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Abstract 
 

In this paper we introduce a new shape-driven approach 
for object segmentation. Given a training set of shapes, we 
first use deep Boltzmann machine to learn the hierarchical 
architecture of shape priors. This learned hierarchical 
architecture is then used to model shape variations of 
global and local structures in an energetic form. Finally, it 
is applied to data-driven variational methods to perform 
object extraction of corrupted data based on shape 
probabilistic representation. Experiments demonstrate that 
our model can be applied to dataset of arbitrary prior 
shapes, and can cope with image noise and clutter, as well 
as partial occlusions. 
 

1. Introduction 
Object segmentation in the presence of clutter and 

occlusions is a challenging task for computer vision and 
cross-media. Without utilizing any high-level prior 
information about expected objects, purely low-level 
information such as intensity, color and texture does not 
provide the desired segmentations. In numerous studies 
[1-6], prior knowledge about the shapes of the objects to be 
segmented can significantly improve the final reliability 
and accuracy of the segmentation result. However, given a 
training set of arbitrary prior shapes, there remains an open 
problem of how to define an appropriate prior shape model 
to guide object segmentation. 

Early work on this problem is the Active Shape Model 
(ASM), which was developed by T. Cootes et al. [1]. The 
shape of an object is represented as a set of points. These 
points can represent the boundary or significant internal 
locations of the object. The evolutional shape is constrained 
by the point distribution model which is inferred from a 
training set of shapes. However, these methods suffer from 
a parameterized representation and the manual positioning 
of the landmarks. Later, level set based approaches have 
gained significant attention toward the integration of shape 
prior into variational segmentation [2-7]. Almost all these 
works optimize a linear combination of a data-driven term 
and a shape constraint term. Data-driven term aims at 
driving the segmenting curve to the object boundaries, and 

shape constraint term restricts possible shapes embodied by 
the contour. 

In level set approaches, shape is represented implicitly by 
signed distance functions (SDF). This shape representation 
is consistent with the level set framework, and has its 
advantages since parameterization free and easy handling of 
topological changes. However, SDF for shape represent- 
tation are not closed under linear operations, e.g., the mean 
shape and linear combinations of training shapes are 
typically no longer SDF. Most existing works only consider 
similar prior shapes of a known object class. For above 
reason, Cremers et al. [8] proposed a probabilistic 
representation of shape defined as a mapping �� � � ��� 	
� 
that assigns to every pixel �  of the shape domain ��the 
probability that this pixel is inside the given shape. In 
particular, this relaxed definition of shape leads to convex 
data-driven function optimized on convex shape spaces of 
the following form: 

���� � �������������
� �������	 � �������

�
� ����������������

������������������������	� 
where �� is a shape of probabilistic representation. Here 
���and ���represent the region descriptors of the object and 
background, respectively, while the last term �� acts as an 
edge indicator.  

There are many ways to define the shape constraint term. 
Simple uniform distribution [4], Gaussian densities [2], 
non-parametric estimator [5, 6], manifold learning [9, 10], 
and sparse representation [11] were considered to model 
shape variation within a training set. However, most 
methods are recognition-based segmentation. They are 
suitable for segmenting objects of a known class in the 
image according to their possible similar shapes. If the 
given training set of shapes is large and associated with 
multiple different object classes, the statistical shape 
models and manifold learning do not effectively represent 
the shape distributions due to large variability of shapes. In 
addition, global transformations like translation, rotation 
and scaling and local transformations like bending and 
stretching are expensive to shape model in image 
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Table 1. Comparison of a number of different shape-driven models 
for object segmentation 

Methods 
Transformation 

Arbitrary prior shapes Globally Locally 
ASM [1] � � — 
Statistic models [2, 5, 6] � � — 
Manifold [9, 10] � � — 
Sparse representation [11] � — � 
Our method � � � 

segmentation. Table 1 shows the comparison of a number of 
different shape-driven approaches. 

Recently, deep learning models [12, 13] are attractive for 
their well performance in modeling high-dimensional richly 
structured data. A deep learning model is about learning 
multiple levels of representation and abstraction that help to 
make sense of data such as images, sound, and text. The 
deep Boltzmann machine (DBM) has been an important 
development in the quest for powerful deep learning models 
[14, 15]. Applications that use deep learning models are 
numerous in computer vision and information retrieval, 
including classification [15], dimensionality reduction [12], 
visual recognition tasks [16], acoustic modeling [17], etc. 
Very recently, a strong probabilistic model [18] called 
Shape Boltzmann Machine (SBM) is proposed for the task 
of modeling binary object shapes. This shape generative 
model has the appealing property that it can both generate 
realistic samples and generalize to generate samples that 
differ from shapes in the training set.  

