

Blessing of Dimensionality: High-dimensional Feature and Its Efficient Compression for Face Verification

Dong Chen Xudong Cao
University of Science and Technology of China
chendong@mail.ustc.edu.cn

Fang Wen Jian Sun
Microsoft Research Asia
{xudongca,fangwen,jiansun}@microsoft.com

Abstract

Making a high-dimensional (e.g., 100K-dim) feature for face recognition seems not a good idea because it will bring difficulties on consequent training, computation, and storage. This prevents further exploration of the use of a high-dimensional feature.

In this paper, we study the performance of a high-dimensional feature. We first empirically show that high dimensionality is critical to high performance. A 100K-dim feature, based on a single-type Local Binary Pattern (LBP) descriptor, can achieve significant improvements over both its low-dimensional version and the state-of-the-art.

We also make the high-dimensional feature practical. With our proposed sparse projection method, named rotated sparse regression, both computation and model storage can be reduced by over 100 times without sacrificing accuracy quality.

1. Introduction

Modern face verification pipelines mainly consist of two stages: extracting low-level features, and building classification models. The first stage focuses on constructing informative features manually or from data. The second stage usually exploits supervised information to learn a classification model [10, 26, 30], discriminative subspace [3, 26, 36], or mid-level representation [4, 24, 34, 38].

A good low-level feature should be both discriminative for inter-person difference and invariant to intra-person variations such as pose/lighting-expression. Recent successful features have been either handcrafted (e.g., Gabor [27], LBP [1], and SIFT [29]) or learned from data [8]. In the design of a feature, we often compromise its informativeness (containing as much discriminative information as possible) and compactness (size). We favor a compact feature as it makes the second stage easier and whole storage/computation cheaper.

However, we question whether such a trade-off occurring in the first stage is too early, w.r.t the whole pipeline. We first study the performance of the high-dimensional feature as the function of its dimensionality (more precisely, amount of discriminative information). To effectively construct a high-dimensional, informative feature, we appropriately exploit the advantages of the recent strong alignment [7] and other modern techniques. In short, we densely sample multi-scale descriptors centered at dense facial landmarks and concatenate them. We empirically found that a high-dimensional feature, with sufficient training data, is necessary to obtain state-of-the-art results. For example, based on a single-type of LBP descriptor, our high-dimensional feature with 100K-dim can achieve over 93.18% accuracy on challenging Labeled Face in the Wild (LFW) [23] dataset, significantly higher than its non-high-dimensional version and the established state-of-the-art.

Of course, high-dimensional feature leads to high cost. Even if we use a linear dimension reduction method like Principal Component Analysis (PCA), projecting a feature from 100K-dim to 1K-dim needs 100M of expensive floating-point multiplications. Moreover, storage of the projection matrix in floating-point formate is 400M! Such a high cost is unaffordable in many real scenarios such as mobile applications or on embedded devices. Even when using a desktop, deploying such system is undesired.

To make high-dimensional feature really useful, we propose a simple two-step scheme for obtaining a sparse linear projection. In the first step, any conventional subspace learning methods can be applied to get the compressed, low-dimensional feature. In the second step, we adopt l_1 regression to learn a sparse project matrix which maps the feature from the original high dimension to low dimension. Considering that the commonly used distance metrics (e.g., Euclidean and Cosine) are invariant to a rotation transformation, we further introduce an additional freedom of rotation in the mapping. Our method, called Rotated Sparse Regression, can reduce the cost of linear projection and its storage.

1Under unrestricted protocol; no outside training data in recognition system.
by sacrificing very little accuracy (less than 0.1%).

The main contributions of this paper are:

- We reveal the significance of a high-dimensional feature in the context of modern technology (face alignment / learning methods / massive data) for face recognition;
- We propose a rotated sparse regression to make high-dimensional feature feasible;
- We demonstrate state-of-the-art performances of the high-dimensional feature, in various settings (unsupervised / limited training / unlimited training).

