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Abstract

Image-based classification of tissue histology, in terms of
different components (e.g., normal signature, categories of
aberrant signatures), provides a series of indices for tumor
composition. Subsequently, aggregation of these indices in
each whole slide image (WSI) from a large cohort can pro-
vide predictive models of clinical outcome. However, the
performance of the existing techniques is hindered as a re-
sult of large technical and biological variations that are al-
ways present in a large cohort. In this paper, we propose
two algorithms for classification of tissue histology based
on robust representations of morphometric context, which
are built upon nuclear level morphometric features at vari-
ous locations and scales within the spatial pyramid match-
ing (SPM) framework. These methods have been evaluated
on two distinct datasets of different tumor types collected
from The Cancer Genome Atlas (TCGA), and the experi-
mental results indicate that our methods are (i) extensible
to different tumor types; (ii) robust in the presence of wide
technical and biological variations; (iii) invariant to differ-
ent nuclear segmentation strategies; and (iv) scalable with
varying training sample size. In addition, our experiments
suggest that enforcing sparsity, during the construction of
morphometric context, further improves the performance of
the system.

1. Introduction

Histology sections provide a wealth of information about

the tissue architecture that contains multiple cell types at

different states of cell cycles. These sections are often
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stained with hematoxylin and eosin (H&E) stains, which

label DNA (e.g., nuclei) and protein contents, respectively,

in various shades of color. Abberations in the histology ar-

chitecture often lead to disease progression. It is desirable

to quantify indices associated with these abberations since

they can be tested against the clinical outcome, e.g., sur-

vival, response to therapy. Even though there are inter- and

intra- observer variations [7], a trained pathologist always

uses rich content (e.g., various cell types, cellular organiza-

tion, cell state and health), in context, to characterize tumor

architecture.

In this paper, we propose two tissue classification meth-

ods based on representations of morphometric context,

which are constructed from nuclear morphometric statistics

of various locations and scales based on spatial pyramid

matching (SPM) [18] and linear spatial pyramid matching

(Linear SPM) [28]. Due to the effectiveness of our repre-

sentations, our methods achieve excellent performance even

with small number of training samples across different seg-

mentation strategies and independent datasets of tumors.

The performance is further complemented by the fact that

one of the methods has a superior result with linear clas-

sifiers. These characteristics dramatically improve the (i)

effectiveness of our techniques when applied to a large co-

hort, and (ii) extensibility to other cell-based assays.

Organization of this paper is as follows: Section 2 re-

views related works. Sections 3 and 4 describes the de-

tails of our proposed mehods and experimental validation.

Lastly, section 5 concludes the paper.

2. Related Work

For the analysis of the H&E stained sections, several ex-

cellent reviews can be found in [13, 8]. Fundamentally, the

trend has been based either on nuclear segmentation and

corresponding morphometric representaion, or patch-based
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Figure 1. Computational workflows: (a) Morphometric nonlinear

kernel SPM; (b) Sparse Morphometric linear SPM. In both ap-

proaches, the nuclear segmentation could be based on any of the

existing methods.

representation of the histology sections that aids in clinical

association. For example, a recent study indicates that de-

tailed segmentation and multivariate representation of nu-

clear features from H&E stained sections can predict DCIS

recurrence [1] in patients with more than one nuclear grade.

The major challenge for tissue classification is the large

amounts of technical and biological variations in the data,

which typically results in techniques that are tumor type

specific. To overcome this problem, recent studies have fo-

cused on either fine tuning human engineered features [2,

16, 17], or applying automatic feature learning [19, 14], for

robust representation.

In the context of image categorization research, the tra-

ditional bag of features (BoF) model has been widely stud-

ied and improved through different variations, e.g., mod-

eling of co-occurrence of descriptors based on generative

methods [4, 3, 20, 24], improving dictionary construction

through discriminative learning [9, 22], modeling the spatial

layout of local descriptors based on spatial pyramid match-

ing kernel (SPM) [18]. It is clear that SPM has become

the major component of the state-of-art systems [10] for its

effectiveness in practice.

Pathologists often use “context” to assess the disease

state. At the same time, SPM partially captures context be-

cause of its hierarchical nature. Motivated by the works of

[18, 28], we encode morphometric signatures, at different

locations and scales, within the SPM framework. The end

results are highly robust and effective systems across multi-

ple tumor types with limited number of training samples.