Inspired by the above work [18], we focus on image 
segmentation, and propose a shape prior constraint term by 
deep learning to guide variational segmentation. In this 
paper, we first use deep Boltzmann machine to extract the 
hierarchical architecture of shapes in the training set. This 
architecture can effectively capture global and local 
features of prior shapes. It is then introduced into the 
variational framework as a shape prior term in an energetic 
form. By minimizing the proposed objective functional, the 
model is able to constrain an evolutional shape to follow 
global shape consistency while preserving its ability to 
capture local deformations.  

2. Learning shape priors via DBM 
A Restricted Boltzmann Machine (RBM) is a particular 

type of Markov Random Field (MRF) that has a two-layer 
architecture, in which the visible units are connected to 
hidden units. A Deep Boltzmann Machine (DBM) is an 
extension of the RBM that has multiple layers of hidden 
units arranged in layers [14]. In general, the shape prior can 
be simply described as two levels of representation: 
low-level local features (like edges or corners) and 
high-level global features (like object parts or object). 
Low-level local features with good invariant properties can 
be re-used in different object samples. On the other hand, 
high-level global features describe the image content, and 
they are more appropriate to cope with occlusion, noise, and 

 
(a)                                               (b) 

Fig. 1. Patch-based training for three-layered DBM. (a) The 
visible-to-hidden weights receive inputs only from a square patch 
of visible units below. (b) A simple case that the training shape is 
divided into four square patches. 

changes on the object pose. In order to learn a model that 
accurately captures the global and local properties of binary 
shapes. We use three-layered DBM to automatically extract 
the hierarchical structure of shape data.  

Let � be a 2D vector of binary visible units that represent 
the shape, and let �� and �  be the lower and higher binary 
hidden units. The energy of the state !�� ��� � " is defined 
as follows: 

���#$%��� ��� � & '� 
� ��()��� � ��() � � *�(�� � * (� � +(�. (2) 

Here, ' � !)��) � *�� * � +"  are the model parameters. 
)�  and )  represent visible-to-hidden and hidden-to- 
hidden symmetric interaction terms, *� and *  the hidden 
self-connections (also known as biases), and�+ is the visible 
self-connection. The probability that the model assigns to a 
visible vector � is  

,��& '� � -
.�/� 0 123��#$%��� ��� � & '������ .         (3) 

Here, the constant 4�'� is the partition function defined as 
4�'� � 0 0 123��#$%��� ��� � & '������ � . 

2.1. Learning for three-layered DBM 
Given a set of aligned training shapes !�-� �5�6 � �7", the 

learning of DBM consists of determining the related 
weights and the biases in (2). Although exact maximum 
likelihood estimation of these parameters in this model is 
intractable, efficient approximate learning of DBMs can be 
carried out by using mean-field inference together with 
Markov Chain Monte Carlo algorithms [14]. Furthermore, 
the entire model can be efficiently pre-trained at each layer 
using RBM. Since the shapes often have similar local 
structural properties, the visible units can be divided into 
equal sized square patches to improve the learning 
procedure, as shown in Fig. 1a. It implied that the weights in 
)� are restricted so that they receive inputs only from a 
square patch of visible units below. In order to demonstrate 
the advantages of three-layered DBM, we consider a simple 
case that the training shape is divided into four square 
patches for the arm posture experiment (Fig. 1b). 
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2.2. Approximate inference and generation 
There is an efficient way of performing approximate 

inference of DBM. The conditional distributions over the 
two sets of hidden units are given by logistic functions: 

,89:- � 	;�& � < � =80 >�:-?�� � 0 >:@5 9:5@ � A:-<  (4) 

,�9@5 � 	���� � =80 >�@5 9�-: � A@5 <                        (5) 

where =���  is the logistic function 	 �	 � 123������B . 
Once binary states have been chosen for the hidden units, 
we can generate a shape model by setting the state of each 
pixel to be 1 with probability 

    ,�?� � 	���� � =80 >�:-9:-: � C�<                             (6) 

