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Abstract

Many techniques in computer vision, machine learning,
and statistics rely on the fact that a signal of interest admits
a sparse representation over some dictionary. Dictionaries
are either available analytically, or can be learned from a
suitable training set. While analytic dictionaries permit to
capture the global structure of a signal and allow a fast
implementation, learned dictionaries often perform better
in applications as they are more adapted to the considered
class of signals. In imagery, unfortunately, the numerical
burden for (i) learning a dictionary and for (ii) employing
the dictionary for reconstruction tasks only allows to deal
with relatively small image patches that only capture local
image information.

The approach presented in this paper aims at overcom-
ing these drawbacks by allowing a separable structure on
the dictionary throughout the learning process. On the one
hand, this permits larger patch-sizes for the learning phase,
on the other hand, the dictionary is applied efficiently in
reconstruction tasks. The learning procedure is based on
optimizing over a product of spheres which updates the dic-
tionary as a whole, thus enforces basic dictionary proper-
ties such as mutual coherence explicitly during the learning
procedure. In the special case where no separable struc-
ture is enforced, our method competes with state-of-the-art
dictionary learning methods like K-SVD.

1. Introduction
Exploiting the fact that a signal s ∈ R

n has a sparse rep-

resentation over some dictionary D ∈ R
n×d is the back-

bone of many successful signal reconstruction and data

analysis algorithms. Having a sparse representation means

that s is the linear combination of only a few columns of D,

referred to as atoms. Formally, this reads as

s = Dx, (1)

where the transform coefficient vector x ∈ R
d is sparse,

i.e. most of its entries are zero or small in magnitude.

For the performance of algorithms exploiting this model,

it is crucial to find a dictionary that allows the signal of

interest to be represented most accurately with a coeffi-

cient vector x that is as sparse as possible. Basically, dic-

tionaries can be assigned to two classes: analytic dictio-
naries and learned dictionaries. Analytic dictionaries are

built on mathematical models of a general type of signal

they should represent. They can be used universally and

allow a fast implementation. Popular examples include

Wavelets [16], Bandlets [15], and Curvlets [19] among sev-

eral others. It is well known that learned dictionaries yield

a sparser representation than analytic ones. Given a set

of representative training signals, dictionary learning algo-

rithms aim at finding the dictionary over which the train-

ing set admits a maximally sparse representation. Formally,

let S = [s1, . . . , sm] ∈ R
n×m be the matrix containing

the m training samples arranged as its columns, and let

X = [x1, . . . ,xm] ∈ R
d×m contain the corresponding m

sparse transform coefficient vectors, then learning a dictio-

nary can be stated as the minimization problem

minimize
X,D

g(X) subject to ‖DX− S‖2F ≤ ε, D ∈ C.

(2)

Therein, g : Rd×m → R is a function that promotes spar-

sity, ε reflects the noise power, and C is some predefined

admissible set of solutions. Common dictionary learning

approaches employing optimization problems related to (2)

include probabilistic ones like [11, 14, 26], and clustering

based ones such as K-SVD [3], see [20] for a more compre-

hensive overview. The dictionaries produced by these tech-

niques are unstructured matrices that allow highly sparse

representations of the signals of interest. However, the di-

mension of the signals which are sparsely represented and,

consequently, the possible dictionaries’ dimensions are in-

herently restricted by limited memory and limited compu-

tational resources. Furthermore, when used within signal

reconstruction algorithms where many matrix vector multi-

plications have to be performed, those dictionaries are com-

putationally expensive to apply.

In this paper, we present a method for learning dictio-
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naries that are efficiently applicable in reconstruction tasks.

The crucial idea is to allow the dictionary to have a separa-

ble structure, where separable means that the dictionary D
is given by the Kronecker product of two smaller dictionar-

ies A ∈ R
h×a and B ∈ R

w×b, i.e.

D = B⊗A. (3)

The relation between a signal s ∈ R
hw and its sparse rep-

resentation x ∈ R
ab as given in (1) is accordingly s =

(B⊗A)x = vec(A vec−1(x)B�), where the vector space

isomorphism vec: Ra×b → R
ab is defined as the operation

that stacks the columns on top of each other. Employing this

separable structure instead of a full, unstructured dictionary

clearly reduces the computational costs of both the learn-

ing algorithm and the reconstruction tasks. More precisely,

for a separation with h,w ∼ √n, the computational burden

reduces from O(n) to O(
√
n). We will refer to this new

learning approach as SeDiL (Separable Dictionary Learn-

ing).

