresponding set in the ground
truth; also known as the intersection/union metric and used
for evaluation e.g. in the PASCAL VOC segmentation chal-
lenge.

The comparison shows a favorable performance of the
exact algorithm and its heuristic variations. Moreover,
these results demonstrate that not only an approximate
minimum as in [11], but in particular the global minimum
of the cooperative cut energy results in very low errors,
especially compared to the standard model. This suggests

3http://pub.ist.ac.at/˜vnk/software/maxflow-v3.02.src.tar.gz

that cooperative cut energies very well capture the partic-
ularities of segmentation problems and settles the question
raised in the introduction.

Multiple labels. We also tested the multi-label potential
that is sketched in Section 4.1 on the MSRC data. The edge
groups and function F were defined analogous to the bi-
nary case, and we compute exact expansion moves, and the
unary potentials were learned as GMMs as in the binary
case (details in [16]). However, we found that the ground
truth labeling on the MSRC data is not very detailed on
fine structures such as trees, and too coarse to be used for
qualitatively evaluating the details of segmentation results.
Therefore, Figure 5 only shows example quantitative results
that nevertheless suggest beneficial effects of edge coupling
for detailed multi-label segmentations too.

6. Conclusions and Discussion

In this paper, we explored a hierarchical model that is
equivalent to the cooperative cut model of [11]. The asso-
ciated exact algorithm and the proposed speed-ups have a
number of implications.
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Image Ground Truth Pairwise RF results Our result
ε = 3.00% ε = 2.63%

ε = 2.39% ε = 2.14%

ε = 5.12% ε = 4.53%

Figure 5: Qualitative results with multiple labels. (Column 1) Images from the dataset; (Column 2) Ground truth segmentation;(Column
3) MAP solution from a standard pairwise MRF model; (Column 4) result of our hierarchical model using the inference method described
in section 4.1. The Error ε denotes the percentage of incorrectly labeled pixels, keeping in mind that he ground truth labeling is not very
accurate at the level of details.

Table 1: Quantitative results for the “twig&legs” dataset [11] with 10 edge classes. Parameters are chosen in such a way that
the global minimum of the energy has maximum Hamming accuracy: λ = 1.5, 104ϑ = 50, α = 0.

Method Energy Hamming Twig HAC Jaccard (JD) Time
GraphCut 1.00 1.61 39.10 9.96 23.34 0.19
It. bound min. [11] 0.39 0.77 26.93 4.98 13.27 0.47
Global Minimum 0.00 0.73 21.82 4.45 12.37 14.32
Greedy 0.00 0.73 21.82 4.45 12.37 5.05
Descent 0.00 0.73 21.82 4.45 12.37 2.37
1 pass of descent 0.03 0.87 22.19 5.20 13.88 1.23

Implications for Cooperative Cuts. The algorithm solves
the class of cooperative cut potentials proposed in [11] ex-
actly or within a factor of (1 + ε) and thereby admits to
show that not only an approximate solution (as in [11]), but
also the true MAP solution of those potentials overcomes
the short-boundary bias that poses severe problems to the
standard pairwise model for image segmentation. The ex-
act solutions improve over state-of-the-art results for image
segmentation.

NP-hardness. The exact algorithm does not violate the NP-
hardness of cooperative cuts. Instead, it demonstrates that
the potentials (5) are fixed-parameter tractable: if the num-

ber of edge groups is assumed to be constant (and in practice
it is small), then the algorithm runs in polynomial-time. The
proposed heuristics make our approach a practical alterna-
tive and in the experiments always find the optimal solution.
If |G| is not used explicitly in the analysis and is not fixed,
then no polynomial-time algorithm exists, in fact, then not
even a constant-factor approximation for the class of poten-
tials (6) is possible [31].

Implications beyond segmentation. In general, the pro-
posed algorithms are an effective and very practical method
for a sub-class of minimum cuts with submodular costs
[11] – the images in the experiments have up to 6 · 105 x-
variables. By defining different groups of coupled edges,
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this class of functions is applicable beyond fine-structured
segmentation, and the results in this work extend to all these
applications. In particular, the accelerated algorithms and
theoretical results also apply to models in [12, 9, 31] that
all have the form (5) or (6). The Pn functions defined in
Equations (14) and (15) in [12] are of the form (5) here, and
shown to be amenable to expansion moves if the pairwise
potentials form a semi-metric. By Corollary 1, the condition
of a semi-metric can be relaxed to asymmetric potentials. In
addition, the formulation here does not require general sub-
modular minimization (which can be impractical and also
does not in general apply if asymmetric potentials are used).
Beyond computer vision, functions of the form (6) also in-
clude label costs [31] that arise in computer security.

Deep models. The explicit hierarchical formulation in Fig-
ure 2 shows that the higher-order potentials for improved
segmentations can be expressed as a deep multi-layer pair-
wise model with additional hidden (auxiliary) variables.
This viewpoint suggests a comparison to previously pro-
posed deep models for image labeling. Compared to those,
our model has a large number of hidden units represent-
ing the useful higher-order interactions. Furthermore, its
connectivity structure is well-specified and sparse. Con-
sidering the expressive power of cooperative cut models
[11, 9, 12, 31], this connection highlights the representa-
tional power of multi-layer random fields.
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