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Abstract

This paper addresses the problem of restoring images
subjected to unknown and spatially varying blur caused by
defocus or linear (say, horizontal) motion. The estimation
of the global (non-uniform) image blur is cast as a multi-
label energy minimization problem. The energy is the sum
of unary terms corresponding to learned local blur estima-
tors, and binary ones corresponding to blur smoothness.
Its global minimum is found using Ishikawa’s method by
exploiting the natural order of discretized blur values for
linear motions and defocus. Once the blur has been esti-
mated, the image is restored using a robust (non-uniform)
deblurring algorithm based on sparse regularization with
global image statistics. The proposed algorithm outputs
both a segmentation of the image into uniform-blur lay-
ers and an estimate of the corresponding sharp image. We
present qualitative results on real images, and use synthetic
data to quantitatively compare our approach to the publicly
available implementation of Chakrabarti et al. [5].

1. Introduction
Many photos are corrupted by camera shake, moving ob-

jects, and out-of-focus areas. This is as true for personal
snapshots as for professional pictures in newspapers, fash-
ion magazines, or scientific articles. Short exposures and
small apertures can be used to limit motion blur and in-
crease depth of field, but this may result in noisy images,
especially under low light conditions. It is therefore de-
sirable to model the blurring process, and use the image
content itself to estimate the corresponding parameters and
restore a sharp image. This problem is known as blind de-
blurring (or blind deconvolution), and it is the topic of this
presentation.1

We limit our attention to defocus and linear (say, hori-

∗WILLOW project-team, Département d’Informatique de l’Ecole Nor-
male Supérieure, ENS/INRIA/CNRS UMR 8548.

1In contrast, non-blind deblurring refers to the simpler (but still quite
challenging) problem of recovering the sharp image when the blur param-
eters are known.

Figure 1. Two images demonstrating defocus and motion blur,
with an out-of-focus swan in the foreground (left), and a moving
bus before a static background (right) respectively.

zontal) motion blur. Although this setting excludes general
camera shake (that can often be modeled as a pure rota-
tion [35]) or curvilinear object motions, it is of considerable
interest in many practical applications, including sports and
macro photography. It is also quite challenging, since, as
demonstrated by Figure 1, out-of-focus regions and rela-
tive object motions cause spatially-varying levels of blur.
To account for these effects, we propose to decompose the
deblurring process into two steps: (1) estimating the non-
uniform blur kernel by combining learned local blur evi-
dence with global smoothness constraints, then (2) recover-
ing the sharp image using a robust deconvolution algorithm
based on sparse regularization with global image statistics.

1.1. Related Work
There have been many attempts in the past to solve the

image deblurring problem. Amongst these, it is commonly
assumed that the blur kernel is spatially uniform [4, 7, 15,
18, 26, 37, 38], which allows it to be estimated from global
image evidence. Levin et al. [27] argue that it is desirable
to first estimate the blur kernel before using it to deblur the
image. Fergus et al. [13] propose a Bayesian framework
for the kernel estimation task using a variational optimiza-
tion method. Statistical gradient priors [33], sharp edge
assumptions [22, 36], and non-convex regularization [24]
have also been imposed on the latent sharp image for blur
estimation. Although these approaches may give impressive
results, they assume that the blur kernel is uniform which,
as demonstrated by Figure 1, is not realistic in many set-
tings involving out-of-focus regions or blur due to moving
objects.

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.143

1073

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.143

1073

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.143

1073

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.143

1075

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.143

1075



The uniform kernel assumption has recently been re-
laxed in several blind deblurring methods that assume in-
stead that blur is mostly due to camera rotation, which is
realistic for camera shake in long exposures [6, 8, 16, 17,
21, 35]. In this case, the blurry image can be seen as an
integral over time of images related to each other by homo-
graphies [34, 35]. An effective framework has also been
proposed in [17] to approximate the spatially-varying blur
kernels by combining a set of localized uniform blur ker-
nels. Such works handle a specific type of non-uniform
blur, where a global camera motion constraint can be im-
posed over the kernels, which simplifies the problem of ker-
nel estimation. In contrast, our method is applicable to more
general non-uniform blurs, where such constraints are not
applicable.