3. Approaches
The computational workflows for the proposed methods

are shown in Figure 1, where the nuclear segmentation can

be based on any of the existing methods for delineating nu-

clei from background. For some tissue images and their

corresponding nuclear segmentation, let:

1. M be the total number of segmented nuclei;

2. N be the number of morphometric descriptors ex-

tracted from each segmented nucleus, e.g. nuclear size,

and nuclear intensity;

3. X be the set of morphometric descriptors for all seg-

mented nuclei, where X = [x1, ...,xM ]� ∈ R
M×N .

Our proposed methods are described in detail as follows.

3.1. Morphometric nonlinear kernel SPM (MK-
SPM)

In this approach, we utilize the nuclear morphometric in-

formation within the SPM framework to construct the mor-

phometric context at various locations and scales for tissue

image representation and classification. It consists of the

following steps:

1. Construct dictionary (D), where D = [d1, ...,dK ]�

are the K nuclear morphometric types to be learned

by the following optimization:

min
D,Z

M∑
m=1

||xm − zmD||2 (1)

subject to card(zm) = 1, |zm| = 1, zm � 0, ∀m
where Z = [z1, ..., zM ]� indicates the assignment of

the nuclear morphometric type, card(zm) is a cardi-

nality constraint enforcing only one nonzero element

of zm, zm � 0 is a non-negative constraint on the ele-

ments of zm, and |zm| is the L1-norm of zm. During

training, Equation 1 is optimized with respect to both

Z and D; In the coding phase, for a new set of X, the

learned D is applied, and Equation 1 is optimized with

respect to Z only.

2. Construct spatial histogram as the descriptor for the

morphometric context for SPM [18]. This is done by

repeatedly subdividing an image and computing the

histograms of different nuclear morphometric types

over the resulting subregions. As a result, the spatial

histogram, H , is formed by concatenating the appro-

priately weighted histograms of all nuclear morpho-

metric types at all resolutions. The SPM kernel is then

implemented as a single histogram intersection as fol-

lows,

κ(Hi, Hj) =

Q∑
q=1

min(Hi(q), Hj(q)) (2)

where Hi and Hj are the spatial histograms for image

Ii and Ij , respectively, and Q is the length of the spatial
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histogram. For more details about SPM, please refer to

[18, 12].

3. Transfer a χ2 support vector machine (SVM) into a

linear SVM based on a homogeneous kernel map [26].

In practice, the intersection kernel and χ2 kernel have

been found to be the most suitable for histogram repre-

sentations [28]. In this step, a homogenous kernel map

is applied to approximate the χ2 kernels, which en-

ables the efficiency by adopting learning methods for

linear kernels, e.g., linear SVM. For more details about

the homogeneous kernel map, please refer to [26].

4. Construct multi-class linear SVM for classification. In

our implementation, the classifier is trained using the

LIBLINEAR [11] package.

3.2. Sparse Morphometric Linear SPM (SMLSPM)

Inspired by the work in [28], which indicates that the

sparse coding of the SIFT features may serve as a better

local descriptor in general image processing tasks, we pro-

pose to utilize the sparse coding of the nuclear morphomet-

ric information within a linear SPM framework to construct

the morphometric context at various locations and scales for

tissue image representation and classification. It consists of

the following steps:

1. Construct dictionary (D), where D = [d1, ...,dK ]�

are the K nuclear morphmetric types to be learned by

the following sparse coding optimization:

min
D,Z

M∑
m=1

||xm − zmD||2 + λ|zm| (3)

subject to ||dk|| ≤ 1, ∀k
where ||dk|| is a unit L2-norm constraint for avoid-

ing trivial solutions, and |zm| is the L1-norm enforc-

ing the sparsity of zm. During training, Equation 3 is

optimized with respect to both Z and D; In the coding

phase, the learned D will be applied to a new set of X,

with Equation 3 optimized with respect to Z only.

2. Construct spatial pyramid representation as the de-

scriptor of morphometric context for the linear

SPM [28]. Let Z be the sparse codes calculated

through Equation 3 for a descriptor set X. Based on

pre-learned and fixed dictionary D, the image descrip-

tor is computed based on a pre-determined pooling

function as follows,

f = P(Z) (4)

In our implementation, P is selected to be the max
pooling function on the absolute sparse codes

fj = max{|z1j |, |z2j |, ..., |zMj |} (5)

where fj is the j-th element of f , zij is the matrix el-

ement at i-th row and j-th column of Z, and M is the

number of nuclei in the region. The choice of max
pooling procedure is justified by biophysical evidence

in the visual cortex [25], algorithms in image catego-

rization [28], and our experimental comparison with

other common pooling strategies (see Table 7). Similar

to the construction of SPM, the pooled features from

various locations and scales are then concatenated to

form a spatial pyramid representation of the image, and

a linear SPM kernel is applied as follows,

κ(fi, fj) = f�i fj =
2∑

l=0

2l∑
s=1

2l∑
t=1

〈f li (s, t), f lj(s, t)〉 (6)

where fi and fj are spatial pyramid representations for

image Ii and Ij , respectively, 〈fi, fj〉 = f�i fj , and

f li (s, t) and f lj(s, t) are the max pooling statistics of

the sparse codes in the (s, t)-th segment of image Ii
and Ij in the scale level l, respectively.