Although exact inference of the probability distribution 
,��& D� is intractable, an efficient Gibbs sampling scheme 
exists, as detailed in [14]. This starts with a given �  and 
then alternates between updating all of the hidden features 
using (4) and (5), and updating all of the visible pixels using 
(6). After running for sufficiently long, Gibbs sampling will 
eventually converge to the correct solution. In practice, 
Gibbs sampling is doing surprisingly well with only one 
step. In inference procedure, bottom-up connections can be 
used to infer the high-level representations that would have 
generated an observed set of low-level features. On the 
other hand, top-down connections can be used to generate 
low-level features of shapes from high-level representations. 
Fig. 2 illustrates an example of approximate inference in 
which the generative shape model differs from training 
shapes. Moreover, the generative shape can be considered 
as global and local approximation to the training shapes. 

3. Learned shape priors for segmentation 

3.1. Energy formulation 
In DBM, the learned weights and biases implicitly define 

a probability distribution over all possible binary shapes via 
the energy E��� ��� � & '� F 123��#$%�. Moreover, this 
three-layered learning can effectively capture hierarchical 
structures of shape priors. Lower layers detect simple local 
features of shape and feed into higher layers, which in turn 
capture more complex global features of shape. Once binary 
states have been chosen for the hidden units, a shape 
generative model can be inferred by conditional probability. 
Since such generative shape is defined by probability, we 
adopt Cremers’s shape relaxed method [8] to replace the 2D 
visible vector � with a shape � of probabilistic represent- 
ation, and define a shape constraint term in the following 
energetic form. 

G��� ��� � � � #$%��� ��� � & '� .           (7) 

Here, ' � !)��) � *�� * � +" are the learned parameters 

 
Fig. 2. Approximate inference of three-layered DBM. 

of DBM, and hidden units �� and �  can be estimated by 
approximate inference. There are three obvious advantages 
of such shape constraint term. First, it can be applied to the 
dataset of arbitrary prior shapes. This three-layered learning 
can obtain high quality probabilistic distributions over 
object shapes. Second, the shape prior term encodes prior 
knowledge by two-layered representations of shape prior to 
build a flexible constraint that combines global and local 
structure. The numbers of hidden layers are free parameters 
which can be selected depending on the demands of the 
given task. Third, the shape constraint term is consistent 
with the shape probabilistic representation, and can be 
easily integrated into data-driven variational framework (1). 

In our model, in order to relate image data feature and 
shape prior information, we integrate the data term with the 
shape constraint term towards object segmentation, by 
combining (1) and (7) 

    ��� ��� � & '� � H��H��I-�(�JKKKLKKKM
NOPO�P�Q@

� 

I5 R�()��� � ��() � � *�(�� � * (� � �(+SJKKKKKKKKKKKKKKKLKKKKKKKKKKKKKKKM
GTOU��P�Q@

    (8) 

where I-, I5 are positive constants, and the data term is the 
simplified form of (1). Here, H��H� � V ������������W��  
is the weighted version of TV norm, and � � �� � ��. To 
this end, we incorporate the learned shape prior into a 
variational framework that can account for global and local 
shape properties of the object to be segmented. The shape 
constraint term adds an additional force aiming at 
maximizing the similarity between the evolving shape � 
and the estimation shape inferred from the training set. Such 
three-layered architecture of shape term could be 
considered as high-level information to regularize the target 
shape. On the other hand, the target shape is estimated by 
using low-level image data. If the hidden units �� and �  
are considered, the model (8) is generally not convex. 
However, the variational framework is built directly on the 
space of shape probabilistic representation, thus the energy 
functional with respect to shape � is convex functional over 
a convex set, and the monotonic convergence is guaranteed. 
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3.2. Energy minimization 
When the learning model parameters are known, the 

proposed model (8) has two kinds of unknowns: the shape 
�, and the DBM related hidden units �� and � . Instead of 
addressing both together, we use an alternating minimi- 
zation procedure. Observe that the energy functional (8) 
with respect to shape � is convex functional over a convex 
set, and can be efficiently solved by Split Bregman method 
to obtain a global minimizer.  Each layer of hidden units can 
be computed by mean-field approximate inference, just as 
done for DBM. It will be detailed in algorithm 1. 
 