1.2. Proposed Approach

We propose a method for joint image segmentation and
deblurring under defocus and linear (say, horizontal) mo-
tion blur. Our approach is related to previous methods, such
as [5, 9, 25, 28], but with significant differences and ad-
vantages. Liu et al. [28] detect blurry regions, but do not
estimate the exact kernels that affect them. The algorithms
proposed in [1, 8] rely on multiple blurry images or video
frames to reduce the ambiguity of motion blur estimation
and segmentation. Chakrabarti et al. [5] show interesting
results for separating the blur and sharp regions in an im-
age, but do not address deblurring itself, which is equally
challenging. Dai and Wu [9] and Levin [25] rely on differ-
ent local spectral or gradient cues, as well as natural image
statistics for motion blur estimation. It is not clear whether
these methods easily extend to defocus blur. In summary,
previous approaches to our deblurring problem either (i) fall
short in the estimation or the deblurring step, (ii) require
multiple images, or (iii) consider a limited set of blur types
(e.g., uniform, constant velocity motion, camera rotation).

We aim to overcome these limitations, and cast the esti-
mation of the global (non-uniform) image blur as a multi-
label energy minimization problem (Section 2). The energy
is the sum of unary terms corresponding to learned local
blur kernel estimators (Section 2.1), and binary ones corre-
sponding to blur smoothness. Its global minimum is found
using Ishikawa’s method by exploiting the natural order of
discretized blur values for linear motions and defocus. Once
the blur has been estimated, the image is restored using a
robust (non-uniform) deblurring algorithm based on sparse
regularization with global image statistics (Section 3). The
proposed algorithm outputs both a segmentation of the im-
age into uniform-blur layers and an estimate of the corre-
sponding sharp image. We present qualitative results on
real images, and use synthetic data to quantitatively com-
pare our approach to the publicly available implementation
of Chakrabarti et al. [5] (Section 4).

2. Estimating the Image Blur

We show in this section that estimating the non-uniform
blur of an image can be cast as a segmentation problem,
where uniform regions correspond to homogeneous blur
strength. Local (but noisy) blur estimators are learned using
logistic regression. A robust global estimate of the image
blur is then obtained by combining the corresponding local
estimates with smoothness constraints in a multi-label en-
ergy minimization framework, where labels correspond to
integer (rounded) blur strengths. Since integer labels admit
a natural order, it is then possible to find the global mini-
mum of the energy using appropriate smoothness terms and
Ishikawa’s method [10, 19].

2.1. Learning Local Blur Estimators

For simplicity, we model horizontal blur as a moving av-
erage, and defocus by a Gaussian filter. Both kernels can
be parameterized by an integer “strength” σ corresponding
to the filter size. Although it is a priori possible to learn a
predictor for σ using regression, the energy minimization
scheme presented in Section 2.2 requires a prediction score
for each value of σ in a fixed interval. This suggests cast-
ing instead the prediction of σ as a multi-class classification
problem, as explained below. Our predictors are local—that
is, we estimate σ for each pixel. Training data is obtained
by (globally) blurring a set of natural sharp images for each
value of σ.

Extracting local features. We represent the local grey
level pattern around each pixel in a blurry image by a fea-
ture vector x of dimension L + 1 obtained by pooling the
responses of a fixed bank of L multi-scale filters. Con-
cretely, we record the average of the absolute value of each
filter’s response in some neighborhood of the pixel (mean
pooling). The resulting feature vectors are then rescaled to
have unit norm.2 The filters used in our framework are a
combination of 64 Gabor filters and of atoms of a dictio-
nary learned on blurry and sharp natural images since these
have been shown to prove useful in many image restoration
tasks [11]. The dictionary is learned such that some of its
atoms represent blurry patches. This is achieved by first
learning a small dictionary [11] from blurry image patches
alone. We then learn the complete dictionary, where the ini-
tial atoms are fixed to those learned from blurry patches,
with sharp image patches. Figure 2 (left) shows an illus-
tration of dictionary-based filters learned for the horizontal
motion blur case. Note that the atoms shown here in the top
few rows correspond to blurry patches.

