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Abstract

This paper presents a robust occupancy analysis system
for thermal imaging. Reliable detection of people is very
hard in crowded scenes, due to occlusions and segmentation
problems. We therefore propose a framework that optimises
the occupancy analysis over long periods by including in-
formation on the transition in occupancy, when people enter
or leave the monitored area. In stable periods, with no ac-
tivity close to the borders, people are detected and counted
which contributes to a weighted histogram. When activity
close to the border is detected, local tracking is applied in
order to identify a crossing. After a full sequence, the num-
ber of people during all periods are estimated using a prob-
abilistic graph search optimisation. The system is tested on
a total of 51,000 frames, captured in sports arenas. The
mean error for a 30-minute period containing 3-13 people
is 4.44 %, which is a half of the error percentage optained
by detection only, and better than the results of comparable
work. The framework is also tested on a public available
dataset from an outdoor scene, which proves the generality
of the method.

1. Introduction

Measuring the occupancy maps from people has become

an essential step towards an intelligent and efficient society

[21, 33]. A well-known example of this is that the where-

abouts of people in shopping malls provides valuable infor-

mation for the managers. The same goes for sports arenas.

These facilities are in high demand, but very expensive to

build, so focus of the political systems has shifted towards

optimising the use of the existing arenas. The first step in

this analysis is to monitor the occupancy of such facilities.

As this analysis should run for several weeks in each arena,

manual observations would be expensive and cumbersome,

and an automatic system based on computer vision is there-

fore suggested. While RGB-based systems are normally

used in previous research in sports analysis [1, 22, 12, 40], a

general public acceptance of more permanent installations

in such facilities are harder to come by due to privacy is-

sues. We therefore apply thermal imagery, which captures

the infrared radiation instead of visible light, and creates

an image whose pixel values represent temperature. People

can not be identified in thermal images, thereby eliminating

the privacy issues. A positive side effect of thermal imag-

ing is that detection can often be reduced to a trivial task.

However, thermal imaging also introduces new problems,

as people are often fragmented into small parts, and reflec-

tions can be seen in the floor. Moreover, the challenges of

occlusions remain in thermal images, see figure 1.

Figure 1. Examples of the challenges for detection of people.

The contribution of this work is a reliable method for oc-

cupancy analysis in thermal video. The method does not as-

sume a perfect detection in each frame, but handles the de-

tection challenges by including temporal information. The

main focus is not short lab sequences, but rather long, real-

life sequences. Here we use data from sports arenas, which

are very challenging, due to the natural physical interaction

in sport.

The main idea is to split the video sequences into two types

of periods. The first type is the stable periods, where no

people exit or enter the court. In these periods, the num-

ber of people on the court must be the same, which in turn

introduces a constraint on the problem. The second type

defines unstable periods, where the occupancy is likely to

change. Combining these two types of information to model

the periods and transitions between them provides a unified

framework to optimise over a long period of time.
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1.1. Thermal radiation

Thermal imaging is still a relatively new modality in

computer vision applications, and the theory behind it is

relatively unknown in the computer vision society. This

section will therefore provide information on the physical

foundation of thermal radiation and cameras.

All objects with a temperature above the absolute zero emit

infrared radiation, mainly in the mid-wavelength infrared

spectrum (MWIR, 3-5 μm) and long-wavelength infrared

spectrum (LWIR, 8-15 μm). This is often referred to as

thermal radiation. The intensity of the radiation from an

object with temperature T is described by Planck’s Law as

a function of the wavelength λ:

I(λ, T ) =
2πhc2

λ5
(
ehc/λkBT − 1

) (1)

where h is Planck’s constant (6.626×10−34Js), c the speed

of light (299, 792, 458m/s) and kB Boltzmann’s constant

(1.3806503 × 10−23J/K). From this expression, it can be

seen that the intensity peak shifts to shorter wavelenghts as

the temperature increases. For extremely hot objects, the

radiation extends into the visible spectrum.

The thermal radiation originates from energy in the

molecules of an object. The energy can be expressed as

a sum of four contributions [36]:

E = Eelectronic + Evibration + Erotation + Etranslation

(2)

Only the energy caused by translation, rotation and vibra-

tion in a molecule contributes to the temperature of an ob-

ject.