2. Related Works

Since the topics covered in face recognition literature are numerous, we focus on two most-related aspects. **Over-completed representation** is an effective way to obtain an informative, high-dimensional feature. In unsupervised feature learning, densely sampling overlapped image patches [5, 12] consistently improve performance. For example, Coated et al. [12] discovered through experimentation that over-completed bases are critical to high performance regardless of the choice of encoding methods. Similar observations have also been made in [5, 22, 37].

Multi-scales sampling has also proven to be effective. Examples include multi-scale LBP [9] and multi-scale SIFT [18, 19] for face recognition, Gist descriptor for image retrieval [14], and scene classification [32, 35].

Feature compression. Two common approaches for compressing features are feature selection and the subspace method. Feature selection is the most effective way to remove noisy and irrelevant dimensions. It is usually formulated in a greedy way such as boosting [15], or in a more principled way by enforcing l_1 penalty [20] or structure sparsity [28]. The subspace method is more suitable for extracting the most discriminative low-dimensional representation. It can be implemented as an unsupervised [21, 36] or supervised subspace methods [3, 10, 26]. For linear subspace methods, the high-dimensional feature is projected into a low-dimensional subspace with a linear projection. To make the projection sparse, Hastie et al. developed a sparse version of PCA [41] and LDA [11] by adding a sparse penalty and formulating them as elastic net problems [40]. However, the additional sparse penalty often makes the original optimization method inapplicable. This drawback could become an insurmountable obstacle when trying to enforce sparsity to other more sophisticated subspace learning methods.

3. High-dimensional Feature is Necessary

In this section, we describe our construction of the high-dimensional feature in detail and study its accuracy though experimentation as a function of the dimensionality.

3.1. Constructing high-dimensional feature

We construct the feature simply by extracting multi-scale patches centered at dense facial landmarks. We first locate dense facial landmarks with a recent face alignment method [7] and rectify similarity transformation based on five landmarks (eyes, nose, and mouth corners). Then, we extract multi-scale image patches centered around each landmark. We divide each patch into a grid of cells and code each cell by a certain descriptor. Finally, we concatenate all descriptors to form our high-dimensional feature.

In the above process, the following two factors are worth noting.

Dense landmarks. Our feature is based on accurate and dense facial landmarks. This is only possible with recent great progress made in face alignment (i.e. locating landmarks) [2, 7]. Using sampling or regression techniques, today’s face alignment methods can output both accurate and dense landmarks on faces in the wild. In this paper, we leverage these works and show that this factor is crucial to our work.

We select landmarks of the inner face due to their relatively high accuracy and reliability. Figure 1 (a) (from sparse to dense) shows the landmarks we used for feature extraction, which are salient points on the eye brows, eyes, nose and mouth. There are 27 landmarks in total.

Multiple scales. As shown in Figure 1 (b), we first build an image pyramid of the normalized facial image (with a similarity transformation which is determined by five landmarks). Then, at each landmark we crop fixed-size image patches on every pyramid layer. Finally the images patches
3.2. High dimensionality leads to high performance

In this section, we investigate the effect of the dimensionality of our feature on face verification accuracy. We use the LFW benchmark, following its unrestricted protocol [23]. We evaluate five different local descriptors: LBP [1], SIFT [29], HOG [13], Gabor [27], and LE [8].

Figure 1 shows our main result: high-dimensional feature results in high performance. There is a 6% ~ 7% improvement in accuracy when increasing the dimensionality from 1K to over 100K for all descriptors. In this experiment, the feature dimension is increased by varying landmark numbers from 5 to 27 and sampling scales from 1 to 5.

To effectively apply a supervised learning method in the second stage, the dimension of these features is reduced to 400 by PCA. We compared three leading learning methods, LDA [3], PLDA [26], and Joint Bayesian [10]. Our results held regardless of the choice of supervised learning methods. For simplicity, we only report the results from the Joint Bayesian method, which consistently achieves best accuracy.