2Our filters are designed to give zero values on uniform patches since
the overall grey level is irrelevant for blur estimation. To avoid noisy re-
sponses to near-uniform patches, we add one bin to our feature vectors
(hence their L + 1 dimensionality) before rescaling, and set the corre-
sponding value to 1 for uniform patches, and to 0 for others.

10741074107410761076



Figure 2. An illustration of filters used for generating the features.
Left: a dictionary learned on blurry (horizontal motion blur in this
case) and sharp natural images. Right: Gabor filter bank.

Learning algorithm. As mentioned earlier, we must be
able to compute for each feature vector x and each inte-
ger value k, associated with some interval Ik of σ values,
a score (cost function) reflecting how (un)likely the actual
value of σ associated with x is to fall in that interval. We
have chosen to use logistic regression to learn an estimator
of the conditional probability P(σ ∈ Ik|x) for each inter-
val Ik. A suitable cost function can then be obtained by
applying any decreasing function to this probability.

In practice, we divide the useful range [0, Σ] of blur val-
ues into K intervals Ik = [σk−1, σk] for k = 1, . . . , K ,
and model P(σ > σk) as fk(x) = 1/[1 + exp(−wT

k x)],
where wk is a vector of parameters to be learned. Given a
set of training feature vectors xi with associated values σi

(i = 1, . . . , N ), these parameters are learned independently
for each k by using regularized logistic regression and min-
imizing with respect to wk the expression

1
N

N∑

i=1

log[1 + exp(−yiwT
k xi)] + λ ||wk||22 , (1)

where yi is equal to 1 if σi > σk and −1 otherwise, and
λ ||wk||22 is an L2 regularization term. This convex problem
is easily solved using existing optimization toolboxes such
as liblinear [12].

An estimate for the conditional probability P(σ ∈ Ik|x)
is now easily obtained as fk(x)− fk−1(x),3 and the corre-
sponding cost function can be taken to be

U(x, k) = exp(−γ(fk(x)− fk−1(x))), (2)

where γ is some positive parameter.

2.2. A Multi-Label Segmentation Problem

The segmentation problem has often been cast as a label-
ing problem, and this is the setting we use in our approach.

3The observant reader may have noticed that since the k estimators
are learned independently, the function fk − fk−1 is not guaranteed to
be positive. We handle this problem in practice by shifting and rescaling
the fk values for each sample x so as to obtain the proper ordering and a
correct vector of probability values for the K classes.

Given a fixed number P of integer labels, we split the blur
parameter space into P bins and predict a bin for each pixel.
The bins can be built in several ways: for example, we can
use bins of equal size, but they can also be built in an adap-
tive manner using image information. The results presented
in Section 4 are obtained with uniform binning.

Once the bins are fixed, the problem becomes an ordered
multi-class segmentation problem, which can be solved by
minimizing with respect to y in {1..P}N the energy func-
tion:

N∑

i=1

U(xi, yi) + λ
∑

i�=j,j∈N(i)

B(xi, xj , yi, yj , i, j), (3)

where the vectors xi are, as before, features extracted from
pixel i, yi is its label. The function U is the unary cost of as-
signing label yi to the feature xi, as derived in the previous
section, and B is a pairwise smoothness term that ensures
that nearby pixels have consistent blur values. In practice,
we use

B(xi, xj , yi, yj, i, j) = exp(−(μbbij + μccij))|yi − yj |,
(4)

where bij is the probability of an edge being present be-
tween pixels i and j [30], and cij is a color contrast term [3]
between these.