It is well-known from quantum physics, that visible light

consists of photons that causes electron transitions when

they are absorbed or emitted from a molecule. The same

principle applies to infrared light, with the difference that

the photons contain less energy and cause transitions in the

vibrational and rotational energy levels instead. The elec-

tromagnetic radiation can be absorbed or emitted by the

molecule, then the incident radiation causes the molecule

to rise to an excited energy state, and when it falls back to

ground state a photon is released. Only photons with spe-

cific energies, equal to the difference between two energy

states, can be absorbed and emitted.

If more radiation is absorbed than emitted, the temperature

of the molecule will rise until equilibrium is re-established.

Likewise, the temperature will fall if more radiation is emit-

ted than absorbed, until equilibrium is re-established.

1.2. Thermal cameras

Generally two types of detectors exist for thermal cam-

eras: photon detectors and thermal detectors. Photon de-

tectors convert the absorbed electromagnetic radiation di-

rectly into a change of the electronic energy distribution

in a semiconductor by the change of the free charge car-

rier concentration. This type of detector typically works in

the MWIR spectrum, where the thermal contrast is high,

making it very sensitive to small differences in the scene

temperature. The main drawback is the need for cooling

of the detector, making it more expensive and with a higher

need for maintenance. The thermal detector converts the ab-

sorbed electromagnetic radiation into thermal energy caus-

ing a rise in the detector temperature. Then, the electrical

output of the thermal sensor is produced by a correspond-

ing change in some physical property of material, e.g., the

temperature-dependent electrical resistance in a bolometer.

This type of detector measures radiation in the LWIR spec-

trum. They are uncooled and have been developed with two

different types of sensors: ferroelectric detectors and mi-

crobolometers, where today the microbolometer has shown

to have more advantages.

1.3. Related work

Detection of people is the first step in many applications,

e.g. surveillance, tracking, or activity analysis. General

purpose detection systems should be robust and indepen-

dent of the environment. The thermal cameras can here

often be a better choice than a normal visual camera.

The methods applied to thermal imaging span from simple

thresholding and shape analysis [43, 17, 39, 15, 7] to

more complex, but well-known methods such as HOG

and SVM [42, 37, 41, 31, 26] as well as contour analysis

[10, 9, 27, 38]. Using simple methods allows for fast

real-time processing, and combined with the illumination

independency, the thermal sensor is very well suited for

detecting humans in real-life applications.

An obvious application area for thermal imaging is

pedestrian detection systems for vehicles, due to the cam-

eras’ ability to ”see” during the night. These systems are

being developed both as assistance for drivers in low visi-

bility, and as a navigation tool for the future automatic ve-

hicles. One of the car-based detection systems is proposed

in [4], where they present a tracking system for pedestrians.

It works well with both still and moving vehicles, but some

problems still remain when a pedestrian enters the scene

running. [13] proposes a shape-independent pedestrian de-

tection method. Using a thermal sensor with low spatial

resolution, [28] builds a robust pedestrian detector by com-

bining three different methods. [19] also proposes a low res-

olution system for pedestrian detection from vehicles. [32]

proposes a pedestrian detection system that detects people

based on their temperature and dimensions, and tracks them

using a Kalman filter. In [2] a stereo-vision system has been

tested, detecting warm areas and classifying if they are hu-

mans, based on distance estimation, size, aspect ratio, and

head shape localisation.

369736973699



A more general interest in pedestrian detection based on

thermal imaging can also be seen in surveillance or for

analysis of pedestrian flow in cities. A general purpose

pedestrian detection system is proposed in [8]. The fore-

ground is separated from the background, after that shape

cues are used to eliminate non-pedestrian objects and ap-

pearance cues help to locate the exact position of pedestri-

ans. A tracking algorithm is also implemented. [3] uses

probabilistic template models of four different poses for de-

tection. [30] also uses probabilistic template models, here

they use three models representing different scales. [29]

uses a statistical approach for head detection as the first step

in the pedestrian detection.

The previously described methods use thermal sensors only.

Combining different types of sensors could, however, elim-

inate some of the disadvantages from both sensors. Exam-

ples of systems combining thermal and RGB cameras are

given by Davis et al. [9, 11] and Leykin et al. [23, 24].

Other sensors like laser scanners and near-infrared cameras,

have also been combined with thermal sensors [14, 35].

Due to privacy issues, this work will concentrate on thermal

cameras only. We will also take advantage of the easy fore-

ground segmentation, but as shown in figure 1, challenges

still remain. As opposed to most existing work, it will be

tested on long sequences of real data with high complexity.

