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Abstract

Due to their high fault-tolerance, ease of installation
and scalability to large networks, distributed algorithms
have recently gained immense popularity in the sensor net-
works community, especially in computer vision. Multi-
target tracking in a camera network is one of the funda-
mental problems in this domain. Distributed estimation al-
gorithms work by exchanging information between sensors
that are communication neighbors. Since most cameras are
directional sensors, it is often the case that neighboring
sensors may not be sensing the same target. Such sensors
that do not have information about a target are termed as
“naive” with respect to that target. In this paper, we pro-
pose consensus-based distributed multi-target tracking al-
gorithms in a camera network that are designed to address
this issue of naivety. The estimation errors in tracking and
data association, as well as the effect of naivety, are jointly
addressed leading to the development of an information-
weighted consensus algorithm, which we term as the Multi-
target Information Consensus (MTIC) algorithm. The in-
corporation of the probabilistic data association mecha-
nism makes the MTIC algorithm very robust to false mea-
surements/clutter. Experimental analysis is provided to sup-
port the theoretical results.

1. Introduction
Due to the availability of modern low-cost sensors, large-

scale camera networks are being used in applications such
as wide-area surveillance, disaster response, environmen-
tal monitoring, etc. Multiple sensors can cover more area,
provide views from different angles and the fusion of all
their measurements may lead to robust scene understanding.
Among different information fusion approaches, distributed
schemes are often chosen over centralized or hierarchical
approaches due to their scalability to a large number of sen-
∗This work was partially supported by ONR award N00014091066

titled Distributed Dynamic Scene Analysis in a Self-Configuring Multi-
modal Sensor Network.
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Figure 1: In this figure, there are five sensing nodes,
C1, C2, . . . , C5 observing an area (black rectangle) consisting of
seven targets T 1, T 2, . . . T 7. The solid blue lines show the com-
munication channels between different nodes. This figure also de-
picts the presence of “naive” nodes. For example, C1 gets di-
rect measurements about T 1 which it shares with its immediate
network neighbor, C2. However, the rest of the cameras, i.e.,
C3, C4, C5 do not have direct access to measurements of T 1 and
thus are naive w.r.t. T 1’s state.

sors, ease of installation and high tolerance to node fail-
ure. In this paper, we focus on the problem of distributed1

multi-target tracking in a camera network. To motivate the
core contribution of this work, we first describe the inter-
relationship between distributed estimation and camera net-
works.

Most of the work in distributed tracking has been in the
multi-agent systems community [7]. The methods there as-
sume that each target can be viewed by each sensor which
may not be true for many application scenarios, especially
for a camera network (see Fig. 1) where each camera can
view only a limited portion of the entire area. This limits the

1We use the term distributed to mean that each camera processes its
own data and arrives at a final solution through negotiations with its neigh-
bors; there is no central processor. The term distributed has been also used
in computer vision to refer to a camera network that is distributed over a
wide area but where the processing is centralized.
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observability of each sensor to a subset of all the targets. In
this paper, our goal is to design a distributed multi-target
tracking scheme which is suited for such sensors with lim-
ited field-of-view (FOV).

A distributed multi-target tracking problem can be di-
vided into three sub-problems, namely, distributed informa-
tion fusion, data association (measurement to track associ-
ation) and dynamic state estimation. Among many types
of distributed information fusion approaches, consensus al-
gorithms [7] are schemes where each node, corrects its own
state using information only from its network neighbors. By
iteratively doing so, each node can individually compute a
global function of the prior state and measurement infor-
mation of all the nodes (e.g. average). The important fact
is that consensus is reached without all-to-all communica-
tion; thus consensus based frameworks do not require any
specific communication network topology and are generally
applicable to any arbitrary, connected network. The consen-
sus estimates asymptotically converge to the global result.
However, in a finite time window, only a limited number of
iterations can be performed due to limited bandwidth. Due
to the simplicity and robustness of consensus algorithms,
they have been used in many applications, including esti-
mation problems in sensor networks (e.g., [11, 12, 13]).

In a distributed multi-target tracking scheme, each node
may need to maintain a state estimate of each target even
though it is not directly observing the target, since the nodes
will need to collaborate with each other. Each node gets
measurements of the targets and must associate the mea-
surements to the appropriate target’s track. In a consensus-
based scheme, each node maintains its own copy of the state
estimates of all the targets which makes consensus-based
approaches inherently appropriate for our problem.

