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Abstract

We establish a link between Fourier optics and a recent
construction from the machine learning community termed
the kernel mean map. Using the Fraunhofer approximation,
it identifies the kernel with the squared Fourier transform of
the aperture. This allows us to use results about the in-
vertibility of the kernel mean map to provide a statement
about the invertibility of Fraunhofer diffraction, showing
that imaging processes with arbitrarily small apertures can
in principle be invertible, i.e., do not lose information, pro-
vided the objects to be imaged satisfy a generic condition.
A real world experiment shows that we can super-resolve
beyond the Rayleigh limit.

1. Introduction

Imaging devices such as telescopes and microscopes col-

lect incoming light using lenses or mirrors of finite size.

This finite size imposes a finite aperture on the light that

reaches the optical system, leading to effects of diffraction.

In particular, diffraction ensures that the image of a point

can never be a point. For instance, an imaging system us-

ing a lens with an F -number f/D (where f is the focal

length, and D is the diameter of the circular aperture) has

an impulse response function (Airy disk) whose radius is

1.22λf/D on the sensor, where λ is the wave length of the

light (for simplicity, assumed to be monochromatic).

Another way to express the same insight uses the transfer

function. For a lens focused at infinity, the transfer function

is constant within a circle of radius ν = 1/(2λf/D), and

zero outside [23, p. 136]. This means, in a nutshell, that if

we try to image a sinusoidal pattern with spatial frequency

larger than ν, diffraction will annihilate that pattern. Like-

wise, if we decompose a general object into spatial frequen-

cies by Fourier analysis, all components larger than ν will

vanish.

Similar considerations hold true if, say, an object is

scanned by a focused laser beam. Object details smaller

than the diffraction limit are washed out, and this funda-

mental limit of image-formation systems is often referred to

as the diffraction limit [23, p. 136]. There are ways to cir-

cumvent it using sophisticated hardware, for instance with

scanning near-field optical microscopy, or stimulated emis-

sion depletion microscopy (STED) using fluorescence [14],

but these are not the topic of the current paper. Instead, we

want to assay whether restrictions on the object being im-

aged can fundamentally change the resolution of an optical

system. Specifically, we will show that under the generic

assumption of bounded support, one can in principle (i.e.,

given a perfect measurement of the image) resolve arbitrar-

ily fine detail. This is done by pointing out a connection

to the field of kernel methods in machine learning, and uti-

lizing certain theoretical results from that domain. We do

not claim that all our insights are new — indeed, we will

point out that in spite of the above received wisdom, there

are certain theoretical results in the optics community, some

of them rather old, that draw similar conclusions. We do be-

lieve, however, that the link to kernel methods is new, and

hope that it will lead to a fruitful cross-fertilization of two

previously unconnected branches of research. Using toy ex-

amples, we show that the assumption of bounded support

can be used to recover image detail past the diffraction limit

for simple real-world images, which are pixelized and not

noise-free.

The paper is structured as follows. In Section 2, we ex-

plain the notion of kernel means. These are particular types

of mappings into reproducing kernel Hilbert spaces, and in

some cases they can be shown to be invertible. The kernel

map has applications in a number of tasks including test-

ing of homogeneity and independence [11, 12]. However,

our main interest is a link to wave optics, to be described in

the next section.1 In Section 3, we explain some basics of

Fourier optics, in particular the Fraunhofer approximation

1This link was pointed out during a mathematical workshop in Ober-

wolfach, see [25].
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of diffraction. We show that Fraunhofer diffraction is ac-

tually a particular case of kernel mean mapping. This link

between Fourier optics and machine learning allows us to

leverage some theoretical results about kernel mean maps

to make a surprising statement about super-resolved imag-

ing. Section 5 discusses how this result relates to certain

observations made by the wave optics community.

2. Characteristic kernel means
A symmetric function k : X 2 → R, where X is

a nonempty set, is called a positive definite (pd) kernel
if for arbitrary points x1, . . . , xm ∈ X and coefficients

a1, . . . , am ∈ R, we have∑
i,j

aiajk(xi, xj) ≥ 0.

