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Abstract
How should a video be represented? We propose a new

representation for videos based on mid-level discriminative
spatio-temporal patches. These spatio-temporal patches
might correspond to a primitive human action, a seman-
tic object, or perhaps a random but informative spatio-
temporal patch in the video. What defines these spatio-
temporal patches is their discriminative and representative
properties. We automatically mine these patches from hun-
dreds of training videos and experimentally demonstrate
that these patches establish correspondence across videos
and align the videos for label transfer techniques. Further-
more, these patches can be used as a discriminative vocabu-
lary for action classification where they demonstrate state-
of-the-art performance on UCF50 and Olympics datasets.

1. Introduction
Consider the video visualized as a spatio-temporal vol-

ume in Figure 1a. What does it mean to understand this

video and how might we achieve such an understanding?

Currently, the most common answer to this question in-

volves recognizing the particular event or action that occurs

in the video. For the video shown in the figure it would

simply be “clean and jerk” (Figure 1b). But this level of de-

scription does not address issues such as the temporal extent

of the action [27]. It typically uses only a global feature-

based representation to predict the class of action. We addi-

tionally would like to determine structural properties of the

video such as the time instant when the person picks up the

weight or where the weights are located.

We want to understand actions at a finer level, both spa-

tially and temporally. Instead of representing videos glob-

ally by a single feature vector, we need to decompose them

into their relevant “bits and pieces”. This could be ad-

dressed by modeling videos in terms of their constituent

semantic actions and objects [10, 30, 4]. The general frame-

work would be to first probabilistically detect objects (e.g,

weights, poles, people) and primitive actions (e.g, bending

and lifting). These probabilistic detections could then be

combined using Bayesian networks to build a consistent and

coherent interpretation such as a storyline [11] (Figure 1c).

So, the semantic objects and actions form primitives for

representation of videos. However, recent research in ob-

ject and action recognition has shown that current computa-

tional models for identifying semantic entities are not robust

enough to serve as a basis for video analysis [7]. Therefore,

such approaches have, for the most part, only been applied

to restricted and structured domains such as baseball [11]

and office scenes [30].

Following recent work on discriminative patch-based

representation [2, 31], we represent videos in terms of dis-

criminative spatio-temporal patches rather than global fea-

ture vectors or a set of semantic entities. These spatio-

temporal patches might correspond to a primitive human

action, a semantic object, human-object pair or perhaps a

random but informative spatio-temporal patch in the video.

They are determined by their discriminative properties and

their ability to establish correspondences with videos from

similar classes. We automatically mine these discriminative

patches from training data consisting of hundreds of videos.

Figure 1(d)(left) shows some of the mined discriminative

patches for the “weightlifting” class. We show how these

mined patches can act as a discriminative vocabulary for

action classification and demonstrate state-of-the-art perfor-

mance on the Olympics Sports dataset [23] and the UCF-50

dataset1. But, more importantly, we demonstrate how these

patches can be used to establish strong correspondence be-

tween spatio-temporal patches in training and test videos.

We can use this correspondence to align the videos and per-

form tasks such as object localization, finer-level action de-

tection etc. using label transfer techniques [6, 22]. Specifi-

cally, we present an integer-programming framework for se-

lecting the set of mutually-consistent correspondences that

best explains the classification of a video from a particular

category. We then use these correspondences for represent-

ing the structure of a test video. Figure 2 shows an exam-

ple of how aligned videos (shown in Figure 1(d)(right)) are

used to localize humans and objects, detect finer action cat-

egories and estimate human poses.