Our binary term is a convex function of the difference
between the labels yi and yj . Although the minimization of
an energy function such as that in Equation (3) is in gen-
eral an NP-hard problem [2], it can be shown that it reduces
to a min-cut/max-flow problem for ordered labels, such as
ours [10, 19], and so its global optimum can be found by an
efficient polynomial algorithm.

After obtaining the optimal kernel labels yi for each pixel
i, the local blur for the pixel will be represented by the mo-
tion or defocus kernel with corresponding value σi.

3. Deblurring the Image

We now address the problem of deblurring the blurry im-
age. Given the blur kernel estimated for each pixel in the
previous section, we can construct a non-uniform blur ker-
nel matrix K̂. Motivated by [20], we model the true kernel
as K = K̂ + δK , where δK is a term to compensate for
the errors in kernel estimation. Using this model, the blurry
image f = K̂g + u + μ, where f and g are the blurry and
sharp images in vector form respectively, and K̂g denotes
the spatially-varying blurring process in matrix form. The
term u = δKg is the error, and μ is the noise.

Due to the hyper-Laplacian distribution of natural im-
ages in the gradient domain [23, 26], we impose a non-
convex regularization over the image gradients. By further
assuming that the error term u is sparsely distributed in the
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Figure 3. Result of the proposed blur estimation method on a sample image with defocus blur. From left to right: input image, estimation
with only the unary cost, blur estimation with unary and binary costs, which corresponds to the global minimum of the energy function (3).

image domain, we estimate the sharp image g by optimiz-
ing:

min
g,u

1
2
||K̂g+u−f ||22+λ1(||F1g||αα + ||F2g||αα)+λ2||u||1,

(5)
where ||Fig||αα =

∑
j |(Fig)j |α (α is set to 0.8 [26]),

F1, F2 are the matrices constructed by horizontal and verti-
cal gradient filters, and λ1 and λ2 are regularization param-
eters.

This non-convex energy function can be efficiently min-
imized by a half-quadratic splitting method [14, 23], which
introduces two auxiliary vectors vi (i = 1, 2) as:

min
g,u,vi

1
2
||K̂g + u− f ||22 +

β

2
(||F1g− v1||22 + ||F2g − v2||22)

+λ1(||v1||αα + ||v2||αα) + λ2||u||1.
When β → ∞, the solution of the above problem ap-
proaches that of Equation (5). We optimize g,u and vi

iteratively, with increasing β. In each iteration with a fixed
β, we solve for g,u and vi. First, vi can be optimized by
minimizing E(vi) = 1

2 ||vi−Fig||22 + λ1
β ||vi||αα, which can

be efficiently done as in [23]. Second, by setting ∂E(g)
∂g = 0,

the optimal g can be found by solving the linear equations:

(K̂T K + βF1
T F1 + βF2

T F2)g =
K̂T (f − u) + βF1

T v1 + βF2
Tv2, (6)

which can be done by limited-memory quasi-Newton algo-
rithm [31]. The large-scale matrix multiplications in Equa-
tion (6) can be implemented by local operations around pix-
els, e.g., spatially-varying convolution. Third, u can be
optimized by minimizing E(u) = 1

2 ||u − (f − K̂g)||22 +
λ2||u||1, which can be solved by soft-thresholding.

The introduction of error term u can effectively reduce
ringing artifacts caused by possible kernel errors especially
around the segmentation boundaries. In our implementa-
tion, we set λ1 = 10−3, λ2 = 10−3, and the weight β in-
creases from λ1 to 28λ1, with ratio of 2 in eight iterations
during optimization.