When applying these approaches to camera networks,
we need to be aware of one particular issue with vision sen-
sors. As exemplified in Fig. 1, many of the cameras may
not see a target and it is very much possible that neighboring
cameras on the communication graph do not see the same
target. We call a node ‘naive’ about a target when there are
no measurements of that target available in its local neigh-
borhood (consisting of the node and its immediate network
neighbors). In such a situation, in a consensus-based frame-
work, due to limited local observability and limited number
of consensus iterations, the naive node has access to less
information about the target’s state.

A well-known consensus-based scheme for distributed
state estimation is the Kalman Consensus Filter (KCF) [6].
The KCF algorithm was originally designed for the scenario
where each node has an observation of the target. The qual-
ity of neighboring node’s prior information was not taken
into account in KCF. Thus, naive nodes may adversely af-
fect the overall performance of the network. Moreover, the
cross-covariance terms between the state estimates at differ-

ent nodes were not incorporated in the estimation process in
KCF as they are usually hard to compute in a distributed en-
vironment. Due to these reasons, the performance of KCF
often suffers when applied to a camera network. Recently,
the Information-weighted Consensus Filter (ICF) [5] was
proposed to address the issues with both naivety and opti-
mality for the distributed state estimation problem.

The above mentioned methods assume that there is a sin-
gle target, or for multiple targets, the measurement-to-track
association is provided. For a multi-target tracking prob-
lem, the data association and the tracking steps are highly
inter-dependent. The performance of tracking will affect
the performance of data association and vice-versa. Thus,
an integrated distributed tracking and data association so-
lution is required where the uncertainty from the tracker
can be incorporated in the data association process and
vice-versa. Among many single-sensor multi-target data
association frameworks, the Multiple Hypothesis Tracking
(MHT) [9] and the Joint Probabilistic Data Association Fil-
ter JPDAF [1] are two popular schemes. MHT usually
achieves higher accuracy at the cost of high computational
load. On the other hand, JPDAF achieves reasonable results
at much lower computation cost. As distributed solutions
are usually applied to low-power wireless sensor networks
where the computational and communication power is lim-
ited, the JPDAF scheme will be utilized in the proposed dis-
tributed multi-target tracking framework.

The main contribution of this paper is the tight integra-
tion of data association with state-of-the-art distributed sin-
gle target tracking methods, taking special care of the issue
of naivety, and demonstration of its performance in the case
of a camera network. In Sec. 2 the problem formulation is
provided, along with a review of different consensus-based
estimation methods. In Sec. 3, the JPDAF approach is re-
viewed and extended to a multi-sensor framework. In Sec.
4, the Multi Target Information Consensus (MTIC) tracker
is proposed. Finally, in Sec. 5, the proposed method is com-
pared against others experimentally.

Related Work The purely decentralized nature of the fu-
sion algorithm differentiates it from the majority of multi-
camera tracking approaches in the computer vision litera-
ture. For example, in [4], a centralized approach for track-
ing in a multi-camera setup was proposed where the cam-
eras were distributed spatially over a large area. In [2],
an efficiently target hand-off scheme was proposed but no
multi-camera information fusion was involved. However, in
this paper, we deal with the distributed multi-target track-
ing problem where there is no centralized server, the pro-
cessing is distributed over all the camera nodes and no
target hand-off strategy is required. Various methods for
distributed multi-target tracking have been proposed in the
sensor-networks literature. In [3], a solution to the dis-
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tributed data association problem was proposed by means of
the message passing algorithm based on graphical models in
which iterative, parallel exchange of information among the
nodes viewing the same target was required. However, in
our proposed framework, no special communication pattern
is assumed. In [8, 10, 11], the distributed multi-target track-
ing schemes did not account for naivety or the presence of
cross-correlation between the estimates at different nodes.
The method proposed herein is based on the properties of
the ICF [5], which deals with both these issues.

2. Distributed Estimation and Naivety

2.1. Problem Formulation

Consider a sensor network with NC sensors. There are
no specific assumptions on the overlap between the FOVs of
the sensors. The communication in the network can be rep-
resented using an undirected connected graph G = (C, E).
The set C = {C1, C2, . . . , CNC

} contains the vertices of
the graph and represents the sensor nodes. The set E con-
tains the edges of the graph which represents the available
communication channels between different nodes. The set
of nodes having direct communication channel with node
Ci (sharing an edge with Ci) is represented by Ni. There
are NT targets ({T 1, T 2, . . . TNT }) in the area viewed by
the sensors. It is assumed thatNC andNT is known to each
sensor.