The kernel is called strictly positive definite if more-

over for pairwise distinct points equality with zero,∑
i,j aiajk(xi, xj) = 0, implies that all coefficients van-

ish, ai = 0 for all i.
Any positive definite kernel induces a mapping

x �→ k(x, .) (1)

into a reproducing kernel Hilbert space (RKHS), which is a

Hilbert space of functions f : X → R with an inner product

〈., .〉 such that k represents point evaluation,

〈f(.), k(x, .)〉 = f(x) (2)

which implies also the reproducing property
〈k(x, .), k(x′, .)〉 = k(x, x′), see e.g. [24] for more

details.

2.1. Kernel mean of a sample

In an SVM [24], (1) is the mapping that takes each dat-

apoint into the so-called feature space, in which a linear

learning method is applied. Rather than mapping the points

one by one, however, one can also map a sample or a distri-

bution directly to its mean in the feature space. Below, we

will show that this kind of mapping contains optical imag-

ing as a special case. But before, we first point out that even

though the operation of taking the mean usually comes with

a loss of information, this need not be the case if the kernel

satisfies a certain condition.

Consider a sample of points X = {x1, . . . , xm} ⊂ X ,

that are distinct, i.e., xi 	= xj whenever i 	= j. Given a pd

kernel k, we define the kernel mean map of X by [24, 28]

μ(X) =
1

m

m∑
i=1

k(xi, ·). (3)

Consider another sample of distinct points Y =
{y1, . . . , yn} ⊂ X . Clearly, if X equals Y , their kernel

means are identical. What about the converse?

We call a kernel characteristic for samples, if the mean

map μ based on k is injective, i.e., if identical kernel means

μ(X) = μ(Y ) imply identical samples X = Y .

It is not obvious whether characteristic kernels exist.

E.g. for polynomial kernels k(x, x′) = (〈x, x′〉+ 1)d, with

d ∈ N, observing equal kernel means μ(X) = μ(Y ) for the

samples X and Y implies that all empirical moments up to

order d of X and Y coincide. However, X and Y might

differ in their empirical moments of higher orders. The fol-

lowing proposition gives a sufficient condition for being a

characteristic kernel:

Proposition 1 Strictly pd kernels are characteristic for
samples.

Proof: Consider a strictly pd kernel k and its mean map

μ. Consider two samples X = {x1, . . . , xm} ⊂ X and

Y = {y1, . . . , yn} ⊂ X as above with equal kernel means,

μ(X) = μ(Y ). Let Z = {z1, . . . , zl} be the set (not the

multiset) of all elements in the union of X and Y , i.e. all

elements in Z are pairwise distinct. Let #X(z) be the

number of times z appears in X , similarly #Y (z). Define

γi = #X(zi)/m−#Y (zi)/n. Then we have

0 = μ(X)− μ(Y ) (4)

=
m∑
i=1

1

m
k(xi, .)−

n∑
i=1

1

n
k(yi, .) =

l∑
i=1

γik(zi, .) (5)

Now take the dot product between (5) and itself, leading to

0 = 〈
l∑

i=1

γik(zi, .),
l∑

j=1

γjk(zj , .)〉, (6)

which by the reproducing property and bilinearity amounts

to

0 =
l∑

i,j=1

γiγjk(zi, zj). (7)

Since k is strictly pd, this implies that for all i the coef-

ficients γi are zero, thus #X(zi) = #Y (zi)m/n. Since

#X(zi),#Y (zi) ∈ {0, 1}, we conclude that m = n and

#X(zi) = #Y (zi) for all i, i.e., X = Y .

The mean map has some other interesting properties

[28]. Among them is the fact that μ(X) represents the op-

eration of taking a mean of a function on the sample X:

〈μ(X), f〉 =
〈

1

m

m∑
i=1

k(xi, ·), f
〉

=
1

m

m∑
i=1

f(xi) (8)

where we have applied the point evaluation property.
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2.2. Kernel mean of a probability measure

Instead of samples we next consider probability mea-

sures2 defined on X assuming that X has the necessary ad-

ditional structure. To ensure that the following integrals ex-

ists, we assume that all considered kernels are bounded (see

[29]). Below, we will think of the measures as the light dis-

tribution of the object being imaged. We extend the mean

map to probability measures by defining the kernel mean of

P as

μ(P ) =

∫
k(x, .) dP (x). (9)

Similar to the above definition, we call a kernel characteris-
tic for probability measures [7] if the mean map is injective

for probability measures, i.e., μ(P ) = μ(Q) implies that P
and Q are equal.