It is apparent that this approach applies in principle to

any class of signals. However, we will focus on signals

that have an inherently two dimensional structure such as

images. However, it is worth mentioning that SeDiL can

straightforwardly be extended to signals with higher dimen-

sional structure, such as volumetric 3D-signals, by employ-

ing multiple Kronecker products. To fix the notation for

the rest of this work, if A and B are as above, the two di-

mensional signal S ∈ R
h×w has the sparse representation

X ∈ R
a×b, i.e. S = AXB�.

The proposed dictionary learning scheme SeDiL is based

on an adaption of Problem (2) to a product of unit spheres.

Furthermore, it incorporates a regularization term that al-

lows to control the dictionary’s mutual coherence. The

arising optimization problem is solved by a Riemannian

conjugate gradient method combined with a nonmonotone

line search. For the general separable case, the method

is able to learn dictionaries for large patch dimensions

where conventional learning techniques fail while if we

define B = 1 SeDiL yields a new algorithm for learn-

ing standard unstructured dictionaries. A denoising exper-

iment is given that shows the performance of both a sepa-

rable and a non-separable dictionary learned by SeDiL on

(8 × 8)-dimensional image patches. From this experiment

it can be seen that the separable dictionary outperforms its

analytic counterpart, the overcomplete discrete cosine trans-

form, and the non-separable one achieves similar perfor-

mance as state-of-the-art learning methods like K-SVD. Be-

sides that, to show that a learned separable dictionary is able

to extract and to recover the global information contained

in the training data, a separable dictionary is learned on a

face database with each face image having a resolution of

64 × 64 pixels. This dictionary is then applied in a face

inpainting experiment where large missing regions are re-

covered solely based on the information contained in the

dictionary.

2. Structured Dictionary Learning
Instead of learning dense unstructured dictionaries,

which are costly to apply in reconstruction tasks and are un-

able to deal with high dimensional signals, techniques exist

that aim at learning dictionaries which bypass these limi-

tations. In the following, we shortly review some existing

techniques that focus on learning efficiently applicable and

high dimensional dictionaries, followed by introducing our

approach.

2.1. Related Work

In [17] and [24], two different algorithms have been pro-

posed following the same idea of finding a dictionary such

that the atoms themselves are sparse over some fixed ana-

lytic base dictionary. The algorithm proposed in [17] en-

forces each atom to have a fixed number of non-zero co-

efficients, while the one suggested in [24] imposes a less

restrictive constraint by enforcing sparsity over the entire

dictionary. However, both algorithms employ optimization

problems that are not capable of finding a large dictionary

for high dimensional signals. In [2] an alternative structure

for dictionaries has been proposed. The so called signa-

ture dictionary is a small image itself, where every patch

at varying locations and size is a possible dictionary atom.

The advantages of this structure include near-translation-

invariance, reduced overfitting, and less memory and com-

putational requirements, compared to unstructured dictio-

nary approaches. However, the small number of parame-

ters in this model also makes this dictionary more restric-

tive than other structures. This approach has been further

extended in [5] to learn real translational-invariant atoms.

Hierarchical frameworks for tackling high dimensional dic-

tionary learning are presented in [13] and [23]. The latter

work uses this framework in conjunction with a screening

technique and random projections. We like to mention that

our approach has the potential to be combined with hierar-

chical frameworks.

2.2. Proposed Approach

We aim at learning a separable dictionary D = B ⊗A
from a given set of training samples S = (S1, . . . ,Sm) ∈
R

h×w×m by solving a problem related to (2). We denote

the collection of the m sparse representations by X =
(X1, . . . ,Xm) and measure its overall sparsity via

g(X ) :=
m∑
j=1

a∑
k=1

b∑
l=1

ln(1 + ρ|xklj |2), (4)

where xklj is the (k, l)-entry of Xj ∈ R
a×b and ρ > 0 is

a weighting factor. We impose the following regularization
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on the dictionary.

(i) The columns of D have unit Euclidean norm.

(ii) The coherence of D shall be moderate.

