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Abstract

Context has been playing an increasingly important role
to improve the object detection performance. In this pa-
per we propose an effective representation, Multi-Order
Contextual co-Occurrence (MOCO), to implicitly model the
high level context using solely detection responses from a
baseline object detector. The so-called (1st-order) context
feature is computed as a set of randomized binary compar-
isons on the response map of the baseline object detector.
The statistics of the 1st-order binary context features are
further calculated to construct a high order co-occurrence
descriptor. Combining the MOCO feature with the original
image feature, we can evolve the baseline object detector
to a stronger context aware detector. With the updated de-
tector, we can continue the evolution till the contextual im-
provements saturate. Using the successful deformable-part-
model detector [13] as the baseline detector, we test the
proposed MOCO evolution framework on the PASCAL VOC
2007 dataset [8] and Caltech pedestrian dataset [7]: The
proposed MOCO detector outperforms all known state-of-
the-art approaches, contextually boosting deformable part
models (ver.5) [13] by 3.3% in mean average precision
on the PASCAL 2007 dataset. For the Caltech pedestrian
dataset, our method further reduces the log-average miss
rate from 48% to 46% and the miss rate at 1 FPPI from
25% to 23%, compared with the best prior art [6].

1. Introduction
Detecting objects from static images is an important and

yet highly challenging task and has attracted many interests

of computer vision researchers in the recent decades [35,

36, 10, 13, 31, 26, 19]. The difficulties originate from vari-

ous aspects including large intra-class appearance variation,

objects deformation, perspective distortion and alignment

issues caused by view point change, and the categorical in-

consistency between visual similarity and functionality.

According to the recent results of the standards-making

PASCAL grand challenge [8], The detection approach

Figure 1: The proposed MOCO Detection Evolution. The input im-

age with ground truth label (red dotted rectangle) is shown at top-right

corner. The framework evolves the detector using high-order context till

the convergence. At each iteration, response map and 0th-order context

is computed using the initial baseline detector (for the 1st iteration) or

the evolved detector from the prior iteration (for later iterations). Then

the 0th-order context is used for computing the 1st-order context, upon

which high order co-occurrence descriptors are computed. Finally context

in all orders are combined to train a evolving detector. The iteration stops

when the overall performance converges. The evolution eliminates many

false positives using implicit contextual information, and fortifies the true

detections.

based on sliding window classifiers are presently the pre-

dominant method. Such methods extract image features in

each scan window and classify the features to determine the

confidence of the presence of the target object [25, 32, 16].

They are further enriched to incorporate sub-part models of

the target objects and the confidences on sub-parts are as-

sembled to improve detection of the whole objects [21, 10].

One key disadvantage of the approaches above is that

only the information inside each local scanning window is

used: joint information between scanning windows or infor-

mation out of the scanning window are either thrown away

or heuristically exploited through post-processing proce-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.235

1796

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.235

1796

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.235

1798



dures such as non-maximum suppression. Naturally, to im-

prove detection accuracy, context in the neighborhood of

each scan window can provide rich information and should

be explored. For example, a scanning window in a path-

way region is more likely to be a true detection of human

than the one inside a water region. In fact, there have been

some efforts on utilizing contextual information for object

detection and a variety of valuable approaches have been

proposed [14, 27, 28]. High level image contexts such as se-

mantic context [4], image statistics [27], and 3D geometric

context [15], are used as well as low level image contexts,

including local pixel context [5] and shape context [23].

Besides utilizing context information from the origi-

nal image directly, another line of works including Spa-

tial Boost [1], Auto-Context [29], and the extensions ele-

gantly integrate the classifier responses from nearby back-

ground pixels to help determine the target pixels of interest.

These works have been applied successfully to solve prob-

lems such as image segmentation and body pose estimation.