3. Construct multi-class linear SVM for classification. In

our implementation, the classifier is trained using the

LIBLINEAR [11] package.

4. Experiments And Results
We have evaluated five classification methods on two

distinct datasets, curated from (i) Glioblastoma Multiforme

(GBM) and (ii) Kidney Renal Clear Cell Carcinoma (KIRC)

from The Cancer Genome Atlas (TCGA), which are pub-

licly available from the NIH (National Institute of Health)

repository. The five methods are:

1. SMLSPM: the linear SPM that uses linear kernel

on spatial-pyramid pooling of morphometric sparse

codes;

2. MKSPM: the nonlinear kernel SPM that uses spatial-

pyramid histograms of morphometric features and χ2

kernels;

3. ScSPM [28]: the linear SPM that uses linear kernel on

spatial-pyramid pooling of SIFT sparse codes;

4. KSPM [18]: the nonlinear kernel SPM that uses

spatial-pyramid histograms of SIFT features and χ2

kernels;

5. CTSPM: the nonlinear kernel SPM that uses spatial-

pyramid histograms of color and texture features and

χ2 kernels;

In the implementations of SMLSPM and MKSPM, mor-

phometric features were extracted and normalized indepen-

dently with zero mean and unit variance based on three dif-

ferent segmentation strategies:
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Approach Precision Recall F-Measure

MRGC 0.75 0.85 0.797
SRCD 0.63 0.75 0.685

OTGR NA NA NA

Table 1. Comparison of average segmentation performance among

MRGC [6], SRCD [5], and OTGR. Note: 1) the information above

is quoted from [6]; 2) the OTGR performance is not listed due to

the unavailability of the data used in [6], however, based on our ex-

perience with histological sections, simple thresholding methods

typically generate less favorable results than sophisticated ones.

1. MRGC [6]: A multi-reference graph cut approach for

nuclear segmentation in histology tissue sections;

2. SRCD [5]: A single-reference color decomposition

approach for nuclear segmentation in histology tissue

sections;

3. OTGR: A simple Otsu thresholding [23] approach for

nuclear segmentation in histology tissue sections. In

our implementation, nuclear mask was generated by

applying Otsu thresholding on gray-scale image, and

refined by geometric reasoning [27]. The same re-

finement was also used in the MRGC and SRCD ap-

proaches.

A comparison of the segmentation performance, for the

above methods, is quoted from [6], and listed in Table 1,

and the computed morphometric features are listed in Ta-

ble 2.

In the implementation of ScSPM and KSPM, the dense

SIFT features were extracted on 16 × 16 patches sampled

from each image on a grid with stepsize 8 pixels. In the

implementation of CTSPM, color features were extracted

in the RGB color space; texture features were extracted

via steerable filters [29] with 4 directions and 5 scales

(σ ∈ {1, 2, 3, 4, 5}) on the grayscale image; and the fea-

ture vector was a concatenation of texture and mean color

on 20× 20 patches.

For both SMLSPM and ScSPM, we fixed the sparse con-

straint parameter λ to be 0.15, empirically, to achieve the

best performance. For MKSPM, KSPM and CTSPM, we

used standard K-means clustering for the construction of

dictionaries. Additionally, for all five methods, we fixed the

level of pyramid to be 3, and used linear SVM for classifi-

cation. All experimental processes were repeated 10 times

with randomly selected training and testing images. The fi-

nal results were reported as the mean and standard deviation

of the classification rates.

4.1. GBM Dataset

The GBM dataset contains 3 classes: Tumor, Necrosis,

and Transition to Necrosis, which were curated from whole

MRGC SRCD OTGR

SMLSPM 92.91 ± 0.84 93.56 ± 0.91 91.03 ± 1.15

MKSPM 91.95 ± 0.83 93.33 ± 0.90 90.94 ± 0.87

Table 4. Performance of SMLSPM and MKSPM on the GBM

dataset based on three different segmentation approaches, where

the number of training images per category was fixed to be 160,

and the dictionary sizes for SMLSPM and MKSPM were fixed to

be 1024 and 512, respectively, to achieve optimal performance.