Constraint (i) is commonly employed in various dictionary

learning procedures to avoid the scale ambiguity problem,

i.e. the entries of D tend to infinity, while the entries of X
tend to zero as this is the global minimizer of the uncon-

strained sparsity measure g(X ). Matrices with normalized

columns admit a manifold structure, known as the product

of spheres, which we denote by

S(n, d) := {D ∈ R
n×d| ddiag(D�D) = Id}. (5)

Here, ddiag(Z) forms a diagonal matrix with the diagonal

entries of the square matrix Z, and Id is the (d×d)-identity

matrix. Consequently, we require that A is an element of

S(h, a) and that B is an element of S(w, b).
The soft constraint (ii) of requiring a moderate mutual

coherence of the dictionary is a well known regularization

procedure in dictionary learning, and is motivated by the

compressive sensing theory. Roughly speaking, the mutual

coherence of D measures the similarity between the dic-

tionary’s atoms, or, ”a value that exposes the dictionary’s
vulnerability, as [...] two closely related columns may con-
fuse any pursuit technique.” [10]. The most common mu-

tual coherence measure for a dictionary D with normalized

columns di is

μ(D) := max
i<j

|d�i dj |. (6)

For the rest of this paper we will follow this notation and

denote the ith column of a matrix Q by the correspond-

ing lower case character qi. In order to relax this worst

case measure, other measures have been introduced in the

literature that are more suited for practical purpose, for ex-

ample averaging the largest entries of {|d�i dj | | i < j} as

in [8, 10, 21], or by considering the sum of squares of all

elements in {|d�i dj | | i < j}, cf. [9]. In this work, we

introduce an alternative mutual coherence measure, which

has been proven extremely useful in our experiments. Ex-

plicitly, we measure the mutual coherence via

r(D) := −
∑

1≤i<j≤d

ln(1− (d�i dj)
2). (7)

Since this measure is differentiable, it can be integrated into

smooth optimization procedures. Furthermore, when it is

used within a dictionary learning scheme, the log-barrier

function avoids the algorithm from producing dictionaries

that contain repeated identical atoms.

Note that minimizing r(D) implicitly influences μ(D).
Concretely, the relation between (7) and the classical mutual

coherence (6) is

r(D) ≥ − ln(1− (μ(D))2) ≥ 1
N r(D), (8)

with N := d(d − 1)/2 denoting the number of summands

of (6). To see the validity of the above equation, note that

since the atoms di are normalized to one, the equation 0 ≤
|d�i dj |2 ≤ 1 holds due to the Cauchy-Schwarz Inequality.

Thus, all summands − ln(1 − (d�i dj)
2) are non-negative.

Moreover,

max
i<j

(− ln(1− (d�i dj)
2)) = − ln(1− (μ(D))2), (9)

and therefore

−N ln(1− (μ(D))2) ≥ r(D) ≥ − ln(1− (μ(D))2)
(10)

which implies Equation (8). In order to exploit this rela-

tion for the separable case we first consider the following

Lemma.

Lemma 1. The mutual coherence of the Kronecker prod-
uct of two matrices A and B with normalized columns is
equal to the maximum of the individual mutual coherences,
i.e.

μ(B⊗A) = max{μ(A), μ(B)}. (11)

Proof. First, notice that since the columns of A and B
all have unit norm, the diagonal entries of both A�A and

B�B are equal to one and that the mutual coherence μ(A)
and μ(B) is given by largest off-diagonal absolute value

of A�A and B�B, respectively. Analogously, μ(B ⊗A)
is just the largest off-diagonal absolute value of the matrix

(B⊗A)�(B⊗A) = (B�B)⊗ (A�A). Due to the defi-

nition of the Kronecker product and the unit diagonal, each

entry of B�B and A�A reappears in the off-diagonal en-

tries of (B⊗A)�(B⊗A). This yields the two inequalities

μ(B) ≤ μ(B ⊗A) and μ(A) ≤ μ(B ⊗A), which can be

combined to

max{μ(A), μ(B)} ≤ μ(B⊗A). (12)

On the other hand, each entry of (B�B) ⊗ (A�A) is a

product of entries of B�B and A�A. This explicitly means

that we can write μ(B⊗A) = b̃ ã with b̃ and ã being entries

of B�B and A�A, respectively. Since we have 0 ≤ ã, b̃ ≤
1, this provides the two inequalities μ(B ⊗ A) ≤ b̃ and

μ(B⊗A) ≤ ã, and hence

μ(B⊗A) ≤ max{μ(A), μ(B)}. (13)