To state the analog of Proposition 1, we define a kernel

k to be integrally strictly positive definite if for any finite

non-zero signed Borel measure ν, the integral of k wrt. ν is

strictly positive,∫
k(x, x′) dν(x) dν(x′) > 0. (10)

Note that an integrally strictly pd kernel is also strictly pd

but not vice versa.

Proposition 2 Integrally strictly pd kernels are character-
istic for probability measures.

This result was proven by [29]; we only provide a brief

proof sketch: Consider two different probability measures

P and Q. Their difference is a finite non-zero signed Borel

measure ν = P − Q. Assuming equal kernel means, we

have:

0 = μ(P )− μ(Q) (11)

=

∫
k(x, .) dP (x)−

∫
k(x, .) dQ(x) (12)

=

∫
k(x, .) dν(x) (13)

Taking the squared norm and using the reproducing prop-

erty we get a contradiction,

0 = 〈
∫
k(x, .) dν(x),

∫
k(x, .) dν(x)〉 (14)

=

∫
k(x, x′) dν(x) dν(x′) > 0 (15)

where we used for the last inequality the fact that k is inte-

grally strictly pd.

2We assume that all measures considered are Borel measures.

A more specific view on characteristic kernels, which

will apply in the case of Fraunhofer imaging, can be ob-

tained by considering translation invariant pd kernels on

X = R
d, i.e., kernels that can be written as k(x, x′) =

ψ(x − x′) with some continuous function ψ : R
d → R.

By Bochner’s theorem [30], they can be expressed as the

Fourier transform of a finite non-negative Borel measure Λ,

ψ(x) =

∫
e−ixTω dΛ(ω). (16)

Following Corollary 4 in [29] we can write the squared

RKHS distance between the kernel means of two probabil-

ity measures in terms of their characteristic functions,

‖μ(P )− μ(Q)‖2 =

∫
|φP (ω)− φQ(ω)|2 dΛ(ω) (17)

where ‖.‖ is the norm of the RKHS and φP (ω) =∫
eix

Tω dP (x) is the characteristic function of P , and like-

wise φQ. Roughly speaking, this shows that P and Q can

be distinguished as long as the spectrum Λ of the kernel

is nonzero wherever the spectra of the probability distribu-

tions might differ. If Λ has full support, i.e. it is non-zero al-

most everywhere, the corresponding kernel can distinguish

all probability distributions. If it does not have full support,

it can sometimes still distinguish a restricted class of prob-

ability distribution as we see next.

2.3. Kernel mean of a probability measure with
bounded support

Consider a translation invariant pd kernel k such that the

support of the corresponding Λ has a non-empty interior.

For what class of probability measures can such a kernel be

characteristic3? An obvious choice is a class of probability

measures whose characteristic functions agree outside the

support of Λ. However, there is a much more interesting

class of measures which we define next.

Let us consider a probability measure P with compact

support. By the Paley-Wiener theorem [21] its character-

istic function φP is entire (aka analytic or holomorphic),

which implies that knowing φP on a compact subset deter-

mines φP everywhere. This leads to the following proposi-

tion:

Proposition 3 Translation invariant pd kernels, whose cor-
responding Λ have a support with non-empty interior, are
characteristic for probability measures with compact sup-
port.

This is a simplification of Theorem 12 in [29] which also

contains a detailed proof.

3We use characteristic for a class of probability measures in the obvi-

ous way, i.e. the kernel map is injective for the restricted class.
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The kernel which will be relevant in the next section is

the sinc kernel defined for σ > 0 as

k(x, x′) = ψ(x− x′) = sinσ(x− x′)
x− x′ . (18)

The Fourier transform of ψ is the scaled indicator function

of the interval [−σ, σ], i.e.

Λ(ω) =

√
π

2
1[−σ,σ](ω), (19)

so Λ is non-zero on that interval (thus having a support with

non-empty interior) and is thus characteristic for probability

measures of bounded support. The square of the sinc kernel

has the same properties, since it corresponds to the convo-

lution of Λ with itself, inheriting a support with non-empty

interior from Λ.

