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Abstract

In this work, we address the multi-label Mumford-Shah
problem, i.e., the problem of jointly estimating a partition-
ing of the domain of the image, and functions defined within
regions of the partition. We create algorithms that are effi-
cient, robust to undesirable local minima, and are easy-to-
implement. Our algorithms are formulated by slightly mod-
ifying the underlying statistical model from which the multi-
label Mumford-Shah functional is derived. The advantage
of this statistical model is that the underlying variables: the
labels and the functions are less coupled than in the original
formulation, and the labels can be computed from the func-
tions with more global updates. The resulting algorithms
can be tuned to the desired level of locality of the solution:
from fully global updates to more local updates. We demon-
strate our algorithm on two applications: joint multi-label
segmentation and denoising, and joint multi-label motion
segmentation and flow estimation. We compare to the state-
of-the-art in multi-label Mumford-Shah problems and show
that we achieve more promising results.

1. Introduction
Many problems in computer vision are formulated as

Mumford-Shah problems, i.e., joint estimation problems

where two variables must be estimated from the image(s),

each variable depending on the other. For example, the im-

age denoising problem can be formulated using the frame-

work of Mumford and Shah [12] (see also [2]): the two

variables to be estimated are image edges and the denoised

image, the idea being that to denoise the image one must

have the edges (so as not to destroy the edges when smooth-

ing), but edges can be detected reliably only when one has

the denoised image. The estimate of one variable depends

on the other, but both variables are unknown, and the esti-

mation should be setup as a joint estimation problem where

the variables are estimated simultaneously. Some other ex-

amples of joint estimation problems are segmentation and

denoising [18, 20], 3D reconstruction [9], tomography [14],

image registration [19], and optical flow [17].

Despite the more than 25 year history of Mumford-Shah

problems, the problem remains a challenge to this day:

the high dimensional nature of the problem implies most

methods are sensitive to initialization and lock into unde-

sirable estimates, they are computationally expensive, and

further the implementation of existing methods are rela-

tively sophisticated, making it difficult for a non-specialist

to quickly implement.

In this paper, we address multi-label Mumford-Shah

problems, in which labels (representing regions in the im-

age) and functions must be estimated simultaneously. We

wish to emphasize that our method applies to any multi-

label Mumford-Shah problem, although our experiments

are illustrated on joint segmentation and denoising, and mo-

tion segmentation. Our approach leads to a simple imple-

mentation, faster convergence, and a better estimation of

the underlying variables, when compared to existing meth-

ods. Our method is less sensitive to initialization, and many

times a random initialization is effective, making full au-

tomation a possibility, unlike existing methods which re-

quire hand initialization.

Our approach is based on a slightly different underlying

statistical model than the original Mumford-Shah problem;

nevertheless, our model has the same generative capabili-

ties as the original statistical model. The advantage is that

the proposed model leads to a decoupling of the variables

to be estimated, and therefore the optimization problem be-

comes simpler. Further, the modified statistical model leads

to better and easier-to-implement optimization algorithms

in which the user is able to choose the degree of locality of

label updates (from fully global to fully local).

1.1. Related Work

The original Mumford-Shah problem for joint edge de-

tection and denoising was formulated in [12] (see also

[2, 7]) and was setup as a variational problem. In the case

that the edges in the image are restricted to be the bound-

aries of regions, forming a partitioning of the domain of

the image, the problem was reformulated as a joint segmen-

tation and denoising problem, and level set methods [13]

have been employed to implement a gradient descent for
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optimizing the functional [4, 20, 18]. Multiple regions are

considered in [20] approaches by using logical combina-

tions of multiple level sets. While the methods of [20, 18]

were ground breaking in providing a numerical solution,

the methods are sensitive to initialization and are usually

trapped in undesirable local minima, and the problem is ex-

acerbated with an increasing number of regions.

A more global approach to the two-label piecewise

smooth Mumford-Shah functional has been considered

in [8] using graph cuts [3] and it is shown to experimentally

yield lower energy solutions and converge faster than [18].

