
Modeling Actions through State Changes

Alireza Fathi and James M. Rehg

College of Computing

Georgia Institute of Technology

{afathi3,rehg}@gatech.edu

Abstract

In this paper we present a model of action based on the

change in the state of the environment. Many actions in-

volve similar dynamics and hand-object relationships, but

differ in their purpose and meaning. The key to differentiat-

ing these actions is the ability to identify how they change

the state of objects and materials in the environment. We

propose a weakly supervised method for learning the ob-

ject and material states that are necessary for recognizing

daily actions. Once these state detectors are learned, we

can apply them to input videos and pool their outputs to de-

tect actions. We further demonstrate that our method can be

used to segment discrete actions from a continuous video of

an activity. Our results outperform state-of-the-art action

recognition and activity segmentation results.

1. Introduction

What makes an action (e.g. “open the jar”) identifiable?

How can we tell if such an action is performed? Over the

last two decades various cues have been used to model and

understand actions in computer vision: holistic shape and

motion description [2, 5], space-time interest points [10],

feature tracks [18], object and hand interaction [6, 9, 29]

and various other techniques. The common theme among

all these works is that they model an action by encoding

motion and appearance throughout the interval in which it

is performed.

However, in order to fully understand actions we must

understand their purpose [25]. Actions with similar motion

patterns and hand-object relationships can have a different

meaning because they accomplish a different goal. For ex-

ample, “open coffee jar” and “closed coffee jar” are two dif-

ferent actions, in fact they are inverse. However, they pro-

duce similar motion patterns and involve the same object.

The key to distinguishing these two actions is to be able to

detect the state of the “coffee jar” (open vs. closed) and

how it changes by these actions. For example, the opening

action changes the state of an object from closed to open.

!"#$%"&

'()$*&

'+"%&

'()$*&

,-$."&

,$/""&01%&

,-$."2&,$/""&01%&

34"*"2&,$/""&01%&

54%"12&0"--6&

$*&!%"12&

0"--6&54%"12&$*&!%"12&

7-18*&!%"12&9$1#&

:1;& :<;&

Figure 1: By comparing the initial and final frames of an ac-

tion, and exploiting the action label, we can learn to detect

the meaningful changes in the state of objects and materials

produced by the action. In example (a), our method recog-

nizes the action of “close coffee jar”, as a result of detecting

regions corresponding to open and closed coffee jar. Simi-

larly in example (b), the action of “spread jelly on bread” is

recognized by detecting the regions corresponding to plain

bread loaf and jelly spread on bread respectively in the ini-

tial and final frames of the action.

Based on this observation, we introduce a method for

recognizing daily actions by recognizing the changes in the

state of objects and materials. Most actions can be per-

formed only if certain preconditions are met. Moreover,

their execution causes some existing conditions to change.

For instance, the action “spread jelly on bread using knife”

requires jelly to be on the knife but not on the bread when

it is applied. This action changes the state of the jelly from

being on the knife to being spread on the bread. Or for ex-

ample, “take cup” is an action before which the cup is not

being held by the hand, but once it is performed the cup is

grasped by the hand1.

1Note that this notion of actions as state changing processes holds for

most cases, however, there are exceptions such as “dancing” that do not

create any describable or observable changes in the environment. In this

paper our focus is on goal-oriented object-manipulation tasks which are

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.333

2577

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.333

2577

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.333

2579

We are interested in two kinds of changes: 1) changes

in the state of objects (e.g. coffee-jar becoming open or

closed) and the transformation of stuff (e.g. coffee powder

mixing with water, jelly getting spread on bread, egg getting

scrambled). For example, the following actions take place

during the activity of “making coffee”: (open coffee jar),

(scoop coffee using spoon), (pour coffee into cup) and (put

hot water into cup), (close coffee jar). Throughout these

actions, the coffee jar changes states from closed to open

and again to closed. Likewise, the coffee powder changes

state from being in the coffee jar to being on the spoon, and

then being in the cup, and finally dissolving into hot water.