2. Approach
As described in the introduction, precisely counting peo-

ple in single frames can be a nearly impossible task, due

to occlusions and segmentation errors. Therefore, it is sug-

gested to include temporal information, and estimate the oc-

cupancy over longer periods. The idea is to automatically

split a video sequence into stable periods, with no activi-

ties near the border of the court, and transition periods with

activity near the border. During the stable periods, the de-

tected number of people in each frame contributes to a dis-

tribution of observations for that period. For the transition

periods, local tracking of the blobs in the border area is ap-

plied, in order to estimate the likelihood of crossings. The

two types of data and their uncertainties are combined in a

graph, where the nodes represent the number of people, and

the edges represent the change in number between two pe-

riods. A dynamic programming approach is applied to find

the optimal path of the graph.

The remaining part of section 2 describes the details of the

people detection and the monitoring of transitions. In sec-

tion 3 the graph optimisation is described, and in section 4

the system is evaluated. The conclusion is found in section

5.

2.1. People detection

The first step towards detecting people is to separate

foreground from background. Using thermal imagery in an

indoor environment simplifies this task, as the surrounding

temperature is normally stable and colder than the human

temperature. There can, however, be observed warm spots,

e.g, from heaters, hot water pipes, and doors or windows

heated by the sun. A background subtraction method is

used to remove static objects from the foreground. Since

the image depicts the temperature of an indoor scene, it can

be assumed that only slow changes will occur in the back-

ground. Therefore, the background image simply consists

of the average of the previous n frames, but only pixels that

are classified as background will contribute to the new back-

ground estimate.

Even though the foreground is now found, pixel noise

should be removed. Moreover, due to the camera having

automatic gain adjustment, the level of pixel values can

suddenly change, without any temperature changes in the

scene. To overcome these challenges, an automatic thresh-

old method based on maximum entropy is used to calculate

the threshold value for each frame [20]. From this point the

image is binary, and all blobs found are considered potential

persons. The next part, section 2.2 and 2.3 will deal with the

splitting and sorting of blobs into single persons.

2.2. Groupings

Since a side-view of the scene is obtained, see section

4.1, it is necessary to be able to handle occlusions. Gen-

erally, two types of occlusions are seen: people standing

behind each other, seen from the camera’s point of view

(”tall blobs”) and people standing close together in a group

(”wide blobs”).

2.2.1 Split tall blobs

In order to split people that form one blob by standing be-

hind each other, it must be detected when the blob is too tall

to contain only one person. We here adapt the method from

[17]. If the blob has a pixel height that corresponds to more

than a maximum height at the given position, see section

4.1, the algorithm should try to split the blob horizontally.

The point to split from is found by analysing the convex

hull and finding the convexity defects of the blob. Of all the

defect points, the point with the largest depth and a given

maximum absolute gradient should be selected, meaning

that only defects coming from the side will be considered,

discarding e.g. a point between the legs. See examples in

figure 2.

2.2.2 Split wide blobs

People standing close to each other, e.g., in a group, will

often be found as one large blob. To identify which blobs

contain more than one person, the height/width ratio and

the perimeter are considered, as done in [17]. If the criteria

are satisfied, the algorithm should try to split the blob. For
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this type of occlusion, it is often possible to see the head of

each person, and split the blob based on the head positions.

Since the head is more narrow than the body, people can be

separated by splitting vertically from the minimum points

of the upper edge of a blob. These points can be found by

analysing the convex hull and finding the convexity defects

of the blob. See examples in figure 2.

Figure 2. Examples of wide and tall blobs that have been split.

2.3. Sorting people candidates

In addition to occlusions, other problems like reflections

from people in the floor, or one person split into many blobs

can be observed. This means that blobs can not always be

mapped into individual people. In order to solve these chal-

lenges, the idea of generating a probabilistic occupancy map

[16, 6] is adapted to find the probability that a person is ob-

served at a given location. The original ideas were applied

for multi-camera tracking, where it is possible to observe

the 3D location of the scene. For this work, part of the idea

is adapted to work on binary objects, captured from a sin-

gle view. The algorithm will take all the bottom points of

the blobs as person location candidates, and calculate the

probability for each of them being a true position. A rect-

angle is generated from each candidate point, with a height

corresponding to a given average height of people and the

width being one third of the height. Two parameters are

used for evaluating the probability of the rectangle contain-

ing a person: the ratio of white pixels inside the rectangle

and the ratio of the rectangle perimeter that is white. Figure

3 shows two histograms of the ratio of white pixels inside

the rectangles for true candidates (blue) and false candidates

(red). The histograms are built from manual annotation of

340 positive samples and 250 negative samples.