We believe the results of the high performance of high-dimensional feature are due to a few reasons. First, the landmarks based sampling make the feature invariant to variations like poses and expressions. Second, dense landmarks functions similar to the dense sampling in BOV framework [5, 12], which includes more information by the overcompleted representation. Third, the multi-scale sampling effectively and comprehensively encodes the micro and macro structures of the face. Last, the previous factors are not redundant. They are complementary. We will conduct more detailed experiments to further investigate these factors in Section 5.1.

Note that the effectiveness of the high-dimensional feature may be limited by insufficient training data. But nowadays, larger datasets are gradually available in research [10, 23] and industry [33]. Given sufficient supervised data, the high-dimensional feature is more preferable. In Section 5.2, we will present the results of the high-dimensional feature in a large training data setting.

Recent works on other image classification problems also revealed the importance of the high-dimensional feature. Yang et al. [37] showed that over-completed representation is more separable, and Sánchez et al. [31] reported on the significance of high-dimensional features in large-scale image classification. Pooling in spatial [25] and feature spaces [6] also lead to higher dimensionality and better performance.

4. Rotated Sparse Regression based Efficient Compression

Although high dimensionality leads to high performance, this comes at a high cost. In this section, we propose a novel method for learning a sparse linear projection which maps the high-dimensional feature to a discriminative subspace with a much lower computational/storage cost.

As shown in Figure 3, our method can be divided into two steps. In the first step, we adopt PCA to compress the high-dimensional raw feature. Then the supervised subspace learning methods such as LDA [3] or Joint Bayesian [10] are applied to extract discriminative information for face recognition and (potentially) further reduce the dimension.

In the second step, we learn a sparse linear projection which directly maps high-dimensional feature set \(X\) to low-dimensional feature set \(Y\) learned in the first step. Specifically, we adopt an \(l_1\)-based regression to learn a sparse matrix \(B\) with additional freedom in rotation which can further promote the resulting sparsity.

4.1. Rotated sparse regression

Let \(X = [x_1, x_2, ..., x_N]\) be the input high-dimensional feature set and \(Y = [y_1, y_2, ..., y_N]\) be the corresponding low-dimensional feature set obtained from any conventional subspace learning methods. \(N\) is the number of training samples. Our objective is to find a sparse linear projection \(B\) which maps \(X\) to \(Y\) with low error:

\[
\min_B \|Y - BTX\|_2^2 + \lambda\|B\|_1, \tag{1}
\]
where the first term is the reconstruction error and the second term is enforced sparse penalty. The scalar λ balances two terms.

Considering the commonly used distance metrics in the subspace (e.g., Euclidean and Cosine) are invariant to rotation transformation, we can introduce additional freedom in rotation to promote sparsity without sacrificing accuracy. With an additional rotation matrix R, our new formulation is:

$$
\min_{B,R} \| R^T Y - B^T X \|^2_2 + \lambda \| B \|_1,
$$

s.t. \quad R^T R = I. \tag{2}

Since the above formulation is a linear regression with sparse penalty and additional freedom in rotation, we term it as **Rotated Sparse Regression**.

4.2. Optimization

We notice that the objective function is convex if R or B is given. Thus, we adopt an alternative optimization method. The iteration is initialized by simply letting the matrix R be equal to the identity matrix. **Solving B given R.** Let $\tilde{Y} = R^T Y$, the objective function can be rewritten as,

$$
\min_{B} \| \tilde{Y} - B^T X \|^2_2 + \lambda \| B \|_1. \tag{3}
$$

As B’s columns are independent of each other in Equation (3), we can optimize each column in parallel. In our implementation, we use an efficient coordinate descent method [16] which is initialized by the valued obtained in a previous iteration to solve it.

Solving R given B. When matrix B is fixed, the sparse penalty term is constant. By removing the constant penalty term from the objective function, we have

$$
\min_{R} \| R^T Y - B^T X \|^2_2,
$$

s.t. \quad R^T R = I. \tag{4}

This problem has a closed form solution. Suppose the SVD decomposition of $Y^T X$ is $U D V^T$, then the closed form solution of matrix R is $R = U V^T$.