Following our previous works [8, 6, 7] and like many

other recent works [17, 22], we adopt egocentric paradigm

for recognizing daily activities and actions. Analyzing the

details of hand-object interaction is challenging in third-

person view videos due to insufficient resolution of hands

and objects. In contrast, the egocentric view puts the en-

vironment into the center of the action interpretation prob-

lem. In this view, the subject often naturally avoids occlu-

sion which results in high resolution and detailed images

of handled objects. We leverage the egocentric paradigm

to build fine-grained representations of the object states and

materials in order to describe object manipulation tasks.

In this paper, we propose a weakly supervised method

for learning the object and material states that are necessary

for recognizing daily actions. Once these state detectors are

learned, we run them at each frame of the videos and de-

scribe the environment at each moment in time based on the

existence or absence of detected object and material states.

We introduce methods that leverage the changes in the state

of the environment to recognize actions and segment activi-

ties. Our results outperform state-of-the-art action recogni-

tion and activity segmentation results. Our contributions in

this paper are: 1) We present a model for actions based on

the changes in the state of the environment, 2) we introduce

a method for weakly supervised discovery of state-specific

regions from action videos and 3) we provide an activity

segmentation method by verifying the consistency of the

environment state with the beginning and ending conditions

of the actions.

2. Related Work

Action recognition has been the subject to a large body of

work in computer vision [15, 24]. Much of the initial work

on this area has been focused on understanding human body

movement patterns such as walking, running, ballet moves,

etc. [2, 5] and have resulted in near perfect performance on

simple standard datasets such as KTH [21]. In contrast to

these early datasets, people manipulate objects as a natural

part of performing realistic daily activities. In these actions,

often intended to accomplish a particular goal.

the interaction between hand and object is an important part

of visual evidence that should be considered.

There has been various attempts in the past to model ob-

ject context for action and activity recognition. Wilson and

Bobick [27] propose parametric Hidden Markov Model for

recognizing human actions. Their method indirectly mod-

els the effect of object attributes on human actions. Mann et

al. [13] use a physics based approach to describe kinematic

and dynamic properties of hands and objects and understand

their interactions. Li and Fei-Fei [11] classify events based

on the object categories that appear in an image. Wu et

al. [28] recognize activities based on temporal patterns of

object use. They use RFID-tagged objects to bootstrap the

appearance-based classifiers. Marszalek et al. [14] use

scene context to improve action recognition performance.

Yao and Fei-Fei [29] recognize activities in images based

on the mutual context of objects and human pose.

All of these methods use detected objects as context for

recognizing actions. In addition, some of them model the

actions by considering the mutual relationship between hu-

man pose and object locations. However, none of these

methods leverage the state of the objects for recognizing

human-object interaction. Vaina and Jaulent [25] suggested

that a comprehensive description of an action requires un-

derstanding its goal. They refer to the conditions necessary

for achieving the goal of an action as action requirements

and model the compatibility of an object with those goals.

Gupta et al. [9] look at the change of intensity in the area

around hands in a constrained setting to recognize subtle

object reactions like the turning on a flashlight. However,

change of intensity cannot describe complex state changes

caused by an action like opening an object. In this paper, we

describe a method that discovers state-specific regions from

the training videos and models their changes to recognize

actions during the testing phase.

In the AI and robotics literature, an action is performed

by an intelligent agent through actuators and results in par-

ticular changes to the environment [19]. Such changes can

be perceived by agent’s sensors, and lead to decision mak-

ing, resulting in a perception and action loop. However, in

robotics often the focus has been on the planning problem

rather than recognizing actions. In this work, we focus on

learning visual representations for object and material states

and modeling the actions based on their changes.

3. Method

Our task is to model daily actions via the changes they

induce in the state of the environment. We formulate this

problem as the discovery of changed regions that either

correspond to a specific state of an object (e.g. open mouth

of the bottle of water) or represent a particular material

(stuff, e.g. coffee powder on spoon). We represent actions

based on the changes they make in objects and materials. In

257825782580

!"#$%&'($))*'+,'-#$%&'

./0'1%*+'+,'23$$4$'

2)+4$'2+5$$'(%#'

-$6+#$' 78$#'

-$6+#$'

-$6+#$'

78$#'

78$#'

23%,9$'

:0;<+,'

2)/40$#=,9'