Figure 3. Histograms of the percentage of white pixels in each

candidate rectangle. The blue histogram is for true candidates and

red is for false candidates. No samples are found above 70 %.

From figure 3 it is seen that only 1 % of the true candi-

dates have a white ratio less than 25 %, while a large part of

the false candidates are found here, and no true candidates

are above 70 %.

For the rectangle perimeter it is found that the lower the ra-

tio of the rectangle perimeter that is white, the better is the

fit of the rectangle to the person. The weighting of a person,

wp(i), is described in equation 3 from the ratio of white pix-

els in the rectangle, rr, and the ratio of white pixels on the

perimeter, rp:

wp(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ifrp > 50% ‖ rr < 20%

0.8, ifrr > 70%

0.9, ifrr < 30% ‖ rr > 60%

1, otherwise

(3)

Candidates with wp(i) = 0 are deleted.

There are still a lot of false candidates that will not be af-

fected by these criteria. Many of them contain part of a per-

son, and overlap in the image with a true candidate. Due to

the possibility of several candidates belonging to the same

person, the overlapping rectangles must be considered. By

tests from different locations and different camera place-

ments, it is found that if two rectangles overlap by more

than 60 %, they probably originate from the same person,

or from reflections of that person. As only one position

should be accepted per person, only one of the overlapping

rectangles should be chosen. Due to low resolution images

compared to the scene depth, cluttered scenes, and no re-

strictions on the posture of a person, the feet of a person

can not be recognised from the blobs. Furthermore, due to

the possibility of reflections below a person in the image,

it can not be assumed that the feet are the lowest point of

the overlapping candidates. Instead, the best candidate will

be selected on the highest ratio of white pixels, as it is seen

from figure 3, that the probability of false candidates are

lower here.

2.4. Identification of people entering and leaving

During the periods with activities detected at the border

of the court, it is very likely that a change will happen. For

these periods, the people near the border are monitored in

order to detect crossings. The people are detected as de-

scribed in section 2.3, but will not be counted during these

unstable periods. Instead, the position of each person near

the border is tracked, and if the border is crossed, it is reg-

istered along with the direction. Until a new stable period

is observed, the number of people entering or leaving the

court will contribute to the total transition in number.

3. Graph search optimisation
Two types of data exist now, the number of detected per-

sons during the stable periods, and the number of entering
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or leaving persons during periods with activity at the border.

The last step is now to combine these estimates in a graph

for the total observed period and estimate the most probable

number during all periods. The graph will consist of nodes,

representing the number of people in the stable periods and

edges, representing the change in number between two pe-

riods. Figure 4 is a simple example of a graph with three

stable periods. Edges exist between all nodes in two con-

secutive periods, but to simplify the illustration they are not

drawn.
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Figure 4. Example of a simple graph. Dark nodes and edges have

the highest weight. Edges exist between all nodes in two consecu-

tive periods, but to simplify the illustration they are not drawn.

A dynamic programming approach is taken to calculate

the optimal path. The problem is solved by a version of

Dijkstra’s Algorithm modified to calculate the path with

the highest votes, instead of the traditional minimum cost.

The probabilistic weighting of nodes and edges will be de-

scribed in the next section.

3.1. Weighting

Each node and edge must be weighted in order to calcu-

late the best path. We define the weights as positive, mean-

ing that a higher weight is a better path. As described, each

node in the graph represents a possible number of persons in

a given period. The weights for the nodes will be distributed

according to the weighted histogram of the number of de-

tected people in all frames during the stable period. The

histogram is constructed from the detected people in each

frame, with a weight describing the probability of each de-

tection being true, and a weight describing the uncertainty

of the frame, caused by occlusions and clutter. Each frame

counting is weighted like this:

wf = α ·
n∏

i=1

wp(i) + β · ws (4)

where n is the number of people, wp(i) is the probability

of people i being a true detection (see equation 3), and ws

is a weight that decreases with the number of splits per-

formed (described in section 2.2), indicating how cluttered

the scene is. α and β are the weighting of each part and

should sum to one. The observed number in a frame will

be added to the histogram with the weight wf , and after a

stable period has ended, the histogram will be scaled to an

accumulated sum of 1. The circles in figure 4 illustrate the

weighted histogram for each period.