The state of the jth target is represented by the vector
xj ∈ Rp. For example, for a tracking application in a cam-
era network, xj might be a vector containing ground plane
position and velocity components. The state dynamics of
target T j are modeled as

xj(t+ 1) = Φxj(t) + γj(t). (1)

Here Φ ∈ Rp×p is the state transition matrix and the pro-
cess noise γj(t) is modeled as N (0,Qj).

At time t, each sensor Ci, depending on its FOV and the
location of the targets, gets li(t) measurements denoted as
{zni }

li(t)
n=1. The sensors do not know a priori, which mea-

surement was generated from which target. Under the hy-
pothesis that the observation zni is generated from T j , it is
assumed that zni was generated by the following observation
model

zni = Hj
ix

j
i + νj

i . (2)

Here, Hj
i ∈ Rm×p is the observation matrix for node Ci

for T j . The noise νj
i ∈ Rm is modeled as a zero mean

Gaussian random variable with covariance Rj
i ∈ Rm×m.

Each node also maintains a prior/predicted state esti-
mate x̂j−

i (t) (and its covariance Pj−
i (t)) for each target.

Throughout this paper, the inverse of the state covariance

matrix (information/precision matrix) will be used and de-
noted as Jj

i = (Pj
i )
−1. We assume that the initial prior

state estimate and information matrix is available to each
node for each target upon its detection. Our goal is to track
each target at each node, i.e., find the state estimate for each
target at each node by using the prior and measurement in-
formation available in the entire network in a distributed
fashion. A critical step in this process is association of mea-
surements with targets, which is the topic of this paper.

2.2. Average consensus

Average consensus [7] is a popular distributed algorithm
to compute the arithmetic mean of some values {ai}NC

i=1.
Suppose, each node i has a quantity ai. We are inter-
ested in computing the average value of these quantities i.e.

1
NC

∑NC

i=1 ai, in a distributed manner.
In average consensus algorithm, each node initializes its

consensus state as ai(0) = ai and iteratively communicates
with its neighbors and updates its own state information.
At the beginning of iteration k, a node Ci sends its previous
state ai(k−1) to its immediate network neighborsCi′ ∈ Ni

and also receives the neighbors’ previous states ai′(k − 1).
Then it updates its own state information using the follow-
ing equation

ai(k) =ai(k − 1) + ε
∑
i′∈Ni

(ai′(k − 1)− ai(k − 1))

=A(ai(k − 1)) (3)

Here A(ai) is a shorthand mathematical operator for a sin-
gle step of average consensus (defined as the above). By
iteratively doing so, the values of the states at all the nodes
converge to the average of the initial values. The average
consensus algorithm can be used to compute the average of
vectors and matrices by applying it to their individual el-
ements separately. The rate parameter ε should be chosen
between 0 and 1

∆max
, where ∆max is the maximum degree

of the network graph G. Choosing larger values of ε will
result in faster convergence, but choosing values equal or
more than ∆max will render the algorithm unstable. Aver-
age consensus assumes all agents have an estimate for all
elements of a and that all estimates are of equal accuracy
and uncorrelated. None of these assumptions usually apply
to camera network.

Consensus algorithms have been extended to perform
various tasks in a network of agents such as linear alge-
braic operations like SVD, least squares, PCA, GPCA [13].
These distributed estimation frameworks have been applied
in various fields including camera networks for distributed
implementations of 3-D point triangulation, pose estimation
[12], and action recognition [11]. The average consensus
algorithm is applicable only for a static parameter estima-
tion problem. For a dynamic state estimation problem, a
predictor-corrector solution approach is needed.
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2.3. Kalman Consensus Filter

The Kalman Consensus Filter (KCF) [6] is a popular dis-
tributed dynamic state estimation framework. KCF utilizes
the average consensus algorithm to average the state esti-
mates over different nodes at each time step. The KCF state
estimation equations are given in the following.

x̂+
i = x̂−i +

(
J−i + Bi

)−1 (
bi −Bix̂

−
i

)
+

ε

1 + ||(J−i )−1||
(J−i )−1

∑
i′∈Ni

(
x̂−i′ − x̂−i

)
(4)

J+
i = J−i + Bi (5)

where,

bi =
∑

i′∈Ni∪i
HT

i′Ri′
−1zi′ , Bi =

∑
i′∈Ni∪i

HT
i′Ri′

−1Hi′ (6)

In (4), the first term is the prior state estimate, the second
term is the innovation from the measurements in the local
neighborhood of the sensor and the third term is an averag-
ing term over the priors in the local neighborhood. Note that
each neighbor’s prior x̂−i′ is considered equally in the esti-
mation process. This can lead to poor estimates with naive
nodes due to difference in information content.