2+,4=40$,0)*'

7""$%#=,9'

>$9=+,4'

!"#$%&'($))*'

?"$,'!/9%#'

@%A$'2/"'

./0'1%*+''

+,'23$$4$'

2)+4$'2+5$$'

?"$,'2+5$$'

!;++"'2+5$$'

@%A$'!"++,'

?"$,'B+,$*'

23%,9$4'C$0D$$,'-$9=,,=,9'%,&'E,&=,9'F#%G$4'

@#%=,=,9'7;<+,'H,40%,;$4'

23%,9$'

:0;<+,'

23%,9$'

:0;<+,'

23%,9$&'

>$9=+,4' >$9=+,4'03%0'2+,4=40$,0)*'?;;/#'%0'G+40'=,40%,;$4'+6'$%;3'7;<+,'@*"$'

Figure 2: Stages of our state-specific region discovery framework are shown. This procedure only takes place during the

training phase. First for each action instance, we compare its initial frames with its final frames to extract the regions that are

changed. In the second stage we discard the changes that are not common over the examples of their corresponding action

type. In the final stage, we learn a detector for each group of consistent regions. During the testing phase we apply the trained

region detectors to describe actions and states.

order to find the regions that are changed as a result of an

action, we compare their appearance before the action starts

to their appearance after the action ends. The changed re-

gions often correspond to either the state of the objects, or to

the materials. Using our method, we show significant gains

in action recognition and video segmentation performance.

During the training phase, we are given a set of activ-

ity videos. An activity like making peanut-butter and jelly

sandwich, consists of a sequence of atomic actions (e.g.

take bread, open peanut-butter jar, spread peanut-butter on

bread using knife, etc.). For each training activity video, the

actions are annotated. The annotation for each action con-

tains its start frame, end frame, a verb (e.g. scoop), and a

set of nouns (e.g. coffee, spoon). We emphasize that we are

not provided with any object location or mask. In Sec 3.1,

we introduce a method for discovering regions that corre-

spond to object states and materials from video images. We

further learn various state-specific region detectors from the

set of discovered regions. In Sec 3.2 and 3.3, we propose a

method for recognizing actions based on the change in the

detected object states and materials. Finally, in Sec 3.4, we

introduce a method for segmenting a new video into a se-

quence of actions by localizing their initial and final frames.

3.1. Discovering StateSpecific Regions

The first step in our training phase identifies regions that

are representative of the state of an object or existence of

a material. In this stage, we make two assumptions: (1)

an object state or material does not change unless an action

is performed and (2) an object state or material change is

associated with an action only if it consistently occurs at

all instances of that action. Fig 2 illustrates our three stage

approach to discovering the state-specific regions. In the

first stage, we identify regions that either appear or disap-

pear as a result of the execution of each action instance. For

example, the region corresponding to the lid of the coffee

jar will change as a result of performing the action of open

coffee. However, there may be other irrelevant changes in

addition. For example, a change in the appearance of hand

as a result of its movement. In the second stage, we prune

changes that are not consistently associated with an action.

Finally, in the third stage we learn a detector for each group

of discovered state-specific regions. We use these detectors

to classify unknown regions during the testing phase.

Change Detection: In this stage, we find the regions that

either appear or disappear throughout each action instance

in the training set. Each action instance corresponds to a

short interval which is a sub-part of a longer activity video.

For each action instance, we sample a few frames from its

beginning and a few frames from its end. We compare the

beginning and ending frames to find their differences. For

each pair of beginning and ending images, we match their

pixels using large displacement optical flow [3]. Then for

each pair of matched pixels, we compute change based on

their color difference, similar to the method of Sand and

Teller [20]. We calculate the significance of change for each

region based on the average amount of change in its pixels.

The regions that we use in our algorithm are acquired using

257925792581

the method in Arbelaez et al. [1].

These appearance and disappearance patterns often cor-

respond to changes in object states or the creation of new

materials. For example, pouring water into a cup contain-

ing coffee powder results in the appearance of a new dark

brown liquid region in the cup. Of course there will be many

other irrelevant changed regions due to occlusion, lighting

effects, and other factors. To overcome such mistakes, we

compare each beginning (ending) image to multiple ending

(beginning) images. We set the amount of change to the

minimum amount computed among all the comparisons. A

few examples of the results of this stage are shown in the

second column of Fig 2. After this pruning procedure, still

there are often regions left that do not correspond to state

changes and materials. The next step is to remove them.