Alg. 1. Deep Learning Prior Shapes for Segmentation 
Given the learned model parameters !)��) � *�� * � +", and a 
new image X with a test shape.  
Initialize � as mean shape of the dataset, and �  as zero vector. 
Repeat the following steps 1 to 3 until convergence. 
1. �� Y =8�()� �) � � *�<. 
2. � Y Z[\�]^_

��
�������I-�(� � I58�()��� � �(+<. 

3. � Y = R��() � * S. 

 
Here, =���  is the element-wise logistic function 
	 �	 � 123������B . Due to the special structure of DBM, 
the cost of summing out �� and �  are linear in the number 
of hidden units. The numerical bottleneck of this 
segmentation algorithm is the computation of the 
minimizer�� in the step 2 of the above algorithm. This can 
take the following form 

�]^_�� �������I-�(`.                               (9) 

where ` � �� � ab
ac�)��� � +��. In this work, we choose 

the following as the region descriptors [8]. 

�� � �d- � X�5� ����� � �d5 � X�5�    �� � -
-e��X�      (10) 

where d-� d5 f g represent the mean intensity inside and 
outside of the segmented region in image X, respectively. 
Based on the probabilistic definition, it is easy to get the 
traditional shape region of object �h � !�� ���� i j" and 
background of image �k�h�by selecting a�j f ��� 	
l  

We apply the Split Bregman method [20] to solve the 
problem (9), as was done in [21]. We first introduce the 
auxiliary variable, mn Y ��  to add a quadratic penalty 
function. Then, we enforce the constraint mn � �� . The 
resulting sequence of optimization problems is 

8�oe-� mnoe-< � Z[\]^_pmnp� � I-�(q � r
5 pmn� �� � stnop5  

stnoe- � stno � ��o � mno 

Finally, the Split Bregman approach to segmentation 
proceeds as follows 
 

Alg. 2. Split Bregman method for step 2 in Alg.1. 
Repeat the following steps 1 to 6 until  p�oe- � �op5 u v. 
1. Define `o � 8d-o � X<5 � 8d5o � X<5 � I5�)��� � +�. 
2. 8�oe-� mnoe-< � Z[\]^_pmnp� � I-�(`o � r

5 pmn� �� � stnop5 

3. mnoe- � w9xyz{|�stno � ��oe-� }� 
4. stnoe- � stno � ��oe- � mnoe- 
5. Find �ho � !�� �oe-��� ~ j" 
6. Update d-oe- � V X��� �� and d5oe- � V X�k��� �� 

3.3. Transformation invariance 
In applications, the target object often has similar shapes 

in different poses. Therefore, the shape prior should 
consider the transformation invariance. In DBM, the weight 
)� consists of N columns, )� � �>--��>5-��6 ��>7-
, and 
each column corresponds to a ‘filter’ that is associated with 
the activation of one of the hidden units. Due to the 
multi-layered architecture of DBM, the weight )� can be 
extended to incorporate transformation parameter �  for 
transformation invariance. This can take the following form 

)�� � )� � � � �>-- � ����>5- � ���6 ��>7- � �
   (11) 

For 2D similarity transformation, � can be parameterized 
as �� � �9�� 9�� �� =� , where 9�  and 9�  represent the 
translations in x- and y-axis, � represents the rotation angle 
and = represents the scale. Thus, the resulting optimization 
problem including shape alignment can be written as 

     ��� ��� � � �& '� � H��H��I-�(� � 

I5 R�()���� � ��() � � *�(�� � * (� � �(+S (12) 

There are three methods in shape models to deal with the 
parameters of �. First, the simplest, but computationally 
most costly method is exhaustive search. Second, gradient 
descent method is a general algorithm to optimize the shape 
energy for transformation invariance [3, 6]. However, it is 
difficult to balance these parameters in numerical 
experiments, since the optimization of the shape energy is 
done by local gradient descent. This optimization method 
will get stuck in local minima. Third, the invariance can be 
obtained by intrinsic alignment [5]. However, the entire set 
of training shapes should be normalized with respect to 
translation, scale and rotation in advance. In numerical 
experiments, it is difficult to accurately compute the center 
of mass and the principal axes of the shape for alignment, 
especially for a large number of training shapes. For some 
applications under an appropriate size of image region, the 
parameters of � are restricted to a certain domain. In our 
work, the exhaustive search is used because it guarantees to 
find the globally optimal solution. 
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Fig. 3. Some of the shapes in MPEG-7 dataset. One image per 
class for the 70 classes.  