3. Incoherent imaging as a mean map
3.1. Imaging under incoherent illumination

As electromagnetic radiation, light is governed by

Maxwells equations – a set of linear partial differential

equations that form the foundation of classical electrody-

namics including classical optics. Although electric and

magnetic fields are vectorial in nature, in many situations4

polarisation effects, i.e. any coupling between the electric

and magnetic fields, can be neglected and all components

of the electric and magnetic field can be well described by

a single scalar wave equation [15]

(∇2 − n20
c2

∂2

∂t2
) Φ(u, t) = 0, (20)

where Φ(u, t) is any of the scalar field components of the

electric or magnetic field and n0 denotes the refractive in-

dex of the medium, within which the light is propagating.

Since (20) is a linear partial differential equation, any lin-

ear combination of its solutions yields another solution. The

property of linearity has major implications for the math-

ematical treatment as it allows us to analyse a system by

studying its response to a single point stimulus. Its effect to

a complex input signal Φ(ξ, t) can be obtained by consid-

ering the input signal being composed of point stimuli and

adding up their known responses accordingly:

Ψ(u, t) =

∫
h(u− ξ) Φ(ξ, t) dξ. (21)

Here Ψ denotes the output of a linear optical system which

is fully described by its impulse response h(u − ξ). For

4More precisely, the scalar theory of electromagnetism is valid in linear,

isotropic, homogeneous and non-dispersive dielectric media such as free

space or a lens with constant refractive index, where all components of the

electric and magnetic field behave identically

ease of exposition we implicitly assume stationarity both in

space (i.e. h(u; ξ) = h(u− ξ)) and time (i.e. h depends not

on t) in (21).

Optical detectors such as CCD sensors usually record in-

tensities, i.e. the square of the field amplitude. Since the

integration time is much longer than a single period of os-

cillation, we must average over time to obtain the recorded

pixel intensities

〈
Ψ(u, t)Ψ̄(u, t)

〉
=

∫∫
h(u− ξ) h̄(u− ξ′)× (22)〈

Φ(ξ, t) Φ̄(ξ′, t)
〉
dξ dξ′, (23)

where 〈.〉 denotes temporal averaging. Here, we must take

the coherence properties of the light into account and dis-

tinguish between coherent and incoherent illumination:

• In the case of coherent illumination, we cannot sim-

plify Equation (23) any further without making any ad-

ditional assumptions. The square of the complex field

can lead to cancellations or other non-linear interfer-
ence effects.

• In the case of incoherent illumination, the spatial cor-

relation between any two light rays emitted from the

scene is assumed to be negligible. Hence, the time av-

erage in (23) will only contribute to the integral for

ξ = ξ′:〈
Φ(ξ, t) Φ̄(ξ′, t)

〉
= |Φ(ξ)|2 δ(ξ − ξ′) (24)

Plugging expression (24) into Equation (23) yields the in-
coherent imaging equation

q(u) =

∫
f(u− ξ) p(ξ) dξ, (25)

where we introduced q(u), p(ξ) and f(u − ξ) for〈|Φ(u, t)|2〉,
〈|Ψ(ξ, t)|2〉 and |h(u − ξ)|2, respectively.

Both p(ξ) and q(u) describe image intensities; the impulse

response f is called the point spread function (PSF) of the

imaging system as it corresponds to the image of a point

light source.

Although we had to make a number of assumptions to

derive the incoherent imaging equation (25), it has been

found to provide an accurate description for most typi-

cal imaging systems including astronomical, microscopical

imaging and photography [2].

3.2. Connection to kernel mean map

As an image is inherently non-negative, the image of

the object p(ξ) induces, up to normalization, a probabil-

ity measure P . In addition we assume finite energy, i.e.,∫
p(ξ)dξ < ∞. Then Eq. (25) can be understood such

that such that for the translation-invariant kernel function
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k(u, ξ) = f(u−ξ), the resulting image q is the kernel mean

of P :

μ(P ) = q(.) (26)

So we obtained the interesting result that the incoherent

imaging equation can be expressed as a kernel mean.5

3.3. Fraunhofer diffraction

The resolution of any optical system even without opti-

cal aberrations is limited by diffraction. The mathematical

framework describing diffraction is Fourier optics [23, e.g.].