Inspired by these prior arts, Contextual Boost [6] was pro-

posed to extract multi-scale contextual cues from the detec-

tor response map to boost the detection performance. Con-

textual information directly from the responses of multiple

object detectors has also been explored. In [18, 20, 34]

the co-occurrence information among different object cat-

egories is extracted to improve the performance in various

classification tasks. Such methods require multiple base

object classifiers and generally necessitate a fusion classi-

fier to incorporate the co-occurrence information, making

them expensive and sensitive to the performance of individ-

ual base classifiers.

In this paper we aim at developing an effective and

generic approach to utilize contextual information without

resorting to the multiple object detectors. The rationale is

that, even though there is only one classifier/detector, higher

order contextual information such as the co-occurrence of

objects of different categories can still be implicitly and ef-

fectively used by carefully organizing the responses from

a single object detector. Since only one classifier is avail-

able, the co-occurrence of different object types cannot be

explicitly encoded as the multi-class approaches. However,

the difference among the responses of the single classifier

on different object regions implicitly conveys such contex-

tual information. An example is illustrated in Fig.(1). The

responses of a pedestrian detector to various object regions

such as the sky, streets, and trees, may vary greatly, but a

homogeneous region of the response map corresponds to

a region with semantic similarity. Actually, the initial re-

sponse map in Fig.(1) can lead to a rough tree, sky and street

segmentation. This reasoning hints a possibility to encode

higher order contextual information with single object de-

tection response. Therefore, if we treat the single classifier

response map as an “image”, we can extract descriptors to

represent high order contextual information.

Our multi-order context representation is inspired by

the recent success of randomized binary image descrip-

tors [22, 3, 24]. First we propose a series of binary fea-

tures where each bit encodes the relationship of classifica-

tion response values for a pair of pixels. The difference of

detector responses at different pixels implicitly captures the

contextual co-occurrence patterns pertinent to detection im-

provements. Recent research also shows that image patches

could be more effectively classified with higher-order co-

occurrence features [17]. Accordingly we further propose

a novel high order contextual descriptor based on the binary

pattern of comparisons. Our high order contextual descrip-

tor captures the co-occurrence of binary contextual features

based on their statistics in the local neighborhood. The con-

text features at all different orders are complementary to

each other and are therefore combined together to form a

multi-order context representation.

Finally the proposed multi-order context representations

are integrated into an iterative classification framework,

where the classifier response map from the previous iter-

ation is further explored to supply more contextual con-

straints for the current iteration. This process is a straight-

forward extension of our contextual boost algorithm in [6].

Similar to [6], since the multi-order contextual feature en-

codes the contextual relationships between neighborhood

image regions, through iterations it naturally evolves to

cover greater neighborhoods and incorporates more global

contextual information into the classification process. As a

result our framework effectively enables the detector evolv-

ing to be stronger across iterations. We showcase our

“detector evolution” framework using the successful de-

formable part models [13] as our initial baseline detector.

Extensive experiments confirm that our framework achieves

better accuracy monotonically through iterations. The num-

ber of iterations is determined in the training stage when the

detection accuracy converges. On the PASCAL VOC 2007

datasets [8], our method outperforms all state-of-the-art ap-

proaches, and improves by 3.3% over the deformable part

models (ver.5) [13] in mean average precision. On the Cal-

tech dataset [7], compared with the best prior art achieved

by contextual boost [6], our method further reduces the log-

average miss rate from 48% to 46% and the miss rate at 1

FPPI from 25% to 23%.

2. Multi-order Context Representation
Fig.(2) summarizes the flow chart for constructing the

multi-order context representation from an image. First, the

image is densely scanned with sliding windows in a pyra-

mid of different scales. For each location of scan window,

image features are extracted and a pre-trained classifier is

applied to compute the detection response. The detection

response maps for each scale are smoothed as in Sec. 2.1.
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Figure 2: Procedure for Computing Multi-order Context Representation. We first build image pyramid and smooth the corresponding detector

response map as discussed in Sec. 2.1. For each detection candidate (red dotted rectangle), we locate its position (red dotted rectangle) in the image pyramid

and its position (red solid area) in the smoothed detection responses map. We define its context structure Ω(p) (0th-order) as in Sec. 2.1. Finally we compute

the 1st-order binary comparison based context features, upon which we further extract high order co-occurrence descriptor detailed in Sec. 2.3.They are

combined as the proposed MOCO descriptors.