Our work is based on the idea in [8] that one can provide

better solutions to Mumford-Shah by looking at extensions

of the functions into the entire domain of the image. We

extend that work by first showing it comes from a different

statistical model, and that the algorithm considered comes

from an underlying energy that is being optimized. Further,

we extend it to multiple labels, extend the algorithm to any

desired locality of the label updates, and our algorithm does

not rely on graph cuts. In [5], a discrete approach to [20]

(multiple phases and a piecewise constant model) is imple-

mented using advanced discrete optimization techniques.

However, the case of a non-piecewise constant model was

not considered in [5], which is of interest in this work.

Recently, convex optimization techniques have been ap-

plied to various problems in computer vision (e.g., [10]),

the original Mumford-Shah problem of edge-detection and

image denoising is no exception. While the Mumford-Shah

functional is not convex, one can consider a relaxation, and

optimize the relaxed functional. This approach is consid-

ered by [15, 16] where the functional is lifted to a higher

dimensional space. The method does not to apply to the

case of multi-label piecewise smooth Mumford-Shah where

a partitioning of the domain is desired.

2. Mathematical Formulation
The multi-label Mumford-Shah functional is in the form:

E({Ri, fi}Ni=1) =
N∑
i=1

∫
Ri

D(I(x), fi(x)) dx+

αReg(fi) + βLen(∂Ri), (1)

subject to the constraint that Ri are mutually exclusive

and the union is the entire domain Ω of the image. Here

I : Ω → R
k is the image (with k-channels), fi : Ri → R

k

are approximations of the image in the regions Ri, ∂Ri de-

notes the boundary of Ri. Discrepancy of the data I(x)
to fi(x) is measured through D (e.g., D(I(x), fi(x)) =
|I(x) − fi(x)|2 for the original Mumford-Shah problem),

Reg(·) will impose spatial regularity of fi in the region Ri,

one possible choice is

Reg(fi) =

∫
Ri

|∇fi(x)|2 dx, (2)

Figure 1. Results of segmentation and reconstruction by our

method and the multiphase Mumford-Shah level sets method.

Even on the simple two-label case, the classical Mumford-Shah

functional has many local minima. [top] same input image (left

4 images) and different initializations (right 4 images). [mid-

dle] reconstruction (left 4 images) and segmentation (right 4 im-

ages) by the proposed method with the 4 different initializations

given above. [bottom] reconstruction (left 4 images) and segmen-

tation (right 4 images) by the multiphase Mumford-Shah level sets

method with the 4 different initialization given above. Parameters

are picked to obtain reasonable results for multiphase.

and the length penalty Len(·) is to ensure spatial regular-

ity of the region Ri (since Len(∂Ri) =
∫
Ω
|∇1Ri(x)| dx,

where 1Ri indicates the characteristic function of Ri).

2.1. Why is the Mumford-Shah Problem Difficult?

The fact that the Mumford-Shah problem is a high-

dimensional (i.e., fi and Ri are infinite dimensional) and

the non-convexity of the space of variables on which the

functional is defined implies that the energy has many local

minima. For example, Figure 1 shows that even in the case

of simple synthetic images, the Mumford-Shah functional

has many local minima. The reason that these problems are

difficult to optimize is due to the dependence of each of the

variables in the optimization on the other. Indeed, to define

a function fi, the region Ri must be known, but the region

Ri is unknown. Similarly, if the functions fi are known (i.e.,

the image reconstruction), then the discontinuities form the

boundaries of the regions, and the regions can be defined,

however the functions are unknown. Hence, there is a con-

straint that must be maintained between the function and the

regions.