It decomposes the light radiated by an object into harmonic

components of different spatial frequencies, each one cor-

responding to a plane wave whose amplitude is given by

the Fourier transform of the emitted light field. It turns out

that at a far distance from the object, most of these waves

cancel each other, and each direction in space only ’sees’

one of the plane waves — the free-space wave propagation

can be identified with the Fourier transform, different spa-

tial frequencies in the object corresponding to one direction

each. This is referred to as the Fraunhofer approximation.

By means of a lens, this situation can be realised also for a

finite distance, and different directions in space correspond

to different coordinates on the image plane, or camera sen-

sor.

In an ideal, aberration-free optical system, the Fraun-

hofer approximation states that the PSF is the inverse

Fourier transform of the auto-correlation function of the

pupil or aperture function [10]. In the following we com-

pute the PSF for the simple case of a circular planar aper-

ture.

3.4. Diffraction in one dimension

In one dimension, consider an aperture a : R → R de-

fined as a(ω) = 1[−σ,σ](ω). The inverse Fourier transform

of a is the sinc function sin(ωx)/x. Then by the Wiener-

Khinchin theorem the PSF f as the auto-correlation func-

tion of the aperture function, i.e. a, is the square of the sinc
function,

f(x) =

(
sin(ωx)

x

)2

. (27)

3.5. Diffraction in two dimensions

Also for more than one dimension the incoherent imag-

ing equation is expressible as a kernel mean. For this we

5This provides a physical interpretation of the kernel as the point re-

sponse of an optical system. This kind of interpretation can be beneficial

also for other systems, and indeed it is suggested by the view of kernels

as Green’s functions [16, 24]: the kernel k can be viewed as the Green’s

function of P ∗P , where P is a regularization operator such that the RKHS

norm can be written as ‖f‖k = ‖Pf‖. For instance, the Gaussian kernel

corresponds to a regularization operator which computes an infinite series

of derivatives of f .

consider a two dimensional circular aperture with radius σ,

where the aperture function is the pill box function:

a(ω) =

{
1 if ‖ω‖ ≤ σ
0 otherwise

(28)

Again, the PSF is the Fourier transform of the auto-

correlation function, which in this case is the squared Bessel

function of the first kind of order one,

f(x) =

(
J1(ωx)

x

)2

. (29)

Note that any translation-invariant kernel k constructed

from a positive aperture function is pd due to Bochner’s the-

orem, so the corresponding diffraction can be written as a

kernel mean as in Eq. (26). Note that in addition to the two

apertures discussed so far, we could use arbitrary apertures

satisfying the condition of Proposition 3, including aper-

tures that are not indicator functions (if physically realiz-

able): Bochner’s theorem ensures that for all nonnegative

measures, the Fourier transform is a pd kernel, and Propo-

sition 3 ensures that the kernels are characteristic.

3.6. Breaking the diffraction limit

The actual resolution that is possible with a given opti-

cal system is determined by the size of the aperture, which

could be the size of the mirror or lens in a telescope.

Having written the incoherent imaging equation as ker-

nel means, we can apply the insight from the previous sec-

tion to obtain the surprising result that an object p(ξ) with

bounded support, i.e. p(ξ) is zero outside some compact

area, the Fraunhofer diffraction does not destroy any infor-

mation, i.e. at least theoretically, the diffraction limit is no

limit:

Proposition 4 An object with bounded support can be re-
covered completely from its diffraction-limited image.

Proof: This follows from the injectivity of μ in the context

of Proposition 3 and the fact that any aperture shape induces

a translation-invariant pd kernel by Bochner’s theorem.

Note that this proposition only states that the kernel

mean map is invertible — it does not make a statement

about the practical problem of how to compute the inverse.

In the next section we present a simple approach to do so.