.
We define the context region in terms of spatial and scale

for each candidate location. We then compute a series of

binary features using randomized comparison of detector

responses within the context region, as detailed in Sec. 2.2.

Finally, we compute the statistics of the binary comparison

features and extract high order co-occurrence descriptors as

shown in Sec. 2.3. They together construct the proposed

Multi-Order Contextual co-Occurrence (MOCO).

2.1. Context Basis (0th-order)

Intuitively, the appearance of the original image patch

containing the neighborhood of target objects provides im-

portant contextual cues. However it is difficult to model

this kind of context in original image because the neighbor-

hood around target objects may vary dramatically in differ-

ent scenarios [19]. A logical approach to this problem is:

firstly convolve the original image with a particular filter

to reduce the diversity of the neighborhood of a true target

object as foreground with various backgrounds; then extract

context feature from the filtered image. For object detection

tasks, we prefer such a filter to be detector driven. Given the

observation from Fig.(1) that the positive responses clus-

ter densely around humans but occur sparsely in the back-

ground, we simply take the object detector as this specific

filter and directly extract context information from the clas-

sification response map, denoted as M.

Since the value range of the classification response is

[−∞,+∞], we first adopt logistic regression to map the

value at each pixel s into a grayscale value s
′ ∈ [0, 255].

s
′
=

255

1 + exp(α · s+ β)
, (1)

where α = −1.5, β = − η
α , and η is the pre-defined classi-

fier threshold. Eq. (1) turns the response map into a “stan-

dard” image, denoted as M′
.

The detection responses are usually noisy. To construct

context feature from M′
, Gaussian smoothing with kernel

size 7*7 and std value 1.5 is performed to reduce noise sen-

sitivity, as shown in Fig(1, 2). In the smoothed M′
, each

pixel Ṗ represents a local scan window in the original im-

age and its intensity value indicates the detection confidence

in the window. Such a response image thus conveys context

information, which we denote as 0th-order context.

We define a 3D lattice structure centered at Ṗ in spa-

tial and scale space. We set Ṗ as the origin of the local 3-

dimensional coordinate system, and index each pixel a by a

4-dimension vector [x, y, l, s]. Here [x, y] refers to the rela-

tive location with respect to Ṗ ; l represents the relative scale

level with respect to Ṗ ; s means the value of the pixel a in

the smoothed response image M′, e.g. [2, 3, 2, 175] means

the pixel a locates in the 2-level higher than Ṗ , (2, 3) in (x,

y)-dimensions relative to Ṗ , with pixel value 175. The con-

text structure Ω(Ṗ ) around Ṗ in the spatial and scale space

is defined as:

Ω(Ṗ ;W,H,L) =

{
(x, y, l, s)

∣∣∣∣∣
|x| ≤ W/2
|y| ≤ H/2
|l| ≤ L/2

}
, (2)

where (W,H,L) determines the size and shape of Ω(Ṗ ).
For example, (1, 1, 1) means the context structure is a 3 ×
3× 3 cubic region.

2.2. Binary Pattern of Comparisons (1st-order)

Given the 0th-order context structure, we propose to use

comparison based binary features to incorporate the co-

occurrence of different objects. Although we only have a

single object detector, the response values at different loca-

tions indicate the confidences of the target object existing.

Therefore, each binary comparison encodes the contextual

information of whether one location is more likely to con-

tain the target object than the other.

2.2.1 Comparison of Response Values

Specifically, we define the binary comparison τ in the 0th-

order context structure Ω(Ṗ ) of size W × H × L as:

τ(s;a,b) :=

{
1 if s(a) < s(b)
0 otherwise

, (3)

where s(a) represents the pixel value in Ω(Ṗ ) at a =
[xa,ya, la]. Naturally selecting a set of n (a,b)-location

pairs inside Ω(Ṗ ) uniquely defines a set of binary compar-

isons. Similar to [3], we define the n-dimensional binary
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Figure 3: Multi-order Context Representation. In the context struc-

ture Ω(Ṗ ) with size W × H × L around a position Ṗ (green dot), we

first define binary pattern of randomized comparisons (1st-order) based

on certain distributions shown on left, described in Sec. 2.2.1 and 2.2.2.