2.2. Generative Model

We wish to undue the dependence of the functions on

the regions by considering a different underlying model for

image formation. We illustrate the idea on the joint image

denoising and segmentation problem, but it can be general-

ized in other Mumford-Shah (MS) problems. The underly-

ing model in the original MS denoising/segmentation prob-

lem is

I(x) = fi(x) + η(x), x ∈ Ri, fi : Ri → R
k (3)

p(fi|Ri) ∝ exp

(
−α

∫
Ri

|∇fi(x)|2 dx
)

(4)
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where η is a noise process, and the probability is the con-
ditional prior probability of the function fi. The generative

model implies that the regions Ri must be first chosen ac-

cording to a prior distribution, and the functions may then

be chosen according to a conditional distribution (condi-

tioned on the region). In the proposed formulation, we wish

to remove this conditional dependence, while still maintain-

ing the ability to generate all the images that the original

model can generate. Our model is the following:

I(x) = fi(x) + η(x), x ∈ Ri, fi : Ω→ R
k (5)

p(fi) ∝ exp

(
−α

∫
Ω

|∇fi(x)|2 dx
)

(6)

where we have defined the functions on the entire domain Ω
(and defined the regularity on Ω) rather than Ri, and there-

fore, the prior probability of the functions is no longer con-
ditional on the regions. Hence to generate the image, the

sampling of the regions and functions are done indepen-
dently. The benefit of the proposed model is that in opti-

mization, the regions can be updated more globally than in

the original model. The cost is a higher dimensional prob-

lem. However, the proposed formulation leads to a better

local optimum, and is even faster to converge than the tra-

ditional model as we show in experiments.

2.3. Optimization Algorithm

The proposed model leads to the following regularity

term in the energy:

Reg(fi) =

∫
Ω

|∇fi(x)|2 dx (7)

rather than (2), and the other terms in the energy (1) remain

the same:

E({Ri, fi}Ni=1) =
N∑
i=1

∫
Ri

D(I(x), fi(x)) dx+

α

∫
Ω

|∇fi(x)|2 dx+ βLen(∂Ri) (8)

Since the conditional dependence of the function on the re-

gion is now removed, the update of the regions can be com-

puted given the functions in a more global fashion, and the

optimal update of the functions can be computed given the

regions. Convex partitioning (e.g., [10]) techniques can be

applied, but we wish to apply a simpler method (with global

updates) to ensure easy implementation.

Given estimates of the functions fi : Ω → R
k, we de-

scribe how to obtain optimal estimates for the regions Ri.

Notice that, unlike the standard model, when optimizing in

Ri for a fixed fi, the second term in (8) can be ignored as

it does not depend on the region. For the moment, setting

β = 0, the globally optimal estimate is (given the functions

fi are fixed) is

Ri = {x : i = argmin
j

D(I(x), fj(x))}. (9)

The above optimum does not take into account the length

term that implies spatial regularity of the regions, and thus

we show how to integrate that next. We first approximate

the length term with the following region integral:∫
Ri

WRi
(x) dx, where WRi

(x) =
1

σ
(Gσ∗1Rc

i
)(x), (10)

where Gσ indicates a Gaussian smoothing kernel of stan-

dard deviation σ, and 1Rc
i

is the indicator function on Rc
i .

It can be shown from the co-area formula and the Lebesgue

differentiation theorem that the integral above converges to

the length as σ → 0. Therefore, when β > 0 we seek to

optimize

N∑
i=1

∫
Ri

(D(I(x), fi(x)) + βWRi(x)) dx. (11)

Note that we like to apply the same argument as before, and

write the optimal solution as a simple thresholding step as in

(9); however, part of the integrand depends on the region Ri

(when β �= 0), which is unknown. Fortunately, if one has an

approximation of Ri, R
′
i, then substituting WRi

, with WR′
i
,

and optimizing (11) with respect to Ri yields

Ri = {x : i = argmin
j

D(I(x), fj(x)) + βWR′
j
(x)}.