4. Experiments
Obtaining a quantitative evaluation of algorithms for

spatially-varying blur is a difficult task. There is no simple

Horizontal Gaussian
Blur only [5] 0.69 NA
With object model [5] 0.81 NA
Our results: multi-class 0.76 0.71
Our results: binary 0.79 0.73

Table 1. Quantitative evaluation of the estimated blur on the syn-
thetic dataset. We compute the mean intersection vs. union score
over all the images in the dataset for all the methods here. The
results of [5] are shown for both its steps, using blur cues only
(which is comparable to our method), and with blur and object
cues. We also tested our multi-label framework, which handles
images with multiple blur levels, in a binary setting, where there
are exactly two labels – one to describe the sharp regions, and an-
other for the blurry areas.

way of obtaining a ground truth to evaluate the blur estima-
tion or the deblurring results. We believe that some quan-
titative results, even imperfect, will help compare meth-
ods and guide future research on the subject. Thus, we
have built a synthetic dataset, where the region blurred and
the strength of the blur are known. We present details of
this dataset in Section 4.1. We evaluate our approach for
non-uniform blind deblurring at several levels. First, we
evaluate our energy formulation for blur prediction (Sec-
tion 2.2), with and without the influence of the smoothness
cost. Given this blur estimation, we then evaluate the pro-
posed deconvolution method, and compare with the popular
Richardson-Lucy algorithm [29, 32]. We also compare the
quality of the resulting sharp image with that obtained from
two baseline deblurring algorithms based on [13, 33].

4.1. Datasets
For a quantitative evaluation of our blur prediction and

deblurring methods, we introduce a synthetic dataset. It
consists of 4 sharp images, which were subjected to dif-
ferent levels of horizontal and Gaussian blurs. To achieve
this, we manually selected regions of interest (e.g., an ob-
ject or a part of the background), applied different types
and levels of blurs, and added a Gaussian noise (of variance
1). In essence, this produces ground truth (blur estimate)
segmentations and corresponding blurred images for each
sharp image. The dataset consists of 56 images in all. Note
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Figure 4. Blur estimation for real (left) and synthetic (right) images
with horizontal motion blur. From top to bottom: input image,
estimated blur (regions shown in red) with unary and binary costs,
the result of [5] using only blur cues, and [5] with blur as well as
object cues. We observe that our approach better handles texture-
less regions.

that this synthetic dataset may not very accurate, in partic-
ular, near the blur boundaries. Nevertheless, it provides us
a good test bed for evaluating different algorithms quantita-
tively. A few sample images from the synthetic dataset can
be seen in Figures 4, 5.

We also show a qualitative evaluation of our approach on
real images with different types and levels of blur, such as
the 11 images used in [5], images from [25], and some of
our own images. A selection of these results are shown in
the paper. For the remainder of the results, the reader may
refer to the project webpage.4

In our experiments, we used a bank of 64 Gabor filters,
with different orientations and frequencies, and a dictionary
of 320 atoms learned on a set of blurry and sharp natural
images to generate the feature set for an image. The pa-
rameter γ in Equation (2) is set to 10, and μb and μc from
Equation (4) are set to 25 and 200 respectively. We set the
parameter that balances the relative strength of unary and
binary terms, λ to 1.

4http://www.di.ens.fr/willow/research/nonuniblur

Figure 5. The car and horse images from our synthetic dataset are
shown here with horizontal motion blur. The bus image is shown
in Figure 4 (right).

Image Richardson-Lucy Our framework
Bus 26.55 33.66
Car 27.60 37.53
Horse 24.04 34.25

Table 2. A comparison of PSNR values of our non-blind deblurring
(deconvolution) method with that produced by an adapted version
of the Richardson-Lucy algorithm. Here we show the average val-
ues for three images from our synthetic dataset, each subjected to
six levels of horizontal blur.

4.2. Blur Estimation
We evaluated our local blur estimators (i.e., unary cost)

on regions extracted from uniformly blurred images. In the
horizontal blur case, the task is to predict one value from
the set σi = {1 3 5 7 9 11 13}, and in the Gaussian blur
case, we used a set of 9 blurs of variances uniformly spread
between 0 and 4. We predicted the blur at each pixel indi-
vidually, with an accuracy of 72% and 62% in the horizon-
tal and Gaussian blurs respectively. A visualization of blur
prediction on an entire image using unary costs alone, i.e.,
λ = 0 in Equation (1), is shown in Figure 3 (middle). These
prediction results, although promising, are quite noisy.