2. Prior Work
Prior approaches to video representation can be roughly

divided into three broad categories. The first and earliest

represent actions using global spatio-temporal templates,

1http://server.cs.ucf.edu/vision/public html/data.html
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(b) Event Recognition 
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(c) Recognizing Semantic Primitives 

(d) Our Approach – Recognizing Discriminative Patches 
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Figure 1. Given a query video (a), one can represent it using global feature vector and use it for action classification (b). Another possible

representation is to use constituent semantic entities (c) and use object/action detectors for understanding. Instead, we propose a mid-level

representation for videos (d). Our approach discovers representative and discriminative spatio-temporal patches for a given action class

(d-left). These patches are then used to establishing correspondence followed by alignment (d-right).

such as motion history [1] and spatiotemporal shapes [9]

.

The second class of approaches is based on bag of fea-

tures models [17, 24, 28], where sparse spatio-temporal in-

terest points, dense interest points [32], page-rank features

[21], or discriminative class-specific features [15], are com-

puted as part of a bag of words representation on local fea-

tures. Typically these representations are most appropriate

for classification; they are not well-suited as action detec-

tors or for establishing correspondence.

The third class of approaches is structural and decom-

poses videos into constituent parts. These parts typically

correspond to semantic entities such as humans and ob-

jects [10, 34, 14]. While these approaches attempt to de-

velop a rich representation and learn the structure of the

videos in terms of constituent objects, one of their inher-

ent drawbacks is that they are highly dependent on the

success of object and action detection algorithms. There-

fore, such approaches have not been used for “data in the

wild”. A more recent approach is based on using discrim-

inative spatio-temporal patches rather than semantic enti-

ties [12, 26]. For example, [26] uses manually selected

spatio-temporal patches to create a dictionary of discrimi-

native patches for each action class. These patches are then

correlated with test video patches and a new feature vector

is created using pooling. There are several issues here: 1)

What is the criteria for selecting spatio-temporal patches to

create the dictionary? 2) How many patches are needed to

capture all the variations in the data? Motivated by work

in object recognition [7], recent approaches have attempted

to decompose an action or event into a set of discriminative

“parts” or spatio-temporal “patches” designed to capture the

local spatio-temporal structure of the data [33, 23]. How-

ever, these approaches still focus on the problem of classi-

fication and cannot establish strong correspondence or ex-

plain why a video is classified as a member of certain class.

Our approach is similar in spirit to work on poselets in

object recognition [2]. The key idea is that instead of using

semantic parts/constituents, videos are represented in terms

of discriminative spatio-temporal patches that can establish

correspondences across videos. However, learning pose-

lets requires key-point annotation, which is very tedious for

videos. Furthermore, for general videos it is not even clear

what should actually be labeled. Recent approaches have

tried to circumvent the key point annotation problem by us-

ing manually-labeled discriminative regions [16] or object-

ness criteria [29] to create candidate discriminative regions.

We do not use any priors (such as objectness) to select dis-

criminative patches; rather we let the data select the patches

of appropriate scale and location. We build upon the re-

cent work of Singh et al. [31] and extract “video poselets”

from just action labels. However, the huge scale of our data

(videos) precludes direct use of [31]. Therefore, we pro-

pose an efficient exemplar-SVM based procedure to clus-

ter the data without partitioning the whole space. We also

propose a principled IP framework for selecting correspon-

dences at the test time. Also, note that our approach is dif-

ferent from multiple instance learning [25] since we do not
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Figure 2. Strong alignment allows us to richly annotate test videos

using a simple label transfer technique.

assume that there exists a consistent spatio-temporal patch

across positive examples (positive instance in the bag); in-

stead we want to extract multiple discriminative patches per

action class depending on the style in which an action is

performed.

3. Mining Discriminative Patches
Given a set of training videos, we first find discriminative

spatio-temporal patches which are representative of each

action class. These patches satisfy two conditions: 1) they

occur frequently within a class; 2) they are distinct from

patches in other classes. The challenge is that the space of

potential spatio-temporal patches is extremely large given

that these patches can occur over a range of scales. And,

the overwhelming majority of video patches are uninterest-

ing, consisting of background clutter (track, grass, sky etc).