By iteratively optimizing two sub-problems, we can efficiently learn a rotated sparse regression.

With the learned linear projection matrix B, the low-dimensional feature is simply computed by $B^T X$. Due to the sparse penalty, the number of non-zero elements of matrix B is reduced by orders of magnitude (see our experiments in Section 5.4). As the complexity of linear projection in computation and memory are linear to the number of non-zero elements, the cost of the linear projection is dramatically reduced.

4.3. Discussion

An alternative approach to sparse subspace learning is directly adding an l_1 penalty term into the original objective function [41, 11]. Despite such an approach being more elegant in the formulation, they cause difficulties for optimization. In contrast, our method directly exploits the original subspace method to compute the low-dimensional feature and avoid difficulties in developing new optimization methods. Moreover, since only the low-dimensional feature is required in the second step, it is not necessary for the original subspace learning method to be linear. In addition, the rotation term in our formulation provides additional freedom and further promotes the sparsity.

Feature selection is also a common approach to dealing with high-dimension problems such as boosting [15] and multi-task feature selection [28]. It aims to select a subset of dimensions which contains more discriminative information and remove the noise and redundancy. Compared with feature selection methods, our method exploits the information in all dimensions rather than a subset of them. As shown in Section 5.5, our method achieves much better performance, which indicates most of dimensions are useful in our constructed high-dimensional feature.

5. Experimental Results

In this section, we present more experimental results of our high-dimensional feature and rotated sparse regres-
We evaluate the high-dimensional feature under three settings: unsupervised learning, supervised learning with limited and unlimited training data. We adopt the Joint Bayesian method\cite{10} for supervised subspace learning. Before diving into details, we first introduce the three datasets in our experiments and the baseline feature we compare with.

LFW\cite{23}. The LFW database contains 13,233 images from 5,749 identities. The number of images varies from 1 to 530 for one subject. All these images are collected from the Internet with large intra-personal variations.

WDRef\cite{10}. The WDRef database contains 99,773 images of 2,995 subjects. Over 2,000 subjects have more than 15 images. They are collected from the Internet with large variations in pose, expression and lighting.

Multi-PIE\cite{17}. The Multi-PIE database contains images of 337 subjects. These images are captured under controlled pose, expression and light conditions.

Baseline feature. The baseline method first normalize the image to 100*100 pixels by an affine transformation calculated based on 5 landmarks (two eyes, noise and two mouth tips). Then, the image is divided into 10*10 no-overlapped cells. Each cells within the image is mapped to a vector by a certain descriptor. All descriptors are concatenated to form the final feature.

5.1. The High-dimensional feature is better

In the first experiment, we evaluate the performance of the high-dimensional feature with supervised learning. We extract image patches at 27 landmarks in 5 scales\footnote{We have tried several supervised learning methods such as LDA\cite{3}, PLDA\cite{26} and Joint Bayesian\cite{10}. According to our experiments, the accuracy consistently improved. Given limited space, we only report the results of Joint Bayesian which achieved the best results.}. The patch size is fixed to 40 × 40 in all scales. We divide each patch into 4 × 4 non-overlapped cells. We evaluate 5 descriptors for encoding each cell: LE\cite{8}, LBP\cite{1}, SIFT\cite{29}, HOG\cite{13} and Gabor\cite{27}. The dimension of the features are reduced to 400 by PCA for supervised learning. We follow LFW’s “unrestricted protocol” - only use training data provided by LFW.

As shown in Table 1, compared with the baseline feature, the high-dimensional feature brings 4% ~ 6% gain in accuracy for all descriptors. The single LBP descriptor obtains 93.18% which is 2% higher than the state-of-the-art result\cite{10} which is based on multiple feature combination.

To better understand our high-dimensional feature, we separately investigate three factors: sampling at landmarks, landmark number, and scale number.