Combining (12) and (13) provides the desired result. �
Substituting μ(B⊗A) into Equation (8) and then apply-

ing Lemma 1 yields

max{r(B), r(A)} ≥ − ln(1− μ(B⊗A)2)

≥ max{ 1
NB

r(B), 1
NA

r(A)}
(14)

due to the monotone behavior of the logarithm. Therefore,

ifmax{r(B), r(A)} is small, μ(B⊗A) is bounded as well.
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Now, in order to keep the mutual coherence of B⊗A mod-

erate, we use the relation

C1(r(B) + r(A)) ≤ max{r(B), r(A)}
≤ C2(r(B) + r(A)), (15)

for some positive constants C1, C2 and minimize the sum

r(B) + r(A) instead of max{r(B), r(A)} for computa-

tional convenience.

Finally, putting all the collected ingredients together, to

learn a separable dictionary our goal is to minimize

f : Ra×b×m × S(h, a)× S(w, b)→ R,

(X ,A,B) 
→ 1
2m

m∑
j=1

‖AXjB
� − Sj‖2F + λ

mg(X )

+ κr(A) + κr(B). (16)

Therein, λ ∈ R
+ weighs between the sparsity of X and

how accurately AXjB
� reproduces the training samples.

Using this parameter, SeDiL can handle both perfect noise

free training data as well as noisy training data. The second

weighting factor κ ∈ R
+ controls the mutual coherence of

the learned dictionary.

3. Learning on Matrix Manifolds
Knowing that the feasible set of solutions to Problem

(16) is restricted to a smooth manifold allows us to ap-

ply methods from the field of geometric optimization to

learn the dictionary. To provide the necessary notation, we

shortly recall the required concepts of optimization on ma-

trix manifolds. For an in-depth introduction on optimization

on matrix manifolds, we refer the interested reader to [1, ?].

Let M be a smooth Riemannian submanifold of some

Euclidean space, and let f : M → R be a differentiable

cost function. We consider the problem of finding

arg min
Y∈M

f(Y). (17)

To every point Y ∈ M one can assign a tangent space

TY M, which is a real vector space containing all possi-

ble directions that tangentially pass through Y . An element

Ξ ∈ TY M is called a tangent vector at Y . Each tangent

space is associated with an inner product inherited from the

surrounding Euclidean space which we denote by 〈·, ·〉 and

the corresponding norm by ‖ · ‖. The Riemannian gradient

of f atY is an element of the tangent space TY M that points

in the direction of steepest ascent of the cost function on the

manifold. For the case where f is globally defined on the

entire surrounding Euclidean space, the Riemannian gradi-

ent G(Y) is simply the orthogonal projection of the (stan-

dard) gradient ∇f(Y) onto the tangent space TY M, which

reads as

G(Y) = ΠTY M(∇f(Y)). (18)

A geodesic is a smooth curve ΓM(Y,Ξ, t) emanating from

Y in the direction of Ξ ∈ TY M, which locally describes the

shortest path between two points onM. Intuitively, it can be

interpreted as the generalization of a straight line to a man-

ifold. The Riemannian exponential mapping, which maps a

point from the tangent space to the manifold, is defined as

expY : TY M→ M, Ξ 
→ ΓM(Y,Ξ, 1). (19)

The geometric optimization method proposed in this work

is based on iterating the following line search scheme.

Given the iterate Y(i), a search direction H(i) ∈ TY(i) M,

and the step size α(i) ∈ R at the ith iteration, the new iterate

lying on M is found via

Y(i+1) = ΓM(Y(i),H(i), α(i)), (20)

i.e. following the geodesic emanating from Y(i) in the

search directionH(i) for the length α(i).

In the following, we concretize the above concepts for

the situation at hand and present all ingredients that are

necessary to implement the proposed geometric dictionary

learning method. The given formulas regarding the geome-

try of S(n, d) are derived e.g. in [1]. Here we are consider-

ing the product manifoldM := R
a×b×m×S(h, a)×S(w, b),

which is a Riemannian submanifold of Ra×b×m ×R
h×a ×

R
w×b, and an element of M is denoted by Y = (X ,A,B).