2.4. Information Weighted Consensus

In [5], the Information-weighted Consensus Filter (ICF)
algorithm was proposed, which is a distributed state estima-
tion framework that accounts for the naivety issue and can
achieve optimal performance equivalent to a centralized so-
lution. There, the prior information {x̂−i ,J

−
i } and measure-

ment information {zi,Ri} are first fused into an informa-
tion vector vi ∈ Rp and an information matrix Vi ∈ Rp×p

at each node as follows:

vi =
1

NC
J−i (t)x̂−i (t) + HT

i Ri
−1zi (7)

Vi =
1

NC
J−i (t) + HT

i Ri
−1Hi (8)

Next, using the average consensus algorithm, the average of
these vectors and matrices are computed at each node over
the network as v̄ and V̄. Finally, the optimal state estimate
and its information matrix is computed as,

x̂+
i (t) = V̄−1v̄, J+

i (t) = NCV̄ (9)

The reason that the performance of ICF is not affected by
naivety is that the prior information state of each node is
appropriately weighted by the prior information matrix J−i
at that node before sending it to the neighbors. Thus a node
which has less information about a target’s state is given
less weight in the overall estimation process. As proved in
[5], the ICF reaches the maximum a posteriori estimate of
the centralized solution.

3. Multi-target data association
The KCF and the ICF algorithms assume that the data

association (which measurement belongs to which target)
is known. For a realistic multi-target state estimation prob-
lem, solving data association is itself a challenging prob-
lem even in the centralized case. Here we briefly review
the Joint Probabilistic Data Association Filter (JPDAF) [1]
algorithm which is the starting point of the proposed multi-
sensor multi-target distributed tracking algorithm.

The JPDAF is a single sensor algorithm, thus the sensor
index i is unnecessary and will be dropped. A double super-
script z̃jn is required for the hypothesis that measurement
zn is associated with target T j . At time t, the measurement
innovation z̃jn and the innovation covariance Sj of mea-
surement zn for target T j is computed as,

z̃jn = zn −Hjx̂j− (10)
Sj = HjPj−HjT + Rj (11)

The probability that T j is the correct target to associate with
zn is βjn and the probability that none of the measurements
belong to T j is βj0. See [1] for details about computing
these probabilities. The Kalman gain Kj , mean measure-
ment yj and mean measurement innovation ỹj for target
T j are defined as

Kj = Pj−HjT (Sj)−1, (12)

yj =

l∑
n=1

βjnzn, (13)

ỹj =
l∑

n=1

βjnz̃jn = yj − (1− βj0)Hjx̂j−. (14)

The state and its covariance estimate for JPDAF is given as

x̂j+(t) = x̂j−(t) + Kjỹj (15)

Pj+(t) = Pj−(t)− (1− βj0)KjSj
(
Kj
)T

+KjP̃j
(
Kj
)T

(16)

where,

P̃j =

(
l∑

n=1

βjnz̃jn
(
z̃jn
)T)− ỹj

(
ỹj
)T
. (17)

3.1. Data Association: Information Form

In the following, we first express the JPDAF algorithm
in the information form, from which we will extend it to
the multiple sensor case. This will then be used in the next
section to derive the distributed multi-target tracking algo-
rithm.