One approach would be to follow the bag-of-words

paradigm: sample a few thousand patches, perform k-

means clustering to find representative clusters and then

rank these clusters based on membership in different ac-

tion classes. However, this has two major drawbacks:

(a) High-Dimensional Distance Metric: K-means uses

standard distance metrics such as Euclidean or normalized

cross-correlation. These standard distance metrics do not

work well in high-dimensional spaces(In our case, we use

HOG3D [13] to represent each spatio-temporal patch and

the dimensionality of the feature space is 1600). For exam-

Figure 3. Retrieval using Euclidean Distance. (Left) Query spatio-

temporal patch. (Right) Retrieval using euclidean distance metric.

ple, Figure 3 shows a query patch (left) and similar patches

retrieved using Euclidean distance (right). The Euclidean

distance fails to retrieve visually similar patches. Instead,

we learn a discriminative distance metric to retrieve simi-

lar patches and, hence, representative clusters. (b) Parti-
tioning: Standard clustering algorithms partition the entire

feature space. Every data point is assigned to one of the

clusters during the clustering procedure. However, in many

cases, assigning cluster memberships to rare background

patches is hard. Due to the forced clustering they signif-

icantly diminish the purity of good clusters to which they

are assigned.

We address these issues by using an exemplar-based

clustering approach [5] which avoids partitioning the en-

tire feature space. Every spatio-temporal patch is consid-

ered as a possible cluster center and we determine whether

or not a discriminative cluster for some action class can be

formed around that patch. We use the exemplar-SVM (e-

SVM) approach of Malisiewicz et al. [22] to learn a discrim-

inative distance metric for each cluster. However, learn-

ing an e-SVM for every spatio-temporal patch in the train-

ing dataset is computationally infeasible; instead, we use

motion based sampling to generate a set of initial cluster

centers and then use simple nearest neighbor verification to

prune candidates. The following section presents the details

of this algorithm.

3.1. Approach
Available training data is partitioned into training and

validation sets. The training partition is used to learn a dis-

criminative distance metric and form clusters and the vali-

dation partition is used to rank the clusters based on repre-

sentativeness. We sample a few hundred patches from each

video in the training partition as candidates. We bias the

sampling to avoid background patches - patches with uni-

form or no motion should be rejected.

However, learning an e-SVM for all the sampled patches

is still computationally infeasible (Assuming 50 training

videos per class and 200 sampled patches, we have approx-
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imately 10K candidate patches per class). Therefore, we

perform pruning using a simple nearest-neighbor approach.

For each spatio-temporal patch, we determine its k (=20,

typically) nearest neighbors in the training partition. We

score each patch based on how many nearest neighbors are

within class as opposed to the number out of class. Based

on this ranking, we select a few hundred patches per action

class and use the e-SVM to learn patch-specific discrimina-

tive distance metrics. These e-SVMs are then used to form

clusters by retrieving similar patches from the training and

validation partitions. Finally, we re-rank the clusters using

the approach described next.

3.2. Ranking
Our goal is to select a smaller dictionary (set of repre-

sentative patches) from the candidate patches for each class.

Our criteria for ranking consists of two terms: (a) Appear-
ance Consistency: We use the SVM classifier confidence

as the measure of appearance consistency. The consistency

score is computed by summing up the SVM detection scores

of the top (10) detection scores from the validation parti-

tion. (b) Purity: To represent the purity/discriminativeness

of each cluster we use tf-idf scores: the ratio of how many

patches it retrieves from videos of the same action class to

the number of patches retrieved from videos of different

classes.

All patches are ranked using a linear combination of the

two scores. Figure 4 shows a set of top-ranked discrimi-

native spatio-temporal patches for different classes selected

by this approach. As the figure shows, our spatio-temporal

patches are quite representative of various actions. For ex-

ample, for discus-throw, our approach extracts the patch

corresponding to the turning motion before the throw (see

1st column and 2nd row) and for pull-ups it extracts the

up-down motion of the body (see 1st column, 1st row).