4. Experiments
Fig. 1 illustrates a typical experimental setup: two point

sources (in green and blue on the left) are imaged through

an optical system consisting here of a single lens (with fo-

cal length f ) and a finite aperture of diameter D. Under

incoherent illumination the observed image on the right is

a superposition of the images of the point sources, each

10851085108510871087



D

Figure 1. A one dimensional double star (two delta peaks on the

left) gets imaged by the lens with the finite aperture leading to an

blurred image formed by the sum of two squared sinc functions on

the right.
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Figure 2. Restoring a diffraction-limited image (gray, first row)

of one-dimensional double star (green, first row) with increasing

amounts of noise (from left to right). The maximum likelihood

solution (blue, second row) restores the double stars only in the

noise-free cases (left column). The non-negatively constrained

maximum likelihood approach (blue, third row) restores the dou-

ble star even for various amounts of noise (third row, left to right).

of which is given by the impulse response of the optical

system Ψ. In an ideal diffraction-limited optical system,

two point sources can only be resolved if they are at least

1.22λf/D apart. To demonstrate that we can resolve be-

yond this so-called Rayleigh limit, we place the two point

sources so close, that their individual images cannot be re-

solved (i.e. the red dashed line in Fig. 1 has only one maxi-

mum).

4.1. Recovering a one-dimensional simulated image

The recorded image is usually corrupted by measure-

ment noise, sometimes modeled as additive Gaussian. Then

Eq. (26) becomes q(.) = μ(P ) + n where n ∝ N(0, σ).
The first row of Fig. 2 shows the true object (green) and the

observed image (gray) of a one dimensional toy example

for increasing amounts of noise (from left to right). More

precisely, we represent the true object p and the recorded

image q as finite-length one-dimensional column vectors u

and v. According to the Fraunhofer diffraction equation, the

relationship between the object u and image v is linear and

can be expressed as a matrix:

v = FHTFZu+ n. (30)

Here, Z is a zero-padding matrix, F is the discrete Fourier

transform matrix, FH the hermitian matrix of F (i.e. the

inverse transform), and T is the optical transfer function

(OTF), i.e. the Fourier transform of the system’s impulse

response, i.e. T = Fψ, with ψ being a finite dimensional

vector, too.

The object u can be recovered from v by a maxi-

mum likelihood approach, i.e. we solve the following least-

squares problem

minu‖v − FHTFZu‖2. (31)

The middle row of Fig. 2 shows the recovered objects u of

the noisy observations v (first row in gray) using the com-

mand u = (F’*T*F*Z) \ v; in Matlab. As suggested

by our findings in Section 3, the true signal can be recov-

ered exactly in the noise-free case (first column). The as-

sumption of bounded support is implicit by chosing u to be

shorter than v. However, already small amounts of noise

render the optimisation problem in Eq. (31) ill-conditioned

yielding an unstable solution.

As an image accounts for the amount of recorded pho-

tons we can employ non-negativity as an additional physi-

cal constraint. Hence, instead of Eq. (31) we solve the con-

strained optimization problem

minu‖v − FHTFZu‖2 s.t. u ≥ 0. (32)

The non-negativity constraint stabilizes the restoration

process and yields good results even for large amounts

of noise (bottom row in Fig. 2). We solve the non-

negative least squares problem using the Matlab command

u = lsqnonneg(F’*T*F*Z, v);.

4.2. Recovering a two-dimensional real image

We build an experimental setup with an artificial double

star (lighted by green light) that is imaged by a cooled cam-

era (PCO.2000) in about one meter distance. The optics of

the camera consists of a changeable aperture and a single

lens (f = 100mm). Panel (d) of Fig. 3 shows a “ground

truth” image that has been taken with an aperture of 4mm

and exposure time of 3ms. Panel (a) shows the same dou-

ble star but with aperture 0.5mm. The aperture has been

chosen that the angular separation of the double star is 50

percent below the Rayleigh limit. Note that the two stars

are not visible anymore and the light has been spread out

due to diffraction. To get a good measurement we had to

expose for 4000ms. Both images, (a) and (d), are the result

of averaging eight images minus an averaged dark frame to
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reduce the noise to a minimum. The support is chosen by

thresholding the measured image, panel (a). Applying the

method described in the previous paragraph to the image in

panel (a), we are able to recover the two double stars which

are quite similar to the ground truth (panels (c) and (d) in

Fig. 3). Note that the ground truth is more blurry since it is

also photographed with a finite aperture.