The weighting of edges depends on the total number of

crossings during the period of border activity, as well as the

weighting of the individual people crossing the border. The

probability of change x in number of people (+n for people

entering the court and −n for people leaving) is modelled

as a Gaussian distribution, with the mean value μ being the

calculated number, and the variance σ proportional to the

total number of crossings. The probability is described as

wb(x):

wb(x) =
1

σ
√
2π

e

(
− (x−μ)2

2σ2

)
× wp (5)

wp =
1

m

m∑
i=1

wp(i) (6)

where m is the number of people crossing the border. Each

dashed line in figure 4 illustrates the edges weighted with

wb(x). In the example the variance σ is high for the first

period of border activity and low for the second period of

border activity.

4. Experimental results
Comparing our results with others is difficult, because as

far as we know, only [17] has focused on occupancy anal-

ysis of thermal video. We therefore compare our work to

related work based on RGB cameras. Moreover, no public

datasets with long thermal videos containing more than a

few people exist. We therefore capture a new dataset, that

will be available for download after publication 1. The data

contained in this video is from six different arenas, in order

to be able test the robustness of the algorithms in different

environments and set-ups. Several different activities are

captured as well as both children and adults. We test on

a 5-minute sequence from each of the five arenas for the

evaluation of the detection algorithm and the tracking al-

gorithm for the border areas. The full system with graph

search optimisation should benefit from a longer video se-

quence, and will therefore be tested on a 30 minute video

from a sixth arena. Thereby, the system has been tested on

a total of 51,000 frames, which are manually annotated to

provide ground truth. This data contains between 3-16 peo-

ple in each frame. The processing time is approximately

0.125 seconds per frame on an Intel Core 2 Duo 3 GHz

CPU, without any optimisation of the software.

To prove the generality of our framework, a final test has

also been conducted on a public dataset of a totally dif-

ferent scenario, which is an outdoor scene from the OSU

Color/Thermal database [11]. This test will be described in

1Available for download at www.vap.aau.dk
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Figure 5. Example of the thermal image, with the outline of the court drawn as a red line.

section 4.5.

The remaining part of this section will describe the calibra-

tion and initialisation needed for the system, before results

for each test are presented.

4.1. Camera calibration and initialisation

Installing a camera in the ceiling above most courts is

very cumbersome and expensive and therefore not realistic

in general. Therefore, it must be installed on one of the

walls or rafters around the court. A standard arena has a

court of 40 × 20 metres, corresponding to a handball field,

indoor soccer field, etc. As the lenses of commercial ther-

mal cameras today have a maximum field-of-view of around

60◦, more than one camera must be used to cover the en-

tire court. The camera set-up used in this work consists of

three thermal cameras placed at the same location, and ad-

justed to have adjacent fields-of-view. Each camera is of the

type Axis Q1922, which uses an uncooled microbolometer

for detection. The resolution is 640 × 480 pixels per cam-

era and the horizontal field-of-view is 57◦ per camera. To

make the system invariant to the cameras’ set-up, the im-

ages are stitched together before processing. This requires

the cameras to be perfectly aligned and undistorted in order

to secure smooth “crossings” between two cameras. Cali-

bration of thermal cameras is not a trivial task, as they can

not see the contrast differences of a typical chessboard used

in most applications. Therefore, a special calibration board

is made with 5x4 small incandescent light bulbs. With this

it is possible to adapt the traditional method to estimate the

intrinsic parameters of the cameras. The cameras are man-

ually aligned horizontally so that their pitch and roll are the

same. This mimics the well-known panorama effect, but

with three cameras capturing at the same time. An example

of the resulting image is shown in figure 5. When the cam-

eras are put up in an arena, an initialisation is made. This

consists of finding the mapping between image and world

coordinates, as well as finding the correlation between peo-

ples’ real height and their height in the images, correspond-

ing to their distance to the camera.