We introduce the smoothness term B (4) to ensure that
nearby pixels have consistent blur values. The influence
of this term can be seen in Figure 3 (right). We evaluated
this quantitatively with the standard intersection vs. union
score in Table 1. A comparison with [5] is also shown. The
method by [5] uses a two-step process: (i) blur cues are first
used to construct an initial blur estimate segmentation; and
then (ii) a color model is learned for each region to yield the
final segmentation. We show the results of these two steps
(see also Figure 4). Since our approach only uses blur cues,
it would be fair to compare it with the results from step (i).
As seen in the figure, our segmentation results are compara-
ble to, if not better than, the results of step (i). We observe
that our method better handles texture-less regions. Note
that adding object-level priors to our approach are likely to
improve the results even further.

Our framework handles images with multiple blur levels
(see Figure 3 (right) for example, which shows three distinct
blur regions). We tested this generic framework in a binary
setting, where only one blur level is assumed, with the other
label corresponding to sharp regions, similar to [5]. This
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Image [13] [33] Our framework
Bus 28.04 24.14 31.98
Car 21.97 31.55 35.09
Horse 23.77 34.77 34.73

Table 3. PSNR values obtained with our method and two state-
of-the-art uniform blind deconvolution algorithms on the bus, car,
and horse images from our synthetic dataset (see Figures 4, 5).
We provide a good approximation for uniform (horizontal) blur re-
gions with a manually marked bounding box enclosing the blurry
object. Our method, despite the lack of such ‘ground truth’ blur
regions, performs better than the two other methods here.

Figure 6. Segmentation and deblurring result for an image
from [25]. Left to right: Blurry image, estimated segmentation,
deblurred image.

2-label approach shows a performance comparable to [5]
with object cues, and outperforms it when only blur cues
are used.

4.3. Deblurring

Given the computed non-uniform blur in an image, we
estimate the sharp image with our deblurring method. Since
there appear to be no deconvolution methods that handle
gracefully non-uniform blurs considered here, we adapted
three methods to make our baseline comparisons. First,
following [35], we adapted Richardson-Lucy to a known
non-uniform blur. We show this comparison as average
PSNR values, computed on three synthetic images with six
strengths of blur each, in Table 2. We also compared our
deblurring results with two state-of-the-art uniform blind
deblurring algorithms [13, 33]. We applied these methods
on a (manually marked) bounding box tightly enclosing the
blurred object, which provides a good approximates for a
uniform blur region. These results are shown in Table 3. We
observe that our method, which requires no such ‘ground
truth’ blur regions, outperforms [13] significantly, and is
comparable to or better than [33]. In Table 4 we compare
the PSNR values of blurred and estimated sharp image.

We also evaluated our blur estimation and deconvolution
methods qualitatively on real images from other [5, 25],
as well our own datasets. A selection of these results are
shown in Figures 6, 7, and 8 for horizontal motion and defo-
cus blurs. The interested reader is encouraged to see other,
and high resolution images on the project website.

Horizontal blur Gaussian blur
Blurry image 33.21 33.17
Our framework 33.86 33.93

Table 4. Average PSNR values on the synthetic dataset for hori-
zontal and Gaussian blur types. Here we show the PSNR for sharp
vs. blurry images (as Blurry image), and sharp vs. deblurred im-
ages (as Our framework).

5. Discussion
We presented a novel approach for first estimating non-

uniform blur caused by horizontal motion or defocus, and
then the sharp (deconvolved) image. We demonstrated its
promise through experiments with real as well as synthetic
data. The quantitative evaluations on synthetic data provide
a good base to compare future methods more concretely. A
promising direction future work is the construction of a tree
structure estimator to be able to handle two different types
of blur in the same image.
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