Consistent Regions: In the previous stage, we extract

regions that have changed between the initial and final

frames of each action instance. Now in this stage, we

only keep the subset of those regions that consistently occur

across the instances of an action type. For example, a region

that corresponds to coffee jar’s lid consistently appears at

the beginning of the “open coffee”, but a spurious region

would not. A region r consistently occurs at an action class

A, if there is a region r̂ similar to r at each instance a of that

action class (a ∈ A). Here we suggest an algorithm that ex-

tracts the consistent regions, and further groups them based

on their similarity. Inspired by the source constrained clus-

tering method of Taralova et al. [23], we cluster the N ex-

tracted regions from instances of action class A into k sets

{S1,S2, ...,Sk} by enforcing the regions in each cluster to

be drawn from the majority of action instances. We further

add an additional constraint that each action instance can

at most contribute one example to each cluster. This con-

straint prevents us from adding regions that correspond to

non-relevant object parts but have similar appearance to the

cluster. We do this by optimizing the following objective

function:

argminS

k∑

i=1

∑

xj∈Si

‖xj − µi‖
2 (1)

subject to :
∑

a∈A

δ(Si, a) ≥ h

δ(Si, a) ≤ 1

where xj is a feature vector representing region j, µi is the

mean of points in Si, a is an instance from the set of all

instances of the action class A, and δ(Si, a) is a function

that returns the number of regions from action instance a in

cluster Si, and h is a scalar. This objective function is simi-

lar to the objective function of k-means with two additional

constraints that enforce a cluster Si to have samples from at

least h action instances.

We approximately minimize the objective function in Eq

1 through a simple iterative approach. In each iteration, we

pick the best set of h regions with minimum distance from

each other and return them. We make sure each of these

regions is picked from a different action instance. In the

next iteration, we remove the previously returned regions

from the set of remaining regions and repeat the procedure.

We continue this until either k clusters are returned or there

are less than h action instances with regions left in them.

See Algorithm 1 for the details. In our experiments, we

only use the first few clusters which have the highest self-

similarity. We have shown examples of such clusters in the

right-most column of Fig 2.

Algorithm 1 One iteration of selecting consistent regions

set of best h regions R = {}
total intra-region distance b = ∞
a temporary set for keeping regions R̄ = {}
for (every region r in every action instance a ∈ A)

for (each â 6= a, â ∈ A)

pick the closest region in â to r and add it to R̄

end

select a subset of h regions in R̄ with min total distance d

if (d < b)

set R to the subset of R̄

set b to d

end

end

return R as a cluster

remove R̄ from the set of extracted regions

State-Specific Region Detectors: In this stage, we learn

a detector for each of the region clusters. We train a lin-

ear SVM by using the regions belonging to the cluster as

the positive set and all the regions in activities that do not

contain the action as the negative set. We describe each

region with color, texture and shape features. For each re-

gion, we build a 128 dimensional color histogram by quan-

tizing the color values of pixels into clusters. In addition,

we build a texture histogram by computing texture descrip-

tors [26] for each pixel and quantizing them to 256 centers.

We further compute a 16 dimensional shape feature vec-

tor for each region. Our shape features are similar to HOG

[4] features, but instead of computing them on patches, we

compute them on the whole region. We compute the gra-

dient at all pixels inside the region and quantize them into

16 orientations. We count the occurrence of gradients in

each orientation. We concatenate these three features to-

gether into a 400 dimensional feature vector that we use to

represent regions.

3.2. States as Action Requirements

An action can be performed only if certain conditions

are satisfied in the environment. For example, “clean the

table” is an action that requires the table to be dirty before

258025802582

!"#$%&!#'()&

*'$%&!#'()&

(a) Close peanut-butter jar

!"#$%&!#'()&

*'$%&!#'()&

(b) Open sugar can

!"#$%&!#'()&

*'$%&!#'()&

(c) Scoop coffee using spoon

!"#$%&!#'()&

*'$%&!#'()&

(d) Take cup

Figure 3: In contrast to the features of conventional action recognition methods, our features are meaningful to humans.