The JPDAF estimation equations (15-16) can be written
in the information form as the following (see supplementary
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materials):

x̂j+ =
(
Jj− + Uj

)−1(
Jj−x̂j−+ uj+ βj0Ujx̂j−) (18)

Jj+ = Jj− + Gj (19)

where,

Gj = Jj−Kj
((

Cj
)−1−KjTJj−Kj

)−1

KjTJj− (20)

Cj = (1− βj0)Sj − P̃j (21)

uj = HjTRj−1
yj and Uj = HjTRj−1

Hj .(22)

In Eqn. (18), Jj−x̂j− is the weighted prior information
and uj +βj0Ujx̂j− is the weighted measurement informa-
tion (taking data association uncertainty βj0 into account).
The sum of these two terms represents the total informa-
tion available to us if we have a single sensor. To incor-
porate measurement information from an additional sensor,
the weighted measurement information from that sensor has
to be added to this summation. This is a property of estima-
tors in the information form for combining measurements
from multiple sensors, when noise in those measurements
is uncorrelated with each other, which we assume in this
work. In a similar fashion, the information matrices (Uj

i

and Gj
i ) from additional sensors should also be added to

the appropriate terms. This gives us the multi-sensor cen-
tralized estimate in the information form as the following:

x̂j+ =

(
Jj− +

NC∑
i=1

Uj
i

)−1

(
Jj−x̂j− +

NC∑
i=1

(
uj
i + βj0

i Uj
i x̂

j−
))

,(23)

Jj+ = Jj− +

NC∑
i=1

Gj
i . (24)

4. Distributed Multi-Target Tracking In a
Camera Network

We are now ready to present the main result of the paper.
Based on the data association results derived in the previous
section and the ICF, we will now derive a distributed multi-
target tracking algorithm. We shall call this as the Multi
Target Information Consensus (MTIC) tracker.

Now, in a distributed system, each node will have its
own prior information {x̂j−

i ,Jj−
i }. However, consensus

guarantees that the information at all nodes converge to the
same value. This is an important point that was utilized in
the ICF framework and similarly, it will be utilized here.
Assuming that consensus was reached at the previous time
step, the prior information at each node will be equal, i.e.,

Jj−
i = Jj− and x̂j−

i = x̂j− ∀i, j. From this, we can rewrite
(23) and (24) as follows:

x̂j+
i =

(
NC∑
i=1

(
Jj−
i

NC
+ Uj

i

))−1

NC∑
i=1

(
uj
i +

(
Jj−
i

NC
+ βj0

i Uj
i

)
x̂j−
i

)

=

(
NC∑
i=1

Vj
i

)−1NC∑
i=1

vj
i =

(∑NC

i=1 Vj
i

NC

)−1 ∑NC

i=1 vj
i

NC
(25)

Jj+
i =

NC∑
i=1

(
Jj−

NC
+ Gj

i

)
=

NC∑
i=1

Wj
i = NC

∑NC

i=1 Wj
i

NC
(26)

where,

Vj
i =

Jj−
i

NC
+ Uj

i , Wj
i =

Jj−
i

NC
+ Gj

i

and vj
i = uj

i +

(
Jj−
i

NC
+ βj0

i Uj
i

)
x̂j−
i (27)

The three averaging terms in (25) and (26) can be computed
in a distributed manner using the average consensus algo-
rithm [7]. The algorithm is summarized in Algorithm 1.
Note that if a sensor does not get any measurement for T j ,
i.e., βj0

i = 1, uj
i , Uj

i and Gj
i are set to zero vectors and

matrices (due to no measurement information content).

4.1. Comparison of KCF, ICF and MTIC
We now compare the state estimation equations of KCF

(38-39), ICF (40-41) and MTIC (42-43) for one particular
target and a single consensus iteration step. The derivation
of these particular forms of KCF, ICF and MTIC are shown
in the supplementary material.
KCF:

x̂+
i = x̂−i +

(
J−i +Bi

)−1 (
bi −Bix̂

−
i

)
+

ε

1 + ||(J−i )−1||
(J−i )

−1
∑

i′∈Ni

(
x̂−i′ − x̂−i

)
(38)

J+
i = J−i +Bi (39)

ICF:

x̂+
i = x̂−i +

(
A
(
J−i
NC

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

) )
(40)

J+
i = NC

(
A
(
J−i
NC

)
+A(Ui)

)
(41)
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Algorithm 1 MTIC for target T j at node Ci at time step t

Input: x̂j−
i (t), Jj−

i (t), Hj
i , Rj

i .