We then define the closeness measure vi and divide each dimension into

t intervals yielding m = t3 subregions (bounded by the solid and dotted

red lines), upon which we compute the histogram hj using Eq. (5,4) as the

high-order co-occurrence descriptor.

descriptors fn = [τ1, τ2, . . . , τn] as our 1st-order context

descriptor. However, care needs to be taken for selecting

the n specific pairs for the descriptor.

2.2.2 Randomized Arrangement

There are numerous options for selecting n pairs of binary

comparisons in Eq. (3). As shown in Fig.(3), two extreme

cases of selection are:

(i) The locations of each test pair (ai,bi) are evenly

distributed inside Ω(Ṗ ) and binary comparison τi can

occur far from the origin point: xai
,xbi

∼U(−W
2 , W

2 ),i.i.d;

yai
,ybi

∼U(−H
2 ,

H
2 ),i.i.d; lai

, lbi
∼U(−L

2 ,
L
2 ),i.i.d;

(ii) The locations of each test pair (ai,bi) concentrate

heavily surrounding the origin: ∀i ∈ (1, n), ai = [0, 0, 0],
and bi lies on any possible position on a coarse 3D polar

grid.

Type (i) ignores the facts that the origin of Ω(Ṗ ) rep-

resents the location of the detection candidates and thus the

context near it might contain more important clues; while

type (ii) yields too sparse samples at the boarders of Ω(Ṗ )
to stably capture the complete context information. To

address these issues, we adopt a randomized approach:

(iii) ai,bi∼Gaussian(μ,Σ), i.i.d. μ = [0, 0, 0], and

Σ =
∣∣∣ ε1·W 2 0 0

0 ε2·H2 0
0 0 ε3·L2

∣∣∣. So Σ is correlated with the

size of context structure Ω(Ṗ ) and the scaling parameters

[ε1, ε2, ε3] are set empirically as [0.15, 0.15, 0.15] that give

the best detection rate in our experiments.

The randomized binary features compare the 0th-order

context in a set of random patterns and provides rich 1st-
order context. The patterns of comparisons capture co-

occurrence of classification responses within the context

structure Ω(Ṗ ). We can then construct the high order con-

text descriptor using the 1st-order context.

2.3. High Order Co-occurrence Descriptor

It has been shown that higher-order co-occurrence fea-

tures help improve classification accuracy [17]. Inspired by

it, we exploit higher order context information based on the

co-occurrence and statistics of the 1st-order context.

Denote fn = [τ1, τ2, . . . , τn] the randomized co-

occurrence binary features, where τi corresponds to a com-

parison between two pixels ai = [xai
, yai

, lai
] and bi =

[xbi , ybi , lbi ]. For each pair of pixels ai and bi, we define a

closeness vector vi = [ |xai
| − |xbi |, |yai

| − |ybi |, |lai
| −

|lbi | ] to measure the absolute difference of the locations of

ai and bi in x-dimension, y-dimension, l-dimension. For

example, |xai
| − |xbi | > 0 implies that in x-dimension, ai

is closer to the origin Ṗ than bi. Thus vi measures whether

ai or bi is closer to Ṗ . This is an important measure as

it can be easily observed that stronger detection responses

occur in regions closer to the true positive locations. Ac-

cordingly the distribution of τi w.r.t. vi contains important

context cues. To compute a stable distribution that is robust

against noise, we evenly divide each dimension into t inter-

vals yielding m = t3 subregions, and compute a histogram

hm = [h1, . . . , hm], as shown in Fig.(3).