Regions that correspond to state-specific detectors with a classifier weight higher than a threshold are shown with a red

boundary. For example in (a), in the first frame SVM puts a high weight on the open mouth of peanut-butter jar and in the

last frame puts a high weight on peanut-butter jar’s lid.

the action is performed, and clean afterwards. Thus, the

key to recognizing a goal-oriented action is to be able to

recognize the state of the environment both before and after

that action.

We represent the environment state based on two crite-

ria: (1) existence or absence of state-specific regions and

(2) whether or not an object (region) is grasped and is be-

ing manipulated by the hands. To model the first criteria, we

represent each frame of the test video by the response vector

of the trained state-specific region detectors (Sec 3.1). For

each detector, we run it on all the regions of the test frame

and pick the highest classification score as its response. We

set the responses that are higher than a threshold to 1, and

the ones that are lower than a threshold to −1. We set the

rest of the responses to 0. This quantization helps us to

avoid overfitting. In order to model if the regions are be-

ing grasped by the hands or not, we use the foreground seg-

mentation method of [6] which identifies if a region is being

moved by the hands or not. We build a similar vector based

on the responses of the detectors on the foreground regions,

instead of applying them to all regions. We represent each

frame by the concatenation of its response vectors.

3.3. Modeling Actions through State Changes

The majority of common action recognition approaches

rely on analyzing the motion and appearance content of the

action intervals. Movement patterns are crucial for recogni-

tion of many actions, in particular body movements such as

running, walking, dancing, etc. However, most daily object-

manipulation tasks are goal-oriented actions that are defined

by the changes they cause to the state of the environment.

Given a test action interval, we build two response vec-

tors. One is based on the response of the detectors on its

beginning frames, and the other is based on the responses

on its ending frames. We represent the interval by concate-

nation of these two vectors. We use linear SVM to train a

classifier for each action type. Since we have concatenated

the vectors of beginning and ending frames, linear SVM can

model the change of an object state or material by putting

weights on its corresponding responses. Linear SVM will

put higher weights on state-specific regions that are consis-

tently created either at the beginning or at the end of the

action, and lower weights on the ones that do not relate to

the action. We show visualizations of the classifier weight

vectors for few action instances in Fig 3.

3.4. Activity Segmentation

Activity segmentation of a test video is the task of break-

ing a long activity video into a sequence of short actions. In

order to do so, often one takes all the action detection scores

as input and infers the frames that are assigned to each ac-

tion in that video. In order to handle detection errors, a

common strategy is to apply the action classifiers to every

possible interval, and then use non-maximum suppression

or dynamic programming [16, 6].

Here instead we leverage the capability of our frame-

work for detecting environment states to segment activity

videos. In state detection, different than action recognition,

the problem is to assign a state label to each frame of the

video. The possible set of states are: 1) before a particular

action starts, during that action, after that action ends. Our

method is as follows. For each action class (e.g. open cof-

fee), we train two state detectors, one using its beginning

frames and one using its ending frames. The state detectors

are learned on top of the frame’s responses to pre-trained

state-specific region detectors (Sec 3.3).

The state detectors are trained using linear SVM by tak-

ing the action’s beginning or ending frames as positive set

258125812583

I
i

st

I
i

dur
I
i

en
Ii
aft

!I
i+1

a
|M (I

i

a
, I

i+1

a
)> 0

Figure 4: Possible transitions are shown for states of an in-

terval Ii.

and all the other training frames as negative set. Given a test

activity video, we apply all the trained beginning and end-

ing state detectors on its frames. This results in two |A|×T

matrices SB and SE respectively, where |A| is the number

of action types, T is the number of frames in the test activ-

ity video, and SB [a, t] and SE [a, t] respectively contain the

classification scores of detecting the initial and final frames

of action a at frame t.