(12)

Notice this requires two parameters, β and σ; if desired to

avoid an additional parameter, one can get similar results

by simply replacing D(I(x), fj(x)) + βWR′
j
(x) with Gσ ∗

D(I(·), fj(·)), i.e., enforce spatial regularity by smoothing

the data term. As an initial approximation, we choose R′
i

to be (9). The equation (12) can then be iterated with the

previous estimate replacing R′
i. In practice, the iteration

is done only once, which yields an accurate segmentation,

as we show. As σ → 0 and D = 0, the iterative scheme

was considered in [11] and approximates mean curvature

flow as shown in [1, 6], and thus minimizes the length of

the boundary of the regions. In our numerical scheme, we

consider a fixed σ and only one iteration, the effects of a

large number of iterations are attained by a larger σ.

Also, given that regions Ri are fixed, we can compute a

global minimum for the fi (in the case of a convex D). For

the case that D(x, y) = |x− y|2, we have that

− αΔfi(x) = (I(x)− fi(x))1Ri
(x). (13)

We now have the following simple iterative algorithm to

obtain an approximate solution to the Mumford-Shah prob-

lem:
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1. Initialize {Ri}Ni=1

2. Solve for the fi :{
−αΔfi(x) = (I(x)− fi(x))1Ri

(x) x ∈ int(Ω)
∂fi
∂N = 0 x ∈ ∂Ω

where N denotes the normal to the boundary (Neu-

mann boundary conditions), and int(·) denotes interior.

The equations can be solved efficiently with a conju-

gate gradient solver.

3. Compute R′
i:

R′
i = {x ∈ Ω : i = argmin

j
|I(x)− fj(x)|2},

4. Update Ri:

Ri = {x ∈ Ω : i = argmin
j

Fj(x)},

where Fj(x) = |I(x)− fj(x)|2 + βWR′
j
(x).

5. Repeat 2-4 until Ri converges

3. From Global to More Local Updates
In the previous section, we have derived a more global

optimization algorithm than traditional local approaches for

optimizing Mumford-Shah-type problems. Our approach is

not a fully global method, however, each update of the re-

gions approximates a global optimum of the energy condi-

tioned on the functions, and each update of the functions is a

global optimizer conditioned on the regions. In many cases,

a global approach yields undesirable estimates that capture

undesired clutter (see Fig. 9). A local approach is less af-

fected by clutter if the initialization is close to the desired

solution, but is susceptible to local features (e.g., noise). In

this section, we show that the algorithm derived in the pre-

vious section can be generalized to an algorithm that is a

trade-off between the global updates and local updates of

traditional methods, yielding advantages of both.

Suppose first that one has an initial estimate of the labels

to be determined. Our global update of the regions given

the current functions implies that a pixel far from a region

can change to the same label as the far region. In contrast,

in local approaches, only pixels in one region that border

another region may switch to the bordering region. In order

to optimize the underlying energy in a way that is not too

global nor too local, we consider an algorithm in which a

pixel of a region may switch to another region only if the

pixel is sufficiently close to the region, the possibility of

a switch decreasing with distance to the candidate region.

The simple intuition above can be formalized mathemati-

cally as follows. Define a band of a region Ri as follows:

R1

R2

R3

B (R1)
B (R2)

B (R3)

B (R3)

p1

p2

p3

Figure 2. This figure illustrates quantities involved in the global-

local tradeoff algorithm for optimizing the multi-label Mumford-

Shah-type problem. The regions Ri with different labels are rep-

resented in solid colors and bands Bε(Ri) are represented by the

dashed lines. pi is allowed to transition to Rj if pi ∈ Bε(Rj) (p1
can to transition to R3, p2 to R3, and p3 to R1 or R2).