As expected, our discriminative patches are not always se-

mantically meaningful. Also, notice how our clusters ex-

hibit good visual correspondences, which can be exploited

for label transfer. To further demonstrate that our patches

are quite representative and capture the essence of actions,

we extracted spatio-temporal patches that exemplify “Gang-

nam” style dance. We use 30 gangnam dance step youtube

videos as our positive set and 340 random videos as a neg-

ative set. Figure 5 shows the top discriminative patches

selected which indeed represent the dance steps associated

with gangnam-dance.

4. Analyzing Videos
4.1. Action Classification

We first evaluate our discriminative patches for action

classification. We select the top n e-SVM detectors from

each class and apply them in a sliding cuboid fashion to

a test video. Similar to object-bank [20], we construct a

feature vector based on the results of the e-SVMs. We di-

vide each video into a hierarchical 2-level grid and spatially

max-pool the SVM scores in each cell to obtain the feature

vector for a video. We then learn a discriminative SVM

classifier for each class using the features extracted on the

training videos.

4.2. Beyond Classification: Explanation via Dis-
criminative Patches

We now discuss how we can use detections of discrim-

inative patches for establishing correspondences between

training and test videos. Once a strong correspondence is

established and the videos are aligned, we can perform a

variety of other tasks such as object localization, finer-level

action detection, etc. using simple label transfer (see Fig-

ure 6).

Our vocabulary consists of hundreds of discriminative

patches; many of the corresponding e-SVMs fire on any

given test video. This raises a question: which detections to

select for establishing correspondence. One could simply

use the SVM scores and select the top-scoring detections.

However, individual e-SVM detections can lead to bad cor-

respondences. Therefore, we employ a context-dependent

approach to jointly select the e-SVM detections across a

video. We formulate a global cost function for selection

of these detections and use relaxed integer programming to

optimize and select the detections.

Context-dependent Patch Selection: For simplicity, we

consider the top detection of each e-SVM as a candidate de-

tection for selection, although the approach can be extended

to allow multiple (but bounded) numbers of firings of any

patch. Therefore, if we have a vocabulary of size N , we

have N possible candidate detections ({D1, D2, . . . , DN})
to select from. For each detection Di, we associate a binary

variable xi which represents whether or not the detection of

e-SVM i is selected. Our goal is to select the subset of de-

tections which: (a) have high activation score (SVM score);

(b) are consistent with the classified action; (c) are mutually

consistent. We first classify the video using the methodol-

ogy described in Section 4.1. If our inferred action class is

l, then our goal is to select the xi such that the cost function

Jl is minimized.
Jl = −

∑

i

Aixi − w1

∑

i

Clixi + w2

∑

i,j

xiPijxj (1)

where Ai is the zero centered normalized svm score

for detection i, Cli is the class-consistency term which se-

lects detections consistent with action class l and Pij is

the penalty term which encourages selection of detections

which are consistent and discourages simultaneous detec-

tions from e-SVMs which are less likely to occur together.

We explain each term in detail:

• Appearance term: Ai is the e-SVM score for patch

i. This term encourages selection of patches with high

e-SVM scores.

• Class Consistency: Cli is the class consistency term.

This term promotes selection of certain e-SVMs over

257225722574



Figure 4. Examples of highly ranked discriminative spatio-temporal patches.

Figure 5. Top Discriminative patches selected for “Gangnam”

style.

others given the action class. For example, for the

weightlifting class it prefers selection of the patches

with man and bar with vertical motion. We learn Cl

from the training data by counting the number of times

that an e-SVM fires for each class.
• Penalty term: Pij is the penalty term for selecting a

pair of detections together. We penalize if: 1) e-SVMs

i and j do not fire frequently together in the training

data; 2) the e-SVMs i and j are trained from different

action classes. We compute co-occurrence statistics of

pairs of eSVMs on the training data to compute the

penalty.