The tangent space at D ∈ S(n, d) is given by

TD S(n, d) = {Ξ ∈ R
n×d| ddiag(D�Ξ) = 0}, (21)

and the orthogonal projection of some matrix Q ∈ R
n×d

onto the tangent space reads as

ΠTD S(n,d)(Q) = Q−D ddiag(D�Q). (22)

Due to the product structure of M, the tangent space of

M at a point Y ∈ M is simply the product of all individ-

ual tangent spaces, i.e. TY M := R
a×b×m × TA S(h, a) ×

TB S(w, b). Consequently, in accordance with Equation

(21) the orthogonal projection of some arbitrary point Q =
(Q1,Q2,Q3) ∈ R

a×b×m×R
h×a×R

w×b onto the tangent

space TY M is

ΠTY M(Q) = (Q1,ΠTA S(h,a)(Q2),ΠTB S(w,b)(Q3)).
(23)

Each tangent space of M is endowed with the Rieman-

nian metric inherited from the surrounding Euclidean space,

which for two points R = (R1,R2,R3) and P =
(P1,P2,P3) ∈ TY M is given by

〈R,P〉 :=
m∑
j=1

tr
(
(R1,j)

�P1,j

)
+ tr(R�2 P2) + tr(R�3 P3).

(24)
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The final required ingredient is a way to compute

geodesics. While in general there is no closed form solu-

tion to the problem of finding a certain geodesic, the case at

hand allows for an efficient implementation. Let d ∈ Sn−1

be a point on a sphere and h ∈ TdS
n−1 be a tangent vector

at d, then the geodesic in the direction of h is a great circle

γ(d,h, t) =

{
d, if ‖h‖2 = 0

d cos(t‖h‖2) + h sin(t‖h‖2)
‖h‖2 , otherwise.

(25)

Using this, the geodesic through D ∈ S(n, d) in the direc-

tion of H ∈ TD S(n, d) is simply the combination of the

great circles emerging from each column of D in the direc-

tion of the corresponding column of H, i.e.

ΓS(n,d)(D,H, t) = [γ(d1,h1, t), . . . , γ(dd,hd, t)]. (26)

Now, let H = (H1,H2,H3) ∈ TY M be a given search

direction. Due to the product structure of M a geodesic on

M is given by

ΓM(Y,H, t) = (27)

(X + tH1,ΓS(h,a)(A,H2, t),ΓS(w,b)(B,H3, t)).

The shorthand notation G(i) := G(Y(i)) will be used

throughout the rest of this paper to denote the Riemannian

gradient at the ith iterate.

4. Separable Dictionary Learning (SeDiL)
To solve optimization problem (16), we employ a ge-

ometric conjugate gradient (CG) method, as it offers su-

perlinear rate of convergence, while still being applica-

ble to large scale optimization problems with acceptable

computational complexity. Therein, the initial search di-

rection is equal to the negative Riemannian gradient, i.e.

H(0) = −G(0). In the subsequent iterations, H(i+1) is

a linear combination of the gradient G(i+1) and the previ-

ous search direction H(i). Since addition of vectors from

different tangent spaces is not defined, we need to map

H(i) from TY(i) M to TY(i+1) M. This is done by the

so-called parallel transport TM(Ξ,Y(i),H(i), α(i)), which

transports a tangent vector Ξ ∈ TY(i) M along the geodesic

ΓM(Y(i),H(i), t) to the tangent space TY(i+1) M. Similar to

the way we derived a closed form solution for the geodesic,

we consider the geometry of S(n, d) at first. The parallel

transport of a tangent vector ξ ∈ TdS
n−1 along the great

circle γ(d,h, t) is

τ(ξ,d,h, t) = (28)

ξ − ξ�h
‖h‖22

(d‖h‖2 sin(t‖h‖2) + h(1− cos(t‖h‖2))),

and the parallel transport of Ξ ∈ TD S(n, d) along the

geodesic ΓS(n,d)(D,H, t) is given by

TS(n,d)(Ξ,D,H, t) =

[τ(ξ1,d1,h1, t), . . . , τ(ξd,dd,hd, t)].
(29)

Thus, a tangent vector Ξ = (Ξ1,Ξ2,Ξ3) ∈ TY M is trans-

ported in the direction ofH ∈ TY M via

TM(Ξ,Y,H, t) =

(Ξ1, TS(h,a)(Ξ2,A,H2, t), TS(w,b)(Ξ3,B,H3, t)).
(30)

Now, using the shorthand notation T (i+1)
Ξ :=

TM(Ξ,Y(i),H(i), α(i)), the new search direction is

computed by

H(i+1) = −G(i+1) + β(i)T (i+1)

H(i) . (31)