Specifically, suppose nj co-occurrence tests fall into the

j-th subregion and their values are {τj1 , τj2 , . . . , τjnj
}, the

corresponding histogram value hj is calculated as

hj =

{ ∑nj
i=0 τji
nj

if nj �= 0

0 otherwise
(4)

The high order co-occurence descriptor is then con-

structed as follows,

fp = {gkl | gkl = hk · hl, (k,l=1,...,m)}, (5)

While the 1st-order co-occurrence features fn describes the

direct pair-wise relationships between neighborhood posi-

tions in a local context, the high order co-occurrence fea-

tures fp capture the correlations among such pair-wise rela-

tionships in the local context. Complementarily they pro-

vide rich context cues and are combined into the Multi-

Order Contextual co-Occurrence (MOCO) descriptor, fc =
[fn, fp].

3. Detection Evolution

To effectively use the MOCO descriptor for object de-

tection, we propose an iterative framework that allows the

detector to evolve and achieve better accuracy. Such a con-

cept of detection “evolution” had been successfully used

for pedestrian detection in Contextual Boost [6]. In this

paper, we straightforwardly extend the MOCO based evo-

lution framework to integrate with deformable-part mod-

els [10, 13] for general object detection tasks.
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3.1. Feature Selection

Our detector uses the MOCO descriptor together with

the non-context image features extracted in each scan win-

dow in the final classification process. The image fea-

tures can further consist of more than one descriptors

that are computed from different perspectives, e.g., the

FHOG descriptors for different parts in the deformable-

part-model [10, 13]. As a result, the dimension of the

combined feature descriptor can be very high, sometimes

more than 10, 000 dimensions. Feeding such features to

a general classification algorithm can be unnecessarily ex-

pensive. Therefore a step of feature selection is employed

when constructing the classifiers at each iteration of detec-

tion evolution. Many popular feature selection algorithms

have been proposed, such as Boosting [11, 12] or Multiple

Kernel Learning [31, 30]. Either of them can be used for

our purpose. In our experiments boosting [12] is used for

feature selection.

3.2. General Evolution Algorithm

The iterative process of the detector evolution framework

is similar to Contextual Boost [6]. Given an initial baseline

detector, the iteration procedure for training a new evolving

detector is as follows. First, the baseline detector is used

to calculate the response maps. Then, the MOCO as well

as the image features are extracted on all the training sam-

ples. Bootstrapping is used to iteratively add hard samples

to avoid over-fitting. Next, feature selection is applied to se-

lect the most meaningful features amongst the MOCO and

image features. Finally, the selected features are fed into a

general classification algorithm to construct a new detector,

which will serve as the new baseline detector for the next

iteration. As our MOCO is defined in a context region, the

iteration will automatically propagate context cues to larger

and larger regions. As a result, more and more context will

be incorporated through the iterations, and the evolved de-

tectors can yield better performance. The iteration process

stops when the performances of the evolving detectors con-

verge. In the testing stage, the same evolution procedure is

applied using the learned detectors respectively.

3.3. Integration with Deformable-Part-Model

The deformable-part-model approach [10, 13] has

achieved significant success for general object detection

tasks. The basic idea is to define a coarse root filter that

approximately covers an entire object and higher resolution

part filters that cover smaller parts of the object. The rela-

tionship between the root and the parts is modeled in a star

structure as,

sf = sr +

Np∑
i=1

(spi
− di), (6)

where sr is the detection score of the root filter, spi
and di

respectively represent the detection score and deformation

cost of the i-th part filter, and Np is the number of part fil-

ters. The star-structural constraints and the final detection

are achieved using a latent-SVM model.

From the viewpoint of context, the deformable-part-

model essentially exploits the intra context inside the object

region, e.g., various arrangements of different parts. In con-

trast, the proposed MOCO deals with the co-occurrence of

scanning windows that cover the object region and its neigh-

borhood. Therefore it exploits the inter context around the

object region. Clearly these two kinds of context are exclu-

sive and complementary to each other. This encourages us

to combine them together to provide more comprehensive

contextual constraints.