4. Experimental results and validation 
We present several experimental results to demonstrate 

the effectiveness and robustness of our model on three 
shape datasets: MPEG-7 dataset [22], walking-person 
dataset [8], and our own arm-posture dataset. Here, the Split 
Bregman method in Algorithm 1 is implemented in C, and 
called through MATLAB using a “mex” interface. All tests 
are done on an Intel Core i5 2.67 GHz machine. 

4.1. Test on dataset MPEG-7 
In this example, we create a training set of 210 shapes 

with 40×40 pixels selected from the part B of the MPEG-7 
CE-Shape-1 dataset [22], with 3 images per object class 
from a total of 70 different classes. Fig. 3 shows some of the 
images in the dataset. The DBM trained on the dataset has 
3,000 and 1,000 units in the first and second hidden layer 
respectively. Pre-training of DBM’s requires 10,000 and 
3,000 epochs for the first and second hidden layers. In 
addition, global training is done for 20,000 epochs. The 
total training time is approximately 2 days (in MATLAB).  

First, in order to illustrate how the proposed model can 
take into account the learned shape prior for object 
segmentation, a synthetic image with various perturbations 
is used to examine the performance of our model. Several 
time steps in the evolution process are shown in Fig. 4. The 
blue contours in the evolution process are presented in the 
first row. The final contour matches accurately the desired 
shape. The second row shows the corresponding segmen- 
tation shape of probabilistic definition. The algorithm 
requires 30 iterations to converge, and the total computation 
time is about 0.76 seconds. It demonstrates two properties 
of our approach. First, the model is able to automatically 
select the reference shapes that best represent the object by 
approximate inference, and accurately segment the image 
taking into account both the image information and the 
shape priors. Second, our model can be applied to the 
training set of arbitrary shape. 

Next, various experiments are carried out to test the 
robustness of our model without transformation invariance, 

 
Fig. 4. The evolution of the contour (blue outlines, j � �l�) is 
presented in the first row (the iteration number is shown in the 
upperleft corner). The second row shows the corresponding shape 
of probabilistic representation. 

covering the case of different types of images including 
missing parts, noises, background clutter, etc. Here, we test 
our model with comparison to three recent methods: shape 
sparse representation [11], kernel density estimate of shape 
prior in variational segmentation based on shape 
probabilistic definition [8], kernel density estimate of shape 
prior for level set segmentation [6] as shown in Fig. 5. Since 
approximate inference of DBM can generate the shape 
model which differs from the training examples, the joint 
optimization of hidden layered parameters allows to capture 
the local and global shape features and obtain more 
satisfying results (Fig. 5b). This highlights the ability of our 
method not only to gather image information throughout 
evolution but also to accurately infer which shape is present 
in the image. In addition, the model with shape sparse 
representation is not allowed for local transformations like 
bending and stretching (see the bird’s head in the first row 
of Fig. 5d) due to the target shape is approximated by sparse 
linear combination of training shapes. Moreover, the 
statistical shape models could not provide reliable shape 
prior information for the disturbed regions of the target 
shape, thus yielding dissatisfactory segmentation results 
(Figs. 5f and 5g). In level set approaches, shape is 
represented implicitly by signed distance functions. The 
linear combinations of shapes no longer correspond to valid 
shapes and then the approach in [6] could not handle the 
case of large shape variability of training set.  

4.2. Track a walking person 
In order to test our model that can account for global and 

local shape properties of the object to be segmented, we will 
apply the proposed model with shape prior to the 
segmentation of a partially occluded walking person. The 
data set we tested here is based on [8], which is publicly 
available. The training set (151 training shapes, walking 
left) is from a consecutive sequence (showing a different 
person walking at a different pace). Fig. 6 shows seventeen 
consecutive samples from the walking sequence. In order to 
segment a person walking in the other direction 
simultaneously, we construct another 151 training shapes 
by flipping the previous training shapes horizontally. Now, 
an extended training set that contains 302 shapes simultane- 
ously encodes both walking directions. The binary shapes 
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                                   (a)                (b)                 (c)                (d)                 (e)                (f)                 (g)               (h) 
Fig. 5. Segmentation comparison of four different methods for five synthetic images with various perturbations. (a) Original images. (b) 
Segmentation results by the proposed model, and the corresponding shapes in (c). (d) Segmentation results by shape sparse representation 
[11], and the corresponding shapes in (e). (f) Segmentation results by kernel density estimate of shape prior for variational segmentation 
based on shape probabilistic definition [8], and the corresponding shapes in (g). (h) Segmentation results by [6]. 

are cropped and normalized to 50×50 pixels. The DBM 
trained on the dataset has 2,000 and 500 units in the first and 
second hidden layer respectively. Pre-training of DBM’s 
requires 10,000 and 3,000 epochs for the first and second 
layers. In addition, global training is done for 30,000 
epochs. The total training time is approximately 2 days. 