We update β(i) following the hybrid optimization scheme

which is proposed in [7] and has shown excellent perfor-

mance in practice. The authors combine the Hestenes-

Stiefel (HS) and Dai-Yuan (DY) update formulas, which are

given by

β
(i)
HS =

〈G(i+1),Z(i+1)〉
〈T (i+1)

H(i)
,Z(i+1)〉

, β
(i)
DY =

〈G(i+1),G(i+1)〉
〈T (i+1)

H(i)
,Z(i+1)〉

, (32)

with Z(i+1) := G(i+1)−T (i+1)

G(i) , to create the hybrid update

formula

β
(i)
hyb = max{0,min{β(i)

HS , β
(i)
DY}}. (33)

In order to find an appropriate step size α(i), we propose

a Riemannian adaption of the nonmonotone line search al-

gorithm proposed in [25]. Like other nonmonotone line

search schemes it has the potential to improve the likelihood

of finding a global minimum as well as to increase the con-

vergence speed, cf. [6]. In contrast to the standard Armijo

rule and standard nonmonotone schemes, which generally

use the function value at the previous iterate or the maxi-

mum of the previous m iterates, this particular method uti-

lizes a convex combination of all function values at previ-

ous iterations. The pseudo code for a version of this line

search scheme that is adapted to our geometric optimiza-

tion problem can be found in Algorithm 1. The line search

Algorithm 1 Nonmonotone Line Search on M in the ith It-

eration

Input: t
(i)
0 > 0, 0 < c1 < 1, 0 < c2 < 0.5, μ > 0,

0 ≤ η(i) ≤ 1, Q(i), C(i)

Set: t← t
(i)
0

while f(ΓM(Y(i),H(i), t)) > C(i) + c2t〈G(i),H(i)〉 do
t← c1t

end while
Set: Q(i+1) ← η(i)Q(i) + 1,

C(i+1) ←
(
η(i)Q(i)C(i) + f(ΓM(Y(i),H(i), t)

)
/Q(i+1),

α(i) ← t
Output: α(i), Q(i+1), C(i+1)

is initialized with C(0) = f(Y(0)) and Q(0) = 1. Finally,

our complete method of learning a dictionary with separa-

ble structure is summarized in Algorithm 2.
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Algorithm 2 Separable Dictionary Learning (SeDiL)

Input: Initial dictionaries A(0) ∈ S(h, a),B(0) ∈ S(w, b),
training data S ∈ R

h×w×m, parameters ρ, λ, κ, thresh
Set: i ← 0, Y(0) ← ({A(0)SkB

(0)�)}mk=1,A
(0),B(0)),

H(0) ← −G(0)

repeat
α(i), Q(i+1), C(i+1) according to Algorithm 1 in con-

junction with Equation (16)

Y(i+1) ← ΓM(Y(i),H(i), α(i)), cf. (27)

G(i+1) ← ΠTY(i+1) M(∇f(Y(i+1))), cf. (23)

H(i+1) ←−G(i+1) + β
(i)
hybT

(i+1)

H(i) , cf. (31), (33)

i← i+ 1
until ‖G(i)‖ < thresh ∨ i = maximum # iterations

Output: Y� ← Y(i)

(a) Unstructured Dictionary (b) Separable Dictionary

Figure 1. Learned atoms of (a) unstructured dictionary D1 = 1⊗
A and (b) separable dictionary D2 = B ⊗ A for a patch size of

8 × 8. Each atom is shown as a 8 × 8 block where a black pixel

corresponds to the smallest negative entry, gray is a zero entry, and

white corresponds to the largest positive entry.

5. Experiments

To show how dictionaries learned via SeDiL perform in

real applications, we present the results achieved for denois-

ing images corrupted by additive white Gaussian noise of

different standard deviation σnoise as a case study. The im-

ages and the noise levels chosen here are an excerpt of those

commonly used in the literature. The peak signal-to-noise

ratio (PSNR) between the ground-truth image vec(S) ∈
R

N and the recovered image vec(S�) ∈ R
N computed

by PSNR = 10 log(2552N/
∑N

i=1(si − s�i )
2) is used to

quantify the reconstruction quality. As an additional qual-

ity measure, we use the mean Structural SIMilarity Index

(SSIM) computed with the same set of parameters as origi-

nally suggested in [22]. SSIM ranges between zero and one,

with one meaning perfect image reconstruction. Compared

to PSNR, the SSIM better reflects the subjective visual im-

pression of quality.