Optimization: The objective function results in an Integer

Program which is an NP-hard problem. For optimizing the

cost function, we use the IPFP algorithm proposed in [19].

IPFP algorithm is very efficient and the optimization con-

verges in 5-10 iterations. IPFP solves quadratic optimiza-

tion functions of the form:

X∗ = argmax(XT
n MXn) s.t. 0 ≤ Xn ≤ 1

To employ IPFP, we transform the cost function to the

above form through the following substitution: Xn =

(
1
X

)

and M =

(
1 (A+C)T

2
(A+C)

2 −P

)
.

The solution obtained by the IPFP algorithm is generally

binary, but if the output is not binary then we threshold at

0.5 to binarize it. The set of patches which maximizes this

cost function is then used for label transfer and to infer finer

details of the underlying action.

5. Experimental Evaluation
We demonstrate the effectiveness of our representation

for the task of action classification and establishing cor-

respondence. We will also show how correspondence be-

tween training and test videos can be used for label transfer

and to construct detailed descriptions of videos.
Datasets: We use two benchmark action recogni-

tion datasets for experimental evaluation: UCF-50 and

Olympics Sports Dataset [24]. We use UCF-50 to qual-

itatively evaluate how discriminative patches can be used

to establish correspondences and transfer labels from train-

ing to test videos. We manually annotated the videos in

13 of these classes with annotations including the bound-
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ing boxes of objects and humans (manually annotating the

whole dataset would have required too much human effort).

We also performed a sensitivity analysis (w.r.t. to vocabu-

lary size) on this subset of UCF-50 dataset. Quantitatively,

we evaluate the performance of our approach on action

classification on the UCF-50 and the complete Olympics

dataset.
Implementation Details: Our current implementation

considers only cuboid patches, and takes patches at scales

ranging from 120x120x50 to the entire video. Patches

are represented with HOG3D features (4x4x5 cells with

20 discrete orientations). Thus, the resulting feature has

4x4x5x20 = 1600 dimensions. At the initial step, we sample

200 spatio-temporal patches per video. The nearest neigh-

bor step selects 500 patches per class for which e-SVMs are

learned. We finally select a vocabulary of 80 e-SVMs per

class. During exemplar learning, we use a soft-margin SVM

with C fixed to 0.1. The SVM parameters for classification

are selected through cross validation.

5.1. Classification Results
UCF Dataset: The UCF50 dataset can be evaluated in

two ways: videowise and groupwise. We tested on the more

difficult task of groupwise classification guaranteeing that

the backgrounds and actors between the training and test

sets are disjoint. We train on 20 groups and test on 5 groups.

We evaluate performance by counting the number of videos

correctly classified out of the total number of videos in each

class. Table 1 shows performance of our algorithm com-

pared to the action bank approach [26] on the 13 class sub-

set (run with same test-train set as our approach) and a bag-

of-words approach as a baseline. We also evaluated perfor-

mance with respect to vocabulary size. Table 4 shows the

performance variation with the number of e-SVM patches

trained per class. Finally, we evaluate action classification

for all 50 classes in UCF (group-wise) and get an improve-

ment of 3.32% over action-bank.
Olympics Dataset: We follow the same experimental

setting for splitting the data into test-train and employ the

same evaluation scheme (mAP) as used in [23]. Tables 2

and 3 show the performance of our approach versus previ-

ous approaches.

5.2. Correspondence and Label Transfer
We now demonstrate how our discriminative patches can

be used to establish correspondence and align the videos.