As the cameras are fixed relative to each other and then

tilted downwards when recording in arenas, the result is that

people in the image are more tilted the further they get from

the image centre along the x-axis. This means that a per-

son’s pixel height can not always be measured vertically in

the image. Therefore, the calibration must include both the

height and the angle of a person standing upright at prede-

fined positions on the court. For this work we used points

on a grid of 5 × 5 metres on the court resulting in 45 dif-

ferent calibration images. In each image the world coordi-

nates, image coordinates, pixel height and angle are learned

as well as the person’s real height in metres. The four cor-

ners are used to calculate a homography for each square,

making it possible to map image coordinates to world coor-

dinates. Using interpolation, an angle and maximum height

are calculated for each position.

4.2. Detection of people

The first test evaluates the detection algorithm described

in section 2.1. The number of detected people is registered

as well as the manually counted number. This is done for 5

videos of 5 minutes each, captured with 10 fps, altogether

15,000 frames.

The mean error for each video is found to be between 8.5

% and 22.0 %. The errors are independent of the arena and

seems primarily to depend on the level of occlusions seen

in the scene. Periods with large groupings have a higher de-

tection error than periods with people separated from each

other. This is also expected, as the detection algorithm

works on each frame independently, and people that are

fully or mostly occluded can not be detected. Apart from

the initialisation described in section 4.1, nothing has been

done to fit the system to the specific arena, and it is con-

cluded that it is independent of the arena.

4.3. Transition recognition

For the five videos of five minutes, it is registered each

time a person crosses a specified border in order to evaluate

the tracking algorithm. A total of 154 crossings are detected

manually, and 168 crossings are detected automatically. 108

of the crossing are detected at the exact time, which is con-

sidered within ± 2 frames of the manual detection. Most of

the false crossings detected are compensated with a cross-
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ing in the opposite direction within a few frames. These will

therefore not affect the global estimation of the number.

4.4. Full system test

The full system is tested on a 30 minute video, captured

with 20 fps. Calculating the error for each frame gives an

average error of 0.38 persons, corresponding to 4.44 %. For

comparison, the result using detection only is also found,

the error here is twice as high, 8.87 %. The number of de-

tections is very unstable, and could suggest to do a simple

low pass filtering, to overcome what looks like high fre-

quency noise in the measurements. Low pass filtering the

detection data reduces the error to 7.70 %. This indicates

that a simple filtering of the data will not reduce the error as

efficiently as the graph optimisation method. In table 1 our

results are compared to related work, based on both thermal

and RGB images.

Reported error

Gade et al. [17] 7.35-11.76 %

Rabaud and Belongie [34] * 6.3-10 %

Hou and Pang [18] * 10 %

Celik et al [5] */** 8 - 14 %

Our method 4.44 %
Table 1. Reported error percentage from related work compared to

our result. * uses RGB images. ** calculates the error as percent-

age of frames with an error larger than one person.

4.5. Test on OSU dataset

To show the generality of our framework, we tested the

system on the thermal video from the OSU Color-Thermal

database [11], which is dataset three from the OTCBVS

Benchmark Dataset Collection. We used sequences 4, 5

and 6, which are videos of approximately one minute each.

They contain between zero and four people in each frame.

Due to the low number of people in this dataset, instead

of error we calculated the precision, being the number of

frames with the correct number of people estimated. The

results are presented in table 2 and compared to the results

of detection alone, as well as the results of [25], which were

provided with the dataset. However, it should be noted that

the results of [25] are obtained by fusing the thermal and

visible modalities and are intended for people tracking.

Seq. 4 Seq. 5 Seq. 6

Detection only 86.72 % 83.11 % 77.72 %

Leykin et al. [25] 85.52 % 88.77 % 64.89 %

Our full method 87.12 % 93.70 % 87.89 %
Table 2. Counting precision on the OSU dataset.

It is seen that the results of our full method are better

than both the results from [25] and from detection alone.

5. Conclusion
In this work we have presented a unified framework for

occupancy analysis. This method includes temporal infor-
mation in the estimation by measuring the transition in num-
bers, and using that together with the detection of people in
the global optimisation. The application of this work is the
analysis of a given facility over days, weeks or even months.
The need for real-time analysis is minor, and offline pro-
cessing therefore allows for a more global approach. The
main focus was on sports arenas, but we also proved that it
works well in a general outdoor scene. We have shown that
including the transition information improves the precision
significantly, compared to using detection alone; even if the
detection results are filtered afterwards. The mean error for
the 30-minute test is 4.44 %, compared to 8.87 % if only the
detection method was used.
The occupancy analysis is the foundation in many applica-
tions and can be continued to further activity analysis.
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