Here, we present the denoising performance of both a

universal unstructured dictionary, i.e. D1 = 1 ⊗ A, and a

universal separable dictionary D2, both learned from the

same training data using SeDiL. By universal, we mean

that the dictionary is not specifically learned for a certain

image class but universally applicable to any image con-

tent. Without loss of generality we choose square image

patches with w = h = 8, which is in accordance to the

patch-sizes mostly used in the literature. For the unstruc-

tured dictionary we set a = 4wh, and for the separable

one we choose a = b = 2w, i.e. A and B are of equal

size and D2 = B ⊗A is of the same dimension as its un-

structured counterpart. For the training phase, we extracted

40 000 image patches from four images at random posi-

tions and vectorize them. Of course, these images are not

considered further within the performance evaluations. The

training patches were normalized to have zero mean and

unit �2-norm. We initialized A and B with random ma-

trices with normalized columns. Global convergence to a

local minimum has always been observed, regardless of the

initialization. The weighting parameters were empirically

set to ρ = 100 and λ = κ = 0.1
ab . The resulting atoms of

the unstructured dictionary D1 and the separable dictionary

D2 = B ⊗ A are shown in Figure 1(a) and 1(b), respec-

tively.

To denoise the images, we first find the sparse represen-

tation X�
i of each noisy patch Si over A,B by solving

X�
i = arg min

Xi∈Ra×b

‖Xi‖1 + λd‖AXiB
� − Si‖2F . (34)

employing the Fast Iterative Shrinkage-Thresholding Algo-

rithm (FISTA) [4]. The regularization parameter λd de-

pends on the noise level and we set it to λd = σnoise
100 . Af-

ter that, a clean image patch is computed from the sparse

coefficients via S�
i = AX�

iB
�. Last, as all overlapping

image patches are taken into account, several solutions for

the same pixel exist, and the final clean image is built by av-

eraging all overlapping image patches. All achieved results

are given in Table 1.

To compare and rank the learned dictionaries among ex-

isting state-of-the-art techniques, we present the denoising

performance of a universal dictionary DKSVD learned us-

ing K-SVD from the same training set as used for SeDiL

and of equal dimension as the unstructured dictionary D1.

From Table 1, it can be seen that employing D1 always

yields slightly better denoising results compared to employ-

ing DKSVD. Employing the separable dictionary D2 leads

to results that are slightly worse compared to employing

the unstructured counterpart. This is the tribute that has

to be paid for its predefined structure. However, the sep-

arability allows a fast implementation just as the popular

and also separable Overcomplete Discrete Cosine Trans-

form (ODCT). Here, it can be observed that the separable

dictionary D2 learned by SeDiL outperforms the ODCT
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Table 1. PSNR in dB and SSIM for denoising the five test images corrupted by five noise levels. Each cell presents the results for the

respective image and noise level for five different methods: top left FISTA+K-SVD dictionary, top right FISTA+unstructured SeDiL,

middle left FISTA+ODCT, middle right FISTA+separable SeDiL, bottom BM3D.
lena barbara boat peppers house

σnoise / PSNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
5 / 34.15 38.42 38.55 0.942 0.944 37.19 37.70 0.959 0.962 36.61 37.03 0.929 0.936 37.06 37.47 0.914 0.921 38.82 38.90 0.944 0.946

38.45 38.51 0.943 0.946 37.93 37.65 0.963 0.965 37.09 37.04 0.938 0.938 37.53 37.39 0.923 0.922 39.03 38.90 0.950 0.948

38.45 0.942 38.27 0.964 37.25 0.938 37.60 0.920 39.77 0.956

10 / 28.13 35.41 35.49 0.907 0.909 33.08 33.71 0.922 0.928 33.54 33.67 0.879 0.882 34.75 34.83 0.875 0.877 35.66 35.63 0.896 0.897

35.29 35.34 0.907 0.910 33.99 33.49 0.931 0.929 33.45 33.65 0.879 0.883 34.65 34.76 0.876 0.878 35.37 35.54 0.896 0.898

35.79 0.915 34.96 0.942 33.91 0.887 35.02 0.878 36.69 0.921

20 / 22.11 32.24 32.31 0.857 0.859 28.88 29.61 0.846 0.859 30.28 30.35 0.800 0.802 32.38 32.40 0.837 0.838 32.83 32.75 0.856 0.856