Bε(Ri) = {x ∈ Ω : 0 < dRi
(x) < ε} where dRi

is

the Euclidean distance map of Ri, and then define the in-

verse prior likelihood of pixel switching from region Ri,

si : Ω → R
+, as any non-decreasing function of the dis-

tance map that becomes infinite outside the band; the simple

example we choose is

si(x) =

{
1 x ∈ Bε(Ri) ∪Ri

+∞ x ∈ Ω\(Bε(Ri) ∪Ri)
. (14)

For the moment, as in the previous section, we ignore the

effects of the length regularization in the energy (β = 0),

then given the functions fi, an update of the regions that

decreases the energy is

R′
i = {x ∈ Ω : i = argmin

j
sj(x)D(I(x), fj(x))}. (15)

Notice that the update does not increase the energy (when

β = 0) and the functions are fixed: suppose that a

point x ∈ Ω switches labels from i to j, then it is

clear that D(I(x), fj(x)) ≤ sj(x)D(I(x), fj(x)) <
si(x)D(I(x), fi(x)) = D(I(x), fi(x)), hence the contri-

bution of x to the energy is less than or equal before the

switch so the energy is not increased. If there is no switch,

then the contribution of x to the energy remains the same,

not increasing the energy. As si(x) = +∞ for x that is

sufficiently far from the region Ri, it is clear that x cannot

switch to label i, thus more global transitions in the algo-

rithm of the previous section are avoided. See Figure 2 for

an illustration of the Bε(Ri) and transitions possible. To

induce the effects of regularity (when β �= 0), the update

derived in the previous section is applied:

Ri = {x : i = argmin
j

sj(x) [D(I(x), fj(x))+

βWR′
j
(x)

]
}. (16)
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Figure 3. This figures shows intermediate steps in the coarse-to-fine algorithm for achieving an estimate in multi-label Mumford-Shah-type

problems. [top-left] a given image to segment. [bottom-left] random initialization. [top] segmentation results by multiphase level sets

method [4]. [bottom] segmentation results by our proposed method.

The functions fi are now updated using the exact same

scheme as in the previous section (13), although fi need

only be solved in Bε(Ri), which leads to a considerable

speed increase.

It is clear that as ε→ +∞, the algorithm defaults to the

algorithm that yields a global update. In the case that ε→ 0,

the possible points that can be updated are located only on

the boundaries of the regions, where they can switch to an

adjacent region. Therefore, as ε → 0, the method defaults

to region competition [21].

We now address the issue of initialization in the de-

rived global-local tradeoff algorithm. We propose to use

the above algorithm in a coarse-to-fine scheme. The param-

eter σ is a scale parameter that controls the coarse-ness of

the estimate achieved: larger σ produces a coarse solution -

with details smoothed out, and smaller σ produces an esti-

mate that is fine - and is effected by fine scale structures in

the data. Our final estimation scheme is then:

1. Choose a random label for each x ∈ Ω.

2. Choose ε = +∞ and σ large, and run the algorithm

derived in this section.

3. Decrease σ and ε, and run the algorithm again.

4. Repeat Step 3 until the regions have converged.

Figure 3 shows intermediate steps of the iterative procedure

of the global-local tradeoff algorithm. Details of the partic-

ular steps of the algorithm (e.g., how to decrease σ) is given

in the next section.

4. Experiments
In the first experiment, we test the performance of the

proposed global algorithm described in Section 2.3 for solv-

ing Mumford-Shah-type problems. We start with a case

where a fully non-parametric model for the functions fi
are needed: segmentation of brain MRI into various sub-

structures in the presence of a bias field. Tilts of the pa-

tient’s head in the MR machine causes gradients in the im-

age, which makes sub-parts of the brain hard to recover

without smooth, non-constant functions fi. The data is ob-

tained from BrainWeb, which has ground truth segmenta-

tions. We test our algorithm on various slices with varying

degrees of bias, from 0 to 100% bias. We compare our algo-

rithm to the current state-of-the-art in multi-label Mumford-

Shah (segmentation and denoising) - multiphase Mumford-

Shah (MPMS) using level sets [20]. In order to get a com-

prehensive picture of the performance of the algorithms, we

test the algorithms over a large number of parameters that

are for the region smoothness and the function regulariza-

tion on different initializations. We use the same number

of parameters for the common parameters used in all the

methods. The number of labels is also given to the algo-

rithms and it ranges from 4 to 8. The initializations chosen

are 5 different random initializations (each pixel is assigned

a random number between 1 and the number of labels), and

another initialization where we simply quantize the image

into the number of labels.