Sampling at landmarks. To investigate this factor, we extract image patches in a single scale at 9 landmarks and compare it with the baseline feature. Their dimensionality are kept close so as to exclude the impact of the dimensionality. As shown in Table 2, sampling at the landmarks leads to comparatively better performance, which indicates sampling at the landmarks effectively reduce the intra-personal geometric variations due to pose and expressions.

Landmark number. In this experiment, we increase the landmarks number from 5 to 27 to investigate performance as a function of the number of landmarks. Figure 4 shows the accuracies of all descriptors improve monotonically, when the number of landmarks increases from 5 to 22. Increasing from 22 to 25 will not cause much improvement or even bring small negative effect.

Scale number. To verify the effect of multi-scale representation, we conduct experiments to study the performance with varying numbers of scales. We can see from Figure 5 that the accuracy of all descriptors increases when the number of scales increases. The accuracy gain is around 2% ~ 3%, when we raise the number of scales from 1 to 5. But after 5 scales, the benefit becomes marginal.

5.2. Large scale dataset favors high dimensionality

To investigate the performance of the high-dimensional feature on a large scale dataset, we use the recent Wide and Deep Reference (WDRef)\cite{10} database for training. Since we have more training data now, the feature dimension is reduced to 2,000 by PCA for supervised learning.

As shown in Table 3, compared with a smaller training set in LFW, the large-scale dataset leads to an even larger improvement for the high-dimensional feature. Taking the LBP descriptor as an example, the improvement due to high dimensionality is 4.5% on the LFW dataset; On the large-scale WDRef dataset, the improvement increases to 5.7%. Therefore high dimensionality plays an even more important role when the size of the training set becomes larger.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>High dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>88.78%</td>
<td>92.92%</td>
</tr>
<tr>
<td>LBP</td>
<td>88.33%</td>
<td>93.18%</td>
</tr>
<tr>
<td>SIFT</td>
<td>85.95%</td>
<td>91.77%</td>
</tr>
<tr>
<td>HOG</td>
<td>87.90%</td>
<td>91.10%</td>
</tr>
<tr>
<td>Gabor</td>
<td>84.93%</td>
<td>90.97%</td>
</tr>
</tbody>
</table>

Table 1. The comparison between the high-dimensional feature and the baseline feature under LFW unrestricted protocol.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Sampling at landmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>88.78%</td>
<td>90.60%</td>
</tr>
<tr>
<td>LBP</td>
<td>88.33%</td>
<td>90.30%</td>
</tr>
<tr>
<td>SIFT</td>
<td>85.95%</td>
<td>89.08%</td>
</tr>
<tr>
<td>HOG</td>
<td>87.90%</td>
<td>88.78%</td>
</tr>
<tr>
<td>Gabor</td>
<td>84.93%</td>
<td>87.27%</td>
</tr>
</tbody>
</table>

Table 2. The comparison between sampling at regular grids (Baseline) and sampling at landmarks.
Table 3. The comparison between the high-dimensional feature and the baseline feature. Training is on WDRef and testing is on LFW.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>High dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>90.28%</td>
<td>94.89%</td>
</tr>
<tr>
<td>LBP</td>
<td>89.39%</td>
<td>95.17%</td>
</tr>
<tr>
<td>SIFT</td>
<td>86.85%</td>
<td>93.21%</td>
</tr>
<tr>
<td>HOG</td>
<td>88.93%</td>
<td>93.40%</td>
</tr>
<tr>
<td>Gabor</td>
<td>87.38%</td>
<td>92.83%</td>
</tr>
</tbody>
</table>

5.3. High-dimensional feature with unsupervised learning

In this experiment, we study the impact of high dimensionality under the unsupervised setting. The experiment is carried out on LFW and Multi-PIE databases. For LFW database, we follow LFW’s restricted protocol (no use of identity information). For Multi-PIE databases, we follow the settings in [38] which are similar to LFW protocol. We first reduce the dimension of the feature to 400 by PCA and then compute the cosine similarity of a pair of faces.