1) Get measurements: {zni }
li(t)
n=1

2) Compute Sj
i , yj

i , βj0
i , Kj

i and Cj
i

3) Compute information vector and matrices:

uj
i ← HjT

i Rj
i

−1
yj
i (28)

Uj
i ← HjT

i Rj
i

−1
Hj

i (29)

Gj
i ← Jj−

i Kj
i

(
Cj

i

−1 −Kj
i

T
Jj−
i Kj

i

)−1
Kj

i

T
Jj−
i (30)

4) Initialize consensus data

vj
i (0) ← uj

i +

(
Jj−
i

N
+ βj0

i Uj
i

)
x̂j−
i (31)

Vj
i (0) ←

Jj−
i

N
+ Uj

i (32)

Wj
i (0) ←

Jj−
i

N
+ Gj

i (33)

5) Perform average consensus (Sec. 2.2) on vj
i (0), Vj

i (0) and Wj
i (0)

independently for K iterations.
6) Estimate:

x̂j+
i ←

(
Vj

i (K)
)−1

vj
i (K) (34)

Jj+
i ← NCWj

i (K) (35)

7) Predict:

x̂j−
i (t+ 1) ← Φx̂j+

i (t) (36)

Pj−
i (t+ 1) ← ΦPj+

i (t)ΦT + Q (37)

Output: x̂j+
i (t), Pj+

i (t), x̂j−
i (t+ 1), Pj−

i (t+ 1).

MTIC:

x̂+
i = x̂−i +

(
A
(
J−i
NC

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x̂

−
i + ε

∑
i′∈Ni

J−i′

NC

(
x̂−i′ − x̂−i

)
+A(βi0Uix̂

−
i )
)

(42)

J+
i = NC

(
A
(
J−i
NC

)
+A(Gi)

)
(43)

Note that the differences in the prior states between the
neighboring nodes, x̂−i′ − x̂−i are weighted by the corre-
sponding neighbor’s prior information matrix J−i′ in ICF
and MTIC. This handles the issue with naivety as the inno-
vation from a naive neighbor’s prior state will be given less
weight. However, in KCF, the innovation from each neigh-
bor’s prior is given equal weight which may deteriorate the
performance of KCF in the presence of naive nodes.

The term ui, in (40) and (42) are not exactly the same, as
ICF assumes perfect data association and computes ui from

the appropriate measurement zji . Whereas, in MTIC, ui is
computed from the mean measurement yj

i .
Another difference between (40) and (42) is the term,

A(βi0Uix̂
−
i ), which is present in MTIC due to the rea-

son that there is chance with probability βi0 that none of
the measurements belong to the target, i.e., the probabil-
ity that the estimate is biased by wrong measurements is
βi0. This bias is accounted for by incorporating informa-
tion A(βi0Uix̂

−
i ) from the prior estimate. The information

matrix update equations, i.e., (41) and (43), are different for
ICF and MTIC as the data association uncertainty is incor-
porated in Gi for MTIC. This shows the tight integration
of the data association and tracking steps in MTIC, as the
uncertainty of one step is considered in the other.

5. Experiments
In this section, we evaluate the performance of the

proposed MTIC algorithm in a simulated environment
and compare it with other methods: JPDA-KCF, ICF
with nearest-neighbor data association (ICF-NN), ICF with
ground truth data association (ICF-GT) and centralized
Kalman Filter with ground truth data association (CKF-
GT). In ICF-NN, the nearest observation zni is associated
with a target T j only if the target is predicted to be in Ci’s
FOV. For ICF-NN, the data association is estimated using
the Hungarian algorithm. ICF-GT converges to CKF-GT in
several iterations, thus ICF-GT will provide a performance
bound for the other iterative approaches. Note that ICF-GT
and CKF-GT requires the knowledge of the ground truth
data association, whereas MTIC, JPDA-KCF and ICF-NN
do not.

We simulate a camera network with NC = 15 cameras
monitoring an area containing NT = 3 targets roaming ran-
domly in a 500 × 500 area. Each camera has a rectangular
FOV of 200 × 200 and they are randomly placed in such
a way that together they cover the entire area. A circulant
network topology with a degree of 2 (at each node) was cho-
sen for the network connectivity. Each target was randomly
initialized at a different location with random velocity. The
target’s state vector was a 4D vector, with the 2D position
and 2D velocity components. The targets evolved for 40
time steps using the target dynamical model of (1). The
state transition matrix (used both in track generation and
estimation) Φ and process covariance Q were chosen as

Φ=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Q=


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

.
The initial prior covariance Pj−

i (1) =
diag(100, 100, 10, 10) was used at each node for each
target. The initial prior state x̂j−

i (1) was generated by
adding zero-mean Gaussian noise of covariance P−i (1)
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to initial the ground truth state. The observations were
generated using (2). The observation matrix Hj

i was set as

Hj
i=

[
1 0 0 0
0 1 0 0

]
.