Note that Eq. (6) consists of both the final detection

response sf and the detection responses spi
from the Np

part filters. Since each response s corresponds to a re-

sponse map, we calculate the MOCO descriptors using each

of the response maps. We follow the same procedure of

computing the MOCO descriptors fc for the root filter from

sf , to obtain the MOCO descriptors f ′ci for parts on spi
.

Furthermore, to effectively evolve the baseline deformable-

part-model detector using the calculated MOCO, we apply

the iterative framework not only on the root filter but also

on part filters and detectors for every component. The de-

tailed training procedure for integrating our MOCO and the

deformable-part-model is summarized in Algm. (1). The

input to the algorithm includes the training dataset Strain

and the deformable-part-model Ψ0 as the initial baseline

detector. In each iteration, we first adopt the same iteration

process as in Sec. 3.2 for part filters and the model for each

component, and evolve the component model accordingly

for the next iteration. This step is shown as step 2 in Algm.

(1). Then we use the latent-SVM to fuse the Nc components

and retrain an evolved detector for the next iteration. Boot-

strapping is again used to avoid over-fitting. The iteration

process stops when we observe that the detection accuracy

rate converges.

4. Experiments and Discussion
We have conducted extensive experiments to evaluate the

proposed MOCO and the detection evolution framework.

To demonstrate the advantage of our approach, we adopt the

challenging PASCAL VOC 2007 dataset [8] with 20 cate-

gories of objects, which are widely acknowledged as one

of the most difficult benchmark datasets for general object

detection. We use the deformable-part-model [13] with de-

fault setting ( 3 components, each with 1 root and 8 part

filters) as our initial baseline detector. First, to demonstrate

the advantage of the MOCO, we compare the performance

achieved by using different orders of context information.

We show performances with various parameter settings to
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Algorithm 1: Detection Evolution

Input: Pre-trained deformable-part-model Ψ0 with Nc

components, each containing Np part filters; training

data set Strain; detection accuracy rate (e.g. average

precision) δ0 of Ψ0 on Strain; convergence

threshold ξ.

Output: Iteratively evolved detectors Ψ1, . . . ,ΨNd

Set R = 0
Do

1. R = R+ 1, Nd = R.

2. for i = 1 → Nc do
1). Extract the image feature fI according to the ith
component of Ψ(R−1) on Strain.

2). Compute the detector response maps on Strain

using Ψ(R−1).

3). For each detection candidate Ṗ , compute the

1st-order and high-order context descriptors on

Ω(Ṗ ) according to Eq. (3, 4, 5) for each of the Np

part filter responses, resulting multiple MOCOs as

[fc, f
′
c1 , . . . , f

′
cNp

]
4). Do feature selection using Boosting [12] on

[fI , fc, f
′
c1 , . . . , f

′
cNp

], to learn the informative

features fLi for the ith component.

5). Bootstrap and retrain the evolved detector for

the ith component.

3. Bootstrap and retrain the evolved detector ΨR via

latent-SVM [10, 13] for fusing the responses from the

Nc evolved component detectors.

4. Evaluate the detection rate δR on Strain using ΨR.

While δR − δ(R−1) > ξ;

demonstrate the characteristics of the MOCO. Second, we

compare the performance at different iterations as the de-

tector evolves to show that the detectors quickly converge in

about 2∼3 iterations. Third, we compare the performance

of our method with those of state-of-the-art approaches and

show substantial improvement. Furthermore, we also ex-

periment on Caltech pedestrian dataset [7], which was used

as the main evaluation benchmark for Contextual Boost [6].

The comparisons demonstrate the advantages of our ap-

proach.

4.1. Multi-order Context Representation

We first evaluate the MOCO representation and experi-

ment with different parameters settings. We use 5 categories

(plane, bottle, bus, person, tv) from PASCAL VOC 2007

and experiment on “train” and “val” set for various param-

eters. All experiments in this section only run 1-iteration of

detection evolution. We compare the mean Average Preci-

sions (mAP) to show how the performance varies with dif-

ferent parameter settings.