We segment an activity video into a sequence of intervals

I = {I1, ..., I|I|}. An interval Ii has a few properties: Iai
identifies the its action label, Isti identifies its initial frame

number, and Ieni identifies its final frame number. We seg-

ment the activity video by optimizing the following objec-

tive function:

argmaxI
∑

Ii∈I

SB [I
a
i , I

st
i] + SE [I

a
i , I

en
i] (2)

subject to : Isti < Ieni

(Isti − Istj).(Ieni − Ienj) > 0

M(Iai , I
a
i+1) > 0

where M is a binary transition matrix. The objective func-

tion aims at finding the best set of intervals where the to-

tal sum of scores is maximized. The score of interval

Ii : {Iai , I
st
i , Ieni } is computed by adding the response of

the detector corresponding to the initial frame of action Iai
on frame Isti with the response of the detector correspond-

ing to the final frame of action Iai on frame Ieni . There are

three constraints involved in the optimization. The first two

constraints prevent action intervals from overlapping with

each other. The third constraint limits the possible transi-

tions between actions. For example, it is not possible to

pour milk after close milk is performed. We train the ma-

trix M based on observed action transitions in training ac-

tivities.

We can model this problem as a finite state sequential

process and optimize it using dynamic programming. For

this purpose, we have to assign a state to each frame of the

video. In order to do this, in addition to the first frame of

the interval Isti and its last frame Ieni , we add two auxiliary

states for it: during Iduri and after I
aft
i . The score of en-

tering these states is zero, and they are only used to enforce

the constraints of the Eq 2. For example, it is only possible

to transition from the first frame of an interval to its during

state, and then, either stay in its during state or move to its

 take cup
take coffee

open coffee
take spoon

scoop coffee spoon
pour coffee spoon

close coffee
take sugar

open sugar
scoop sugar spoon

pour sugar spoon
close sugar
take water

open water
pour water cup

close water
stir spoon cup

take bread
take peanut

open peanut
scoop peanut spoon

spread peanut spoon
take honey

close peanut
open honey

pour honey bread
close honey

put bread bread
take hotdog

put hotdog bread
take mustard

open mustard
pour mustard hotdog

close mustard
take ketchup

open ketchup
pour ketchup hotdog

close ketchup
fold bread

take tea
open tea

shake tea cup
take cheese

open cheese
put cheese bread
take mayonnaise

open mayonnaise
pour mayonnaise cheese

close mayonnaise
pour mustard cheese

put bread cheese
take jam

open jam
scoop jam spoon

spread jam spoon
close jam

take chocolate
open chocolate

pour chocolate bread
close chocolate
pour honey cup

0

10

20

30

40

50

60

70

80

90

100

Figure 5: Confusion matrix for recognizing actions using

our method is shown. The average accuracy is 39.7% on

61 classes of action which is significantly higher than the

baseline (23%). Random classification chance is 1.6%.

ending frame. The set of possible state transitions for an

action are shown in Fig 4.

4. Results

To validate our model of actions based on state changes,

we show extensive qualitative and quantitative results on

two tasks: (a) action recognition: assigning an action to

a given interval and (b) activity segmentation: decompos-

ing an activity into a sequence of actions by detection and

decoding. We compare our results to state-of-the-art perfor-

mance and different baselines.

4.1. Action Recognition

We evaluate our method on our GeorgiaTech Egocen-

tric Activity (GTEA) dataset [8]. This dataset consists of

7 types of activities, where each activity is performed by 4
subjects. There are 61 actions in this dataset, after omitting

the background action classes and fixing some of the mis-

takes in the original annotation. Training and testing sets

are chosen as is done in [6].

Baselines: we compare our method to three baselines.