If the ground truth state was within the FOV of a sensor,
a measurement was generated from the ground truth track
using the measurement model (2) with Ri = 100I2. The
consensus rate parameter ε was set to 0.65/∆max where
∆max = 2, as each node was connected to two other nodes.
Total number of consensus iterations per measurement step,
K, was set to 20. The parameters for computing the as-
sociation probabilities, βjn

i ’s, were set as follows (see [1]
for details). False measurements (clutter) were generated at
each node at each measurement step using a Poisson pro-
cess with λ = 1

32 . Here, λ is the average number of false
measurements per sensor per measurement step. Gate prob-
ability PG was set to 0.99. The probability of detecting a
target in each camera, PD was computed by integrating the
probability density function of the predicted measurement,
(i.e., N (Hj

i x̂
j−
i ,Sj

i )) over the area visible to the camera.
To measure the performance of different approaches, one

of the parameters was varied while keeping the others to
their aforementioned values. As a measure of performance,
we computed the estimation error, e, defined as the Eu-
clidean distance between the ground truth position and the
estimated posterior position. The simulation results were
averaged over multiple simulation runs with 100 randomly
generated sets of tracks. The mean (µe) of the errors for
different methods are shown in the following graphs as the
results of different experiments.

First, the amount of clutter was varied and the results are
shown in Fig. 2. The average amount of clutter per sensor
per measurement step, λ, was varied from 1

256 to 8. From
the figure it can be seen that both MTIC and JPDA-KCF
is very robust even to a very high amount of clutter while
ICF-NN is highly sensitive to it (note that the x-axis of the
plot is in semilog scale). Due to this reason, to be able to
observe the performance of ICF-NN while other parameters
were varied, the amount of clutter was kept low at λ = 1

32
for the other experiments.

Fig. 3a shows the performance of different approaches
where the proximity of the tracks were varied. The prox-
imity was defined in terms of average number of overlaps
across all pairs of tracks present in a simulation run. Two
tracks were assumed to be overlapping if the Euclidean dis-
tance between their ground truth states was below 50 units
at the same time step. From Fig. 3a, it can be seen that as the
overlap increases, the performance of different approaches
deteriorated. However, MTIC performs better than JPDA-
KCF and ICF-NN. It can be seen that for a high overlap,
the error did not increase. This is mainly due to the reason
that most of the tracks with high overlap were close to each

other after they separated. Thus, although the data associa-
tion failed, the tracking error did not grow much.
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Figure 2: Performance comparison by varying amount of clutter.

To show the convergence of the different methods, the
total number of iterations per measurement step,K was var-
ied. It can be seen from Fig. 3b that with an increased num-
ber of iteration, ICF-GT approached the centralized method
CKF-GT. It can also be seen that MTIC outperforms JPDA-
KCF and ICF-NN for any given K.

Next, the total number of sensors NC and total number
of targets NT were varied and the results are shown in Figs.
3c and 3d. With more sensors, the total number of avail-
able measurements increases which should increase estima-
tion performance. However, with an increase in the number
of sensors, the total number of false measurements also in-
creases which can adversely affect the performance. Due to
these two contradictory issues, the performance remained
almost constant with different number of sensors. With the
increase in the number of targets, the problem of data as-
sociation became more challenging which had an adverse
effect in the performance of the different algorithms as can
be seen in Fig. 3d.

6. Conclusion

In this paper, we have proposed the Multi Target In-
formation Consensus (MTIC) algorithm, which is a gen-
eralized consensus-based distributed multi-target tracking
scheme applicable to a wide-variety of sensor networks.
MTIC handles the issues with naivety which makes it appli-
cable to sensor networks where the sensors may have lim-
ited FOV (which is the case for a camera network). The
estimation errors in tracking and data association, as well
as the effect of naivety, are integrated into a single efficient
algorithm. This makes MTIC very robust to false measure-
ments/clutter. Experimental analysis shows the strength of
the proposed method over existing ones.
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(a) Varying proximity of tracks
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(c) Varying NC
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(d) Varying NT

Figure 3: Performance comparison by varying different parameters.
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