Context Parameters. Two important parameters that di-

rectly affect the computation of context descriptors are the

size of Ωp and the number n of binary comparisons. Since

Figure 4: Mean AP (mAP) Varies for Different Parameters: the size

W ×H × L of context structure Ω(Ṗ ) and the number n of binary com-

parison tests. Only 1st-order context feature and the image features is used

for evaluation.

Figure 5: Mean AP (mAP) Varies for Different Arrangements. Only

1st-order context features and the image features is used for evaluation.

the binary comparisons {τ1, τ2, . . . , τn} are randomly sam-

pled inside the 3D context structure Ω(Ṗ ), the compari-

son number n is chosen proportional to the size of Ω(Ṗ ),
W ×H × L. As shown in Fig.(4), bigger size of Ω(Ṗ ) and

number n correspond to richer context information and thus

yield better performance, yet requiring more computation.

To balance the performance and computational cost, we fi-

nally choose 11×11×9 as Ω(Ṗ ) size, and 512 as the binary

comparison test number, where the scale factor is 20.1 as in

[10] and 9 scales up is about 2 times.

1st-order Context. According to the analysis in Sec.

2.2.2, we choose type iii of Gaussian sampling for con-

structing the 1st-order context descriptor. We compared

the detection performances using different Gaussian pa-

rameters. As shown in Fig.(5), the best accuracy is

achieved when the variances in the three dimensions are

[0.15, 0.15, 0.15] respectively. Fig.(5) also shows the com-

parison with the sampling methods of type i and type ii,

which confirms the advantage of Gaussian sampling.

High Order Context. The most important parameter

for computing high order context descriptor is the dimen-

sion m of the histogram. Since the high order context de-

scriptor fp is complementary to the 1st-order context fea-

ture fn, they are combined when evaluating the detection

performance. Table.(1) shows the detection accuracy when

choosing different values of m, where the best accuracy is
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m = 0 m = 8 m = 27 m = 64 m = 125

46.0 46.3 46.7 46.5 46.1

Table 1: Mean AP (mAP) varies with respect to the length of high-order

co-occurrence feature fp. The high order context descriptor together with

1st-order context feature and the image features are used. m = 0 refers

to not using any high order feature.

0th 1st 1st +H 0th + 1st 0th + 1st +H SURF LBP

45.5 46.0 46.7 46.8 47.2 44.7 45

Table 2: Mean AP (mAP) varies with the combination of different order

context feature, where 0th, 1st, H respectively refers to 0th, 1st and high

order descriptors. We also compared with SURF [2] or LBP [33] extracted

on each level of context structure Ω(Ṗ ).

0 1 2 3(converged) 4 5 6

35.4 37.6 38.3 38.7 38.8 38.7 38.7

Table 3: Mean AP (mAP) varies with respect to the proposed detec-

tion evolution algorithm, where 0-iteration in the left refers to the baseline

without detection evolution.

achieved when the closeness vector space is divided into

m = 27(= 33) subregions.

Context in Different Orders. To show that different or-

ders of context provide complimentary constraints for ob-

ject detection, we compared the detection accuracy using

different combinations of the multi-order context descrip-

tors. For 0th-order context, we chose the best parameter

settings presented in [6]. As shown in Table.(2), clearly

the MOCO descriptor that combines all orders of context

achieves the best detection performance. This confirms that

none of the multi-order contexts is redundant. Another way

of exploring the 1st-order context is to extract the gradient-

based features such as SURF [2] or LBP [33] directly on

each scale of the context structure Ω(Ṗ ). However it does

not help improve the accuracy in our experiments, as shown

in Table.(2). This means that the context across larger spa-

tial neighborhood or different scales can be more effective

than the context conveyed by local gradients between adja-

cent positions.