Figure 6 shows a few examples of alignment using the de-

tections selected by our framework. It can be seen that

our spatio-temporal patches are insensitive to background

changes and establish strong alignment. We also use the

aligned videos to generate annotations of test videos by sim-

ple label-transfer technique. We manually labeled 50 dis-

criminative patches per class with extra annotations such as

objects of interaction (e.g, weights in clean-and-jerk), per-

son bounding boxes and human poses. After aligning the

Action Class BoW(baseline) [26] Ours

Basketball 20.00 53.84 50.00

Clean and Jerk 40.00 85.00 95.65
Diving 58.06 78.79 61.29

Golf Swing 54.84 90.32 75.86

High Jump 12.90 38.46 55.56
Javeline Throw 29.03 45.83 50.00
Mixing 12.90 42.85 55.56
PoleVault 65.62 60.60 84.37
Pull Up 48.88 91.67 75.00

Push Ups 40.63 85.00 86.36
Tennis Swing 51.51 44.12 48.48

Throw Discus 63.64 75.00 87.10
Volleyball Spiking 24.24 43.48 90.90
Mean Classification 40.17 64.23 70.47

Table 1. Classification performance of our algorithm compared to

Action Bank [26] in groupwise division of dataset

Sport Class [23] [18] [3] Ours

High-jump 68.9 52.4 75.8 84.94
Long-jump 74.8 66.8 78.6 84.64
Triple-jump 52.3 36.1 69.7 83.29
Pole-vault 82.0 47.8 85.5 84.67
Gymnastics-Vault 86.1 88.6 89.4 82.58

Shot-put 62.1 56.2 65.9 83.55
Snatch 69.2 41.8 72.1 83.47
Clean-jerk 84.1 83.2 86.2 86.64
Javelin-throw 74.6 61.1 77.8 84.75
Hammer-throw 77.5 65.1 79.4 86.40
Discus-Throw 58.5 37.4 62.2 86.66
Diving-platform-10m 87.2 91.5 89.9 86.51

Diving-springboard-3m 77.2 80.7 82.2 86.44
Basketball-layup 77.9 75.8 79.7 88.60
Bowling 72.7 66.7 78.7 88.27
Tennis-serve 49.1 39.6 63.8 83.37

Table 2. Quantitative Evaluation on Olympics Sports Dataset.

Mean results are shown in the next table.

videos we transfer these annotations to the new test videos.

Figure 6 shows the transfer of annotations. These ex-

amples show how strong correspondence can allow us to

perform tasks such as object detection, pose estimation and

predicting temporal extent. For example, detecting the golf

club in the golf-swing case is extremely difficult because

the golf club occupies very few pixels in the video. But our

strong alignment via motion allows us to transfer the bound-

ing box of the golf-club to the test video. Similarly, esti-

mating human poses for golf-swing and discus throw would

be extremely difficult. But again, using our discriminative

spatio-temporal patches we just align the videos using mo-

tion and appearance and then transfer the poses from the

training videos to test videos. We also did an informal eval-

uation of our pose transfer. For 50 randomly sampled trans-
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Approach mAP

Niebles et. al. [23] 71.1

Laptev et. al. [18] 62.0

William et. al. [3] 77.3

Adrien et. al. [8] 82.7

Ours 85.3

Table 3. Comparison on

Olympics Dataset

Patches per class mAP

20 62.52

30 65.25

50 67.57

80 70.47

100 70.17

Table 4. Effect of Vocabulary

Size on UCF13

fers, more than 50% of the transferred joints are within 15

pixels of the ground-truth joint locations. We also evaluated

the localization performance of our algorithm for humans in

the videos based on correspondence. We achieved 84.11%

accuracy in localizing persons using 50% overlap criteria.

Conclusion: We proposed a new representation for videos

based on spatio-temporal patches. We automatically mine

these patches from hundreds of training videos using

exemplar-based clustering approach. We have also shown

how these patches can be used to obtain strong correspon-

dence and align the videos for transferring annotations. Fur-

thermore, these patches can be used as a vocabulary to

achieve state of the art results for action classification.
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Figure 6. Rich Annotations using Label Transfer: Discriminative patches can be used to align test video with training videos. Once videos

are aligned, annotations such as object bounding boxes and human poses can be obtained by simple label transfer.
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