We wish to test both the accuracy of the new statisti-

cal model and the optimization scheme, and therefore, it

is appropriate to measure the results with respect to close-

ness to the ground truth. Therefore, we measure accuracy

of results with respect to ground truth in terms of the F-

measure. The brain image contains 12 different labels, but

the prominent labels that are used for clinical purposes are

the gray and white matter, and the other labels are hard to

capture without additional training data, which we avoid,

since we would like to test performance of our new statis-

tical formulation of Mumford-Shah-type problems. Thus,

we measure accuracy only in terms of the gray and white

matter. Results of this experiment are summarized in Fig-

ures 4,5,6. The optimal (in terms of F-measure) segmenta-

tion and reconstruction are presented for each method over

all the parameters in Figure 4. In order to show that the

full-non parametric functions fi are needed, we have in-

cluded results for the case of constant functions based on the

Chan-Vese model optimized using our algorithm (we refer

to this as “ours CV”). The results indicate that multiphase

Mumford-Shah (MPMS) level sets are extremely sensitive

to initialization, yielding very inaccurate solutions for ran-
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Figure 4. Results of MRI brain segmentation and reconstruction with varying bias field by three methods that are multiphase Mumford-

Shah level sets, ours Chan-Vese, and ours Mumford-Shah using two different initializations that are random and equally quantized images.

In each block of 5×2 images, segmentation is shown on the left and reconstruction on the right for the images with increasing level of

bias field from top to bottom. From left to right, the image blocks show the ground truth, MPMS with random and equally quantized

initialization, ours CV with random and equally quantized initialization, ours MS with random and equally quantized initialization. The

results show high sensitivity of multiphase methods to initialization and local minima, while the proposed approach consistently and

accurately recovers the desired segmentation.

dom initializations to fairly accurate solutions for the quan-

tized initialization. The quality of MPMS degrades with in-

creasing bias. The assumption of constant functions using

our approach yields highly accurate results for small bias

regardless of initialization, but quickly degrades with in-

creasing bias. Our global approach to fully non-parametric

Mumford-Shah yields the most accurate results and is sta-

ble to initialization and bias. Figure 5 summarizes the re-

sults over parameters measured in terms of F-measure. The

graph shows that our method is the most accurate and re-

mains accurate even with varying initialization. In fact, the

median F-measure (over all parameters) is highest for the

proposed method. The performance of MPMS is signifi-

cantly worse than the proposed method, and the results vary

drastically with respect to parameters.

The last graph of the first experiment (Figure 6) shows

the algorithm speed of the proposed method (piecewise

smooth) versus MPMS. Even though the functions must be

computed on the whole domain using our approach, it is

faster than MPMS in which the function computation is re-

stricted to regions, even for a significantly large number of

labels (8). Since, it is not true that the results are the same

for both MPMS and the proposed approach, we compared

times in the case of zero bias and quantized initialization,

where both methods yield similar results, and therefore, it

makes sense to compare speed.

In the second experiment we demonstrate the effect of

the global-local tradeoff scheme in a multi-label segmen-

tation problem. The proposed multi-label segmentation al-

gorithms with both the global optimization scheme and the

global-local tradeoff optimization scheme are performed on

a number of natural scenery images. Since the objective of

this experiment is to highlight the difference between the

segmentations resulted by the global-local tradeoff scheme

and the global scheme of our algorithm, a simple piecewise

constant image model is assumed. The proposed global al-

gorithm takes the region smoothness parameter σ that is re-

lated to the feature scale of object and the number of la-

bels N . In this experiment, we set N = 4 for all the test

images. The global-local tradeoff algorithm is described in

Section 3 and σ is reduced by a factor of 2 and the band size

is ε = ceil(2σ) for Step 3 of the algorithm described in Sec-

tion 3. The final σ is chosen to be the same as the given σ
for the global-update algorithm (i.e., without band). Results

of the two methods are presented in Figure 7 where the im-

ages to segment are shown on the top row, the segmentation

results by the global algorithm on the middle row, and the

segmentation results by the global-local tradeoff algorithm

on the bottom row. Notice that the results with the global-

local approach preserve the same level of detail as the ones

with the global approach while discarding irrelevant clutter.