4.2. Detector Evolution

Using the best parameters for the MOCO descriptor ob-

tained using the “train” and “val” datasets, we evaluate

the detector evolution process across iterations. The en-

tire PASCAL dataset is used as the testbed, e.g., training

on “trainval” and testing on “test” [8]. We run Algm. (1)

and compare the detection accuracy through iterations. For

most categories, our framework converges at the second or

third iteration. To better show the trend of the detector evo-

lution process, we keep it running for 6 iterations. As shown

in Table.(3), the accuracy is steadily improved through iter-

ations and converges quickly.

4.3. Comparison with State of Art

Finally, we compare the overall performance of our ap-

proach with the state of art.

Figure 6: The comparison between our algorithm and the state of the

arts in Caltech Pedestrian test dataset.

PASCAL VOC 2007. We first compare our method

with state-of-the-art approaches on PASCAL dataset [8]. As

shown in Table.(4), our algorithm stably outperforms the

baselines [13] in all 20 categories. Especially on the cat-

egories of sheep, tv, and monitor, the algorithm achieves

significant AP improvements by 6.6%, 5.7%. When com-

pared with all prior arts, our approach outperforms 12 out

of 20 categories, and achieves the highest mean AP (mAP)

at 38.7, outperforming the deformable model (ver.5) [13]

by 3.3%.

Caltech Pedestrian Dataset. We also experiment our

algorithm on Caltech pedestrian dataset [7]. We follow the

same experimental setup as [6, 7] for evaluations. We use

LBP [33] to capture the texture information and FHOG [10]

to describe the shape information, and only consider “rea-

sonable” pedestrians of 50 pixels or taller with no occlusion

or part occlusion [6, 7]. We compare our algorithm with the

state-of-the-art results surveyed in [7], as shown in Fig.(6):

the best reported log-average miss rate is 48% [6], while

our algorithm further lowers the miss rate to 46%. If we

consider the miss rate at 1 FPPI, the best reported result is

25% [6], and our algorithm achieves 23%.

4.4. Processing Speed

Our detection evolution framework needs to evaluate

each test image Nd times, where Nd is the number of

evolved detectors. The experiments show that it gener-

ally converges after 2 or 3 iterations and thus the computa-

tional cost would be around 2 or 3 times of the deformable

part models (ver.5) [13]. On PASCAL dataset [8], for a

500 × 375 images, it takes about 12 seconds. One way

to speed up the detection is to adopt the cascade scheme.

In that case most negative candidates can be rejected in

early cascades, and the detection could be around 10 times

faster [9].
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plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP
Leo [36] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6

CMO [19] 31.5 61.8 12.4 18.1 27.7 51.5 59.8 24.8 23.7 27.2 30.7 13.7 60.5 51.1 43.6 14.2 19.6 38.5 49.1 44.3 35.2

Det-Cls [26] 38.6 58.7 18.0 18.7 31.8 53.6 56.0 30.6 23.5 31.1 36.6 20.9 62.6 47.9 41.2 18.8 23.5 41.8 53.6 45.3 37.7

Oxford [31] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1

NLPR [35] 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0 24.3 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3 34.3

Ver.5 [13] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6 26.6 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4

Our method 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2 29.1 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7
Table 4: Comparison with the state-of-the-art performance of object detection on PASCAL VOC 2007 (trainval/test).

5. Conclusion
In this paper we have proposed a novel multi-order con-

text representation that effectively exploits co-occurrence

contexts of different objects, denoted as MOCO, even

though we only use detectors for a single object. We pre-

process the detector response map and extract the 1st-order

context features based on randomized binary comparison

and further develop a high order co-occurrence descrip-

tor based on the 1st-order context. Together they form

our MOCO descriptor and are integrated into a “detec-

tion evolution” framework as a straightforward extension

of Contextual Boost [6]. Furthermore, we have proposed

to combine our multi-order context representation with the

recently proposed deformable part models [13] to supply

a comprehensive coverage over both inter-contexts among

objects and inner-context inside the target object region.

The advantages of our approach are confirmed by extensive

experiments. As the future work, we plan to further extend

our MOCO to temporal context from videos and contexts

from multiple object detectors or multi-class problems.
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