5. Related work
The question whether it is possible to break the diffrac-

tion limit has been the subject of numerous works:

In 1952, Toraldo di Francia [4] stated that “we notice

that the classical limit of 1.22λ/D, which has always been

accepted as a theoretical limit, proves instead to be only

a practical limit.” Motivated by “super-gain antennas” he

studies the diffraction patterns of “super-resolving pupils”

which consists of concentric rings instead of a uniform

pupil. He observes that for an increasing number of rings

the central disc of the airy disc becomes smaller and more

isolated, hereby increasing the resolution. In [5], the same

author discusses the problem of resolving power from the

point of view of information theory. He makes the point

that several objects can lead to the same image, so with-

out an “infinite” amount of prior information we cannot do

two-point resolution.

A few years later, Wolter showed in [31] that bounded il-

lumination (cf. our bounded support assumption on the ob-

ject), is sufficient to recover higher frequencies, since the

Fourier transform of a bounded object is analytic. He uses

accelerating summation techniques to analytically continue

the spectrum that has been cut off by an aperture. Inde-

pendently of Wolter, Harris [13] also considered bounded

objects and the fact that their Fourier transforms are ana-

lytic. He also proposed a method for analytic continuation

(for the noise-free case). His conclusion is that “diffraction

imposes a resolution limit which is determined by the noise

of the system rather than by some absolute criterion.”

Barnes [1] proposed a reconstruction procedure for co-

herent illumination. He uses the assumption of bounded

support to write the convolution operator in the imaging

equation in such a way that it can be decomposed into pro-

late spheroidal wave functions [27]. This allows inversion

of that operator, similar to division in Fourier space. Rush-

forth and Harris [22] study the influence of noise on recon-

struction methods to overcome the diffraction limit. Their

conclusion is that “the Rayleigh criterion is an approximate

measure of the resolution which can be achieved easily.”

Gerchberg [8] (and independently Papoulis [19]) pro-

posed an algorithm analogous to Gerchberg and Saxton’s

phase retrieval method [9] incorporating also positivity. As

Jones [18] points out, this algorithms converges under cer-

tain conditions only rather slowly.

Although the above works have provided insight into

theoretical aspects of recovering object properties beyond

the diffraction limit, the proposed methods did not become

relevant in practice. In 1993, Sementilli, Hunt and Nadar

[26] derived bounds on the bandwidth extension in terms

of object size and noise variance under the assumption of

bounded object support and positivity. Section 6.6 of Good-

man’s book on Fourier Optics [10] discusses these early

studies of the diffraction limits and concludes, that “the

Rayleigh limit to resolution represents a practical limit to

the resolution that can be achieved with a conventional

imaging system.”

Several papers consider a bounded support constraint to

overcome the diffraction limit. Another possible constraint

is sparsity: Donoho [6] studied the problem of recovering a

sparse signal for which only low frequencies of its Fourier

transform are available. Recently, Candes and Fernandez-

Granda [3] also studied conditions under which sparse sig-

nals can be recovered. The results apply to signals which

have a sparse representation. Sparsity has effectively also

been practically used to break the diffraction limit using

hardware, e.g. in stimulated emission depletion microscopy

(STED) [14].

Finally, one should mention that the works above con-

sider superresolution as the problem of breaking the diffrac-

tion limit, as opposed to trying to “only” increase the res-

olution of low resolution sensors (e.g. [17]). This type of

superresolution is not the topic of this paper so we refer the

reader to the review of Park, Park and Kang [20].

6. Conclusion
We have developed a novel connection between machine

learning and Fourier optics, identifying a positive definite

kernel with the squared Fourier transform of an imaging

system’s aperture. Leveraging results from RKHS theory,

this led to a condition on an object (boundedness of its sup-

port) which ensures that it can be fully reconstructed from

the image. Simple experiments showed that such recon-

structions are possible with real data. While we do not

claim that our approach has immediate practical implica-

tions, we believe it is surprising and noteworthy that a cel-

ebrated results in Fourier optics can be analyzed using the

theory of positive definite kernels used in machine learn-

ing, with nontrivial implications for the profound problem

of optical super-resolution. We hope this link can be further

exploited to gain a beter understanding and possibly novel

solutions to optical problems. In an experimental setup we

show that we are able to super-resolve beyond the Rayleigh

limit.
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