For some cases it is observed that the global-local tradeoff

approach yields less number of final labels than the result la-

bels with the purely global approach, which happens when

12221222122212241224



Figure 7. Results of global-local tradeoff algorithm. The multi-label segmentation is performed on a number of natural scenery images

(top) by our proposed method with the global optimization scheme (middle) and the global-local tradeoff scheme (bottom).
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Figure 5. This figure shows the optimal results (with respect to

F-measure) of segmentation of images with varying bias field

with multiphase Mumford-Shah (MPMS) level sets, the proposed

method with constant functions (ours CV), and the proposed

method with smooth functions (ours MS). For each method, ran-

dom and equally quantized (quant) images are used for initializa-

tion. The bars indicate minimum and maximum F-measure, and

the left-right lines are drawn through median values. The proposed

method has high F-measure regardless of the initialization and the

intensity of the bias field. MPMS perform poorly with under a bias

field and varies considerably with bias field intensity.

the labels corresponding to insignificant clutter disappear at

a coarse scale in the coarse-to-fine optimization procedure.

In the last experiment, we demonstrate our method on

the task of motion segmentation where it is desired to seg-

ment the image into regions of smooth velocities. The en-

ergy is E(vi, Ri) =
∑

i

∫
Ri
|I1(x+ vi(x))− I2(x)|2 dx+∫

Ri
|∇vi(x)|2 dx+Len(∂Ri), where I1 and I2 are images.

We apply a coarse-to-fine scheme for fully global, fully lo-
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Figure 6. The left plot shows that the proposed method converges

faster than multiphase Mumford-Shah, even for a large number of

labels. The right plot shows the segmentation accuracy of MPMS

is less than the proposed method, suggesting that MPMS con-

verged at an undesirable local minima instead of a more distant

and better solution. Even when MPMS quickly converges to a

nearby undesirable local minimum, the proposed method is faster,

converging to a better solution. Note that bars indicate max/min

values and left-right lines are drawn through median values.

cal, and the global-local tradeoff algorithm (e.g., large σ un-

til convergence, and then σ is lowered, etc...). All schemes

have the same maximum and minimum σ. While fully

global updates result in capturing clutter, and fully local

captures irrelevant fine structures, the global/local tradeoff

approach achieves an accurate solution. Our method also

converges much quicker than both a fully global and fully

local approach. The initialization is simply a quantization of

the optical flow field using a standard optical flow method.

The band size and the σ are chosen with the same scheme

described in the previous paragraph. Figure 8 shows some

steps in the evolution, and the current region and the recon-

structed velocity are shown at each step. Results for the final

motion and segmentation on more data is given in Figure 9.

5. Conclusion
We have proposed a new statistical model for multi-label

Mumford-Shah problems, slightly modify the standard one.

This leads to new algorithms where the function updates can

be done in many ways: from fully global updates to fully lo-

cal updates (the user is free to choose). The algorithms are
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Figure 8. Intermediate steps in the evolution of the velocity (top)

and the segmenting curve (bottom) for the motion segmentation

based on the global-local tradeoff algorithm.

Figure 9. Results of global-local algorithm (third column) in mo-

tion segmentation in comparison to fully global (left column), and

fully local algorithms (second column). The fourth column is the

optical flow field determined by the global-local algorithm (using

the standard color scheme). The global-local tradeoff algorithm

avoids clutter, and is less susceptible to irrelevant fine detail.

easy to implement for a non-specialist, and yield results less

susceptible to initialization and local irrelevant details than

traditional approaches. A possible coarse-to-fine algorithm

was derived that lends itself well to full automation. Exper-

iments suggest that the proposed algorithm has increased

the performance of traditional multi-label Mumford-Shah

problems both in terms of accuracy and speed.
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