Since the walking person here only has similar shapes in 
horizontal direction, we introduce artificial deformation in 
� direction up to 9 translation transformations in the 50�50 
frame, with a step size of one pixel, i.e. �2 f !���������  
�	� �� 	� �� ���". Fig. 7 provides segmentation comparisons 
obtained on a sequence showing a person walking in 
different directions. The initial translation parameter in the 
first frame is given manually. When moving on to a new 
frame, the final translation parameter of previous frame is 
used as the initial translation estimate for the segmentation 
of the current frame. The experiments show that our model 
takes about 4 seconds to process one frame. By visual 
inspection, the nearly similar results are obtained by using 
the proposed model with deep learned shape prior (Fig. 7b) 
in contrast to the model with shape sparse representation 
(Fig. 7d). Because the training shapes are binary and the 
multi-layered learning can effectively capture global 
structures of shape priors, the resulting shape of the 
proposed model is close to binary shape (Fig. 7c) and more 
accurate at the edges in contrast to other methods. 
Moreover, our results compare favorably to those obtained 
by existing statistical methods (Figs. 7f and 7h). Encoding 
multiple different  classes of  shape  samples,  the statistical  
distribu- 

 
Fig. 6. Seventeen consecutive samples from the walking sequence. 

tions could not provide reliable shape prior information for 
segmentation, e.g., they could not provide a correct walking 
direction in Fig. 7g. 

4.3. Arm posture segmentation 
As a third example, we consider arm-posture images, 

with varying positions of the arms. Our own training dataset 
for this example consists of 50 binary shapes with 60×60 
pixels, as shown in Fig. 8. The DBM trained on the dataset 
has 200×4 and 200 units in the first and second hidden layer 
respectively. Pre-training of DBM’s requires 5,000 epochs 
for the two hidden layers. Global training is done for 30,000 
epochs. The total training time is approximately one day. 
For different people, the shape of arm posture often has 
certain variations, or the target object has similar shapes in 
different poses. To demonstrate the robustness of our 
approach for real images, several experiments about arm 
posture segmentation are carried out. As seen in Fig. 9, 
variational model with deep learned shape prior makes the 
segmentation process robust to missing and misleading 
information (Figs. 9b). Such multi-layered shape prior can 
combine bottom-up and top-down processing of an image 
to model shape variations of global and local structures. 
Due to a small sample size and large variation of samples, 
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                            (a)                   (b)                  (c)                  (d)                  (e)                   (f)                   (g)                  (h) 
Fig. 7. Typical comparison of six frames based on the enlarged training set of 302 shapes. (a) Original images. (b) Segmentation results by 
the proposed model, and the corresponding shapes in (c). (d) Segmentation results by shape sparse representation [11], and the 
corresponding shapes in (e). (f) Segmentation results by kernel density estimate of shape prior for variational segmentation based on shape 
probabilistic definition [8], and the corresponding shapes in (g). (h) Segmentation results by [6]. 

shape sparse representation (Figs. 9d) and the statistic shape 
models (Figs. 9f and 9h) model cannot effectively capture 
the local edge variations, and yield dissatisfactory 
segmentation results. 

5. Conclusion 
Our approach consists of two stages. The first is the use 

of deep Boltzmann machine to extract the hierarchical 
structure of the training shapes. This hierarchical structure 
can effectively capture global and local structures of prior 
shapes. During the second stage a shape-driven variational 
framework is built directly on the space of shape 
probabilistic representation. This hierarchical structure of 
shape prior is introduced in an energetic form to regularize 
the target shape in variational image segmentation. We 
demonstrate the effectiveness of the resulting algorithm in 
segmenting images that involve low-quality data and 
occlusions. 
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Fig. 8. An arm-posture dataset of 50 shapes. 
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