32.00 32.11 0.856 0.858 29.95 29.28 0.865 0.854 29.94 30.25 0.792 0.800 31.98 32.23 0.832 0.838 32.11 32.45 0.848 0.854

32.98 0.875 31.78 0.905 30.89 0.825 32.80 0.845 33.79 0.871

30 / 18.59 30.35 30.41 0.821 0.822 26.56 27.22 0.775 0.790 28.36 28.41 0.741 0.743 30.81 30.80 0.810 0.810 30.93 30.83 0.826 0.826

30.02 30.15 0.817 0.820 27.61 26.90 0.800 0.782 27.96 28.27 0.729 0.739 30.28 30.55 0.803 0.809 30.07 30.45 0.815 0.822

31.22 0.843 29.82 0.868 29.13 0.779 31.32 0.820 32.13 0.847

50 / 14.15 27.85 27.88 0.760 0.761 24.05 24.43 0.666 0.679 25.96 25.98 0.658 0.659 28.43 28.41 0.761 0.761 28.03 27.92 0.767 0.766

27.52 27.64 0.754 0.758 24.75 24.24 0.691 0.671 25.61 25.83 0.646 0.654 27.94 28.18 0.753 0.759 27.43 27.60 0.755 0.760

29.02 0.798 27.23 0.794 26.79 0.705 29.24 0.782 29.72 0.811

for most images, while requiring exactly the same compu-

tational cost.
The second advantage besides computational efficiency

that comes along with the capability of learning a separable

dictionary is that SeDiL allows to learn sparse representa-

tions for image patches whose size lets other unstructured

dictionary learning methods fail due to numerical reasons.

In order to demonstrate the capability of SeDiL in this do-

main, a separable dictionary is learned from a training set

consisting of 12 000 images of dimension (64×64) showing

frontal face views of different persons. These training im-

ages were randomly extracted from the 13 228 faces of the

”Cropped Labeled Faces in the Wild Database” 1 [12, 18].

The remaining 1228 images were used for the following in-

painting experiments. Note that the face positions in the

pictures are arbitrary, see Figure 2 for five exemplary cho-

sen training faces. The dimensions of the resulting matrices

A,B were set to (64 × 128) and all other parameters re-

quired for the learning procedure were chosen as above.

The ability of the separable dictionary to capture the

global structure of the training samples is illustrated by an

inpainting experiment for face images of size 64×64, where

large regions are missing. These images have of course not

been included in the training set. We assume that the image

region that has to be filled up is given. The inpainting pro-

cedure is again conducted by applying FISTA on the inverse

problem

X� = arg min
X∈Ra×b

‖X‖1 + λd‖pr(AXB�)− y‖22, (35)

where the measurements y ∈ R
m are the available image

data and pr(·) : Rw×h → R
m is a projection onto the cor-

responding region with available image data.

An excerpt of the achieved results is given in Figure 3.

We like to mention that this experiment should not be seen

as a highly sophisticated face inpainting method, but rather

should supply evidence that SeDiL is able to properly ex-

1http://itee.uq.edu.au/˜conrad/lfwcrop/

tract the global information of the underlying training set.

Figure 2. Five exemplarily chosen training images.

Figure 3. Five exemplary large scale inpainting results. The first

row shows the original images from which large regions are re-

moved in the second row. The last row shows the inpainting results

achieved by SeDiL.

6. Conclusion
We propose a new dictionary learning algorithms called

SeDiL that is able to learn both unstructured dictionaries as

well as dictionaries with a separable structure. Employing

a separable structure on dictionaries reduces the computa-

tional complexity from O(n) to O(
√
n) compared to em-

ploying unstructured dictionaries, with n being the consid-

ered signal dimension. Due to this, separable dictionaries

can be learned using far larger signal dimensions as com-

pared to those used for learning unstructured dictionaries,

and they can be applied very efficiently in image recon-

struction tasks. Another advantage of SeDiL is that it al-
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lows to control the mutual coherence of the resulting dic-

tionary. Therefore, we introduce a new mutual coherence

measure and put it in relation to the classical mutual coher-

ence. The SeDiL algorithm we propose is a geometric con-

jugate gradient algorithm that exploits the underlying man-

ifold structure. Numerical experiments for image denois-

ing show the practicability of our approach, while the abil-

ity to learn sparse representations of large image-patches is

demonstrated by a face inpainting experiment.
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