As shown in the Table 4, in both databases, the high-dimensional features are 3% ~ 4% higher than the baseline method, which proves the effectiveness of high dimensionality in the unsupervised setting.

<table>
<thead>
<tr>
<th></th>
<th>LFW</th>
<th>Multi-PIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>81.05%</td>
<td>83.27%</td>
</tr>
<tr>
<td>LBP</td>
<td>80.05%</td>
<td>80.60%</td>
</tr>
<tr>
<td>SIFT</td>
<td>77.17%</td>
<td>79.30%</td>
</tr>
<tr>
<td>HOG</td>
<td>80.08%</td>
<td>82.98%</td>
</tr>
<tr>
<td>Gabor</td>
<td>74.97%</td>
<td>85.12%</td>
</tr>
</tbody>
</table>

Table 4. The comparison between the high-dimensional feature and the baseline feature on LFW and Multi-PIE database under unsupervised setting.

<table>
<thead>
<tr>
<th>Sparsity</th>
<th>Compression Ratio</th>
<th>Sparse Regression</th>
<th>Rotated Sparse Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>20</td>
<td>93.18%</td>
<td>93.18%</td>
</tr>
<tr>
<td>0.98</td>
<td>50</td>
<td>92.93%</td>
<td>93.18%</td>
</tr>
<tr>
<td>0.99</td>
<td>100</td>
<td>92.05%</td>
<td>93.09%</td>
</tr>
<tr>
<td>0.995</td>
<td>200</td>
<td>91.43%</td>
<td>92.98%</td>
</tr>
</tbody>
</table>

Table 5. The comparison of the sparse regression and rotated sparse regression under various sparsity.

Without the sparse penalty, the high-dimensional LBP achieves 93.18% under the LFW unrestricted protocol. As shown in Table 5, both methods maintain accuracy when the sparsity is 0.95. However, when the sparsity goes beyond 0.98, the proposed rotated sparse regression can still retain fairly good accuracy, but sparse regression suffers from a significant accuracy drop. This is due to the additional rotation freedom. It makes the projection matrix more sparse given the same reconstruction error. When sparsity increases to 0.99, with the aid of rotated sparse regression, we reduce the cost of linear projection by 100 times with less than 0.1% accuracy drop.
5.5. Comparison with Feature Selection

In this experiment, we compare the rotated sparse regression and two feature selection methods: backward greedy [39] and structure sparsity [28]. We use the high-dimensional LBP feature as input in all methods. For backward greedy, we treat each image patch as a selection unit. In each iteration, we remove the image patch that leads to the smallest drop in accuracy. For structure sparsity, we follow the method in [28] which uses $l_{2,1}$-norm to enforce structure sparsity for feature selection.

As shown in Figure 6, feature selection methods suffer from a significant accuracy drop when sparsity is larger than 60%. When sparsity is around 80%, the rotated sparse regression is slightly better than no sparse compression, as sparsity may promote generalization. When sparsity is higher than 90%, our method outperforms the feature selection method by 6%, which verifies the effectiveness of the proposed method. It also indicates that the majority of dimensions in our high-dimensional feature are informative and complementary. Simply removing a subset of them will lose information and lead to a performance drop.

5.6. Comparison with the state-of-the-art

Finally, we make a comparison with the state-of-the-art methods under two settings: supervised learning without and with outside training data. We achieve 93.18% (2nd best is 90.07% [26]) under the LFW unrestricted protocol (know identity information). Using WDRef as outside training data, we achieve 95.17% (2nd best is 93.30% [4]). As shown in Figures 7 and 8, our method significantly outperforms the state-of-the-art method under both settings.

6. Conclusion

In this paper, we have studied the performance of face feature as a function of dimensionality. We have shown through experimentation that high dimensionality is critical to achieving high performance. We also made the high-dimensional feature practical enough to be introduced into a rotated sparse regression technique. We hope our promising results can encourage more work on building more informative features and increased studying of better compression solutions.

References