The first baseline trains a linear SVM on concatenation of

STIP [10] bag of words built from the first and second

half of each interval. This STIP baseline performs poorly

on this dataset, resulting in 11.6% accuracy in recognizing

61 classes. We believe the reason is that in an egocentric

setting the camera is continuously moving, which makes

space-time interest points fire at areas that do not relate to

the action. The second baseline trains a linear SVM on two

SIFT [12] bag of words built for each interval. SIFT fea-

tures perform better than STIP, however, they still perform

258225822584

0

20

40

60

80

100

ta
ke

 c
up

ta
ke

 c
of

fe
e

op
en

 c
of

fe
e

ta
ke

 s
po

on

sc
oo

p
co

ffe
e

sp
oo

n

po
ur

 c
of

fe
e

sp
oo

n
cu

p

cl
os

e
co

ffe
e

ta
ke

 s
ug

ar

op
en

 s
ug

ar

sc
oo

p
su

ga
r s

po
on

po
ur

 s
ug

ar
 s
po

on
 c
up

cl
os

e
su

ga
r

ta
ke

 w
at

er

op
en

 w
at

er

po
ur

 w
at

er
 c
up

cl
os

e
w
at

er

st
ir

sp
oo

n
cu

p

A
c
ti
o

n
 R

e
c
o

g
n

it
io

n
 A

c
c
u

ra
c
y

STIP Bag of Words

SIFT Bag of Words

Fathi, ICCV11

Our Method

Figure 6: We compare the performance of our method with various baselines. STIP bag of words results in 11.6% accuracy,

SIFT bag of words results in 19% accuracy, and the method of [6] results in 23% accuracy. Our method significantly

outperforms these baselines by achieving 39.7% accuracy on 61 classes, where the random chance is 1.6%. We show the

comparison on the actions of the activity of making coffee.

poorly, resulting in 19% accuracy. This is because many of

the daily objects used in these activities are textureless and

they produce no corners. Finally we compare our method

to our previous work [6] which uses hand motion, hand lo-

cation, objects in foreground and hand pose to recognize

actions. This method achieves 23% accuracy on this dataset

for 61 classes2.

Our Method: Given an action interval, we build two

response vectors: one using its beginning frames and one

using its ending frames, as described in Sec 3.3. We have

610 state-specific region detectors. We train 10 detectors

from the consistent changes of each action type. We de-

scribe a frame by applying each of these detectors on its re-

gions and taking its highest response. We set the responses

greater than 0.5 to 1, responses smaller than −0.5 to −1,

and the responses between −0.5 and 0.5 to 0. We further

build similar response vectors from foreground regions. Fi-

nally we represent each interval with a 610× 2× 2 = 2440
dimensional feature vector, and train a linear SVM for each

action type. Our method achieves 39.7% accuracy on 61
classes, where chance is 1.6%. This represents a significant

improvement over previous baselines. We have shown the

confusion matrix for our method in Fig 5. We have com-

pared the accuracy of these methods in Fig 6.

Classifier Visualization: Many conventional action

recognition methods rely on features such as corners, point

tracks, etc. that are not meaningful to humans. In contrast,

our features are state-specific regions that correspond to ob-

2These numbers are different than the ones reported in [6]. The action

recognition results in [6] are frame based. Since a large portion of the

frames in the dataset correspond to the background actions, the results are

strongly biased towards the performance of the algorithm on recognition

of the background class. In order to fix this issue, here we report category

based recognition results, and we have omitted the background class.

ject parts or materials, and they can be easily interpreted.

The weights of the linear SVM classifier trained on exam-

ples of an action determines the state-specific parts and ma-

terials that should exist in its initial or final frames. We

have shown regions that correspond to state-specific detec-

tors with high classifier weights in Fig 3.

4.2. Activity Segmentation

Given a video, we use our activity segmentation method

described in Sec 3.4 to segment it into different actions. We

compare our method to the detection results from our pre-

vious method [6]. In our previous work, we train a CRF

for each activity and apply that on action scores to force

transition constraints. That method enforces much harder

constraints in comparison to our new approach. Using our

new method we achieve 42% accuracy and outperform our

previous results of 33% accuracy. The results are computed

by counting the percentage of the frames that are correctly

labeled in the test activities. We show segmentation results

in Fig 7 on two test activity videos. Our results are in gen-

eral smoother in comparison to our previous results [6].

5. Discussion

In this paper, we present a model for actions based on

the changes in the state of objects and materials. We show

significant gains in both action recognition and detection

results. We further introduce a simple temporal and logical

encoding method for activity segmentation that outperforms

the results of previous state-of-the-art methods. In addition,

we introduce a method for discovering state-specific regions

from the training action examples.

We believe an interesting future direction for research

involves building a taxonomy of possible states of objects

258325832585

258425842586