MRGC SRCD OTGR

SMLSPM 98.50 ± 0.42 98.30 ± 0.34 97.66 ± 0.49

MKSPM 97.34 ± 0.48 97.66 ± 0.45 95.90 ± 0.54

Table 6. Performance of SMLSPM and MKSPM on the KIRC

dataset based on three different segmentation approaches, where

the number of training images per category was fixed to be 280,

and the dictionary sizes for both SMLSPM and MKSPM were

fixed to be 512, to achieve the optimal performance.

slide images (WSI) scanned with a 20X objective (0.502

micron/pixel). Examples can be found in Figure 2. The

number of images per category are 628, 428 and 324, re-

spectively. Most images are 1000× 1000 pixels. In this ex-

periment, we trained on 40, 80 and 160 images per category

and tested on the rest, with three different dictionary sizes:

256, 512 and 1024. Detailed comparisons are shown in Ta-

ble 3. For SMLSPM and MKSPM, we also evaluated the

performance based on three different segmentation strate-

gies: MRGC, SRCD and OTGR. Detailed comparisons are

shown in Table 4.

4.2. KIRC Dataset

The KIRC dataset contains 3 classes: Tumor, Normal,

and Stromal, which were curated from whole slide images

(WSI) scanned with a 40X objective (0.252 micron/pixel).

Examples can be found in Figure 3. The number of im-

ages per category are 568, 796 and 784, respectively. Most

images are 1000 × 1000 pixels. In this experiment, we

trained on 70, 140 and 280 images per category and tested

on the rest, with three different dictionary sizes: 256, 512

and 1024. Detailed comparisons are shown in Table 5. For

SMLSPM and MKSPM, we also evaluated the performance

based on three different segmentation strategies: MRGC,

SRCD and OTGR. Detailed comparisons are shown in Ta-

ble 6

The experiments, conducted on two distinct datasets,

demonstrate the following merits of our approach,

1. Extensibility to different tumor types. Tables 3 and 5

indicate that, with the exception of (KIRC; 140 train-

ing; Dictionary size 1024), our methods consistently

outperform ScSPM, KSPM and CTSPM with differ-

ent combinations of experimental factors (e.g., train-
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Feature Description
Nuclear Size #pixels of a segmented nucleus

Nuclear Voronoi Size #pixels of the voronoi region, where the segmented nucleus resides

Aspect Ratio Aspect ratio of the segmented nucleus

Major Axis Length of Major axis of the segmented nucleus

Minor Axis Length of Minor axis of the segmented nucleus

Rotation Angle between major axis and x axis of the segmented nucleus

Bending Energy Mean squared curvature values along nuclear contour

STD Curvature Standard deviation of absolute curvature values along nuclear contour

Abs Max Curvature Maximum absolute curvature values along nuclear contour

Mean Nuclear Intensity Mean intensity in nuclear region measured in gray scale

STD Nuclear Intensity Standard deviation of intensity in nuclear region measured in gray scale

Mean Background Intensity Mean intensity of nuclear background measured in gray scale

STD Background Intensity Standard deviation of intensity of nuclear background measured in gray scale

Mean Nuclear Gradient Mean gradient within nuclear region measured in gray scale

STD Nuclear Gradient Standard deviation of gradient within nuclear region measured in gray scale

Table 2. Morphometric features used in SMLSPM and MKSPM, where the curvature values were computed with σ = 2.0, and the nuclear

background is defined to be outside the nuclear region, but inside the bounding box of nuclear boundary.

Figure 2. GBM Examples. First row: Tumor; Second row: Transition to necrosis; Third row: Necrosis.

Sqrt Abs Max

GBM 92.85 ± 0.94 90.90 ± 1.11 92.91 ± 0.84
KIRC 97.60 ± 0.49 97.49 ± 0.38 98.50 ± 0.42

Table 7. Comparison of performance for SMLSPM using differ-

ent pooling strategies on the GBM and KIRC datasets. For GBM,

the number of training images per category was fixed to be 160,

and the dictionary size was fixed to be 1024; for KIRC, the num-

ber of training images per category was fixed to be 280, and the

dictionary size was fixed to be 512.

ing sample size, dictionary size). However, KSPM and

ScSPM appear to be tumor-type dependent, as KSPM

outperforms ScSPM on GBM while ScSPM outper-

forms KSPM on KIRC. Since GBM and KIRC are two

vastly different tumor types with significantly different

signatures, we suggest that the consistency in perfor-

mance assures extensibility to different tumor types.

2. Robustness in the presence of large amounts of tech-

nical and biological variations. With respect to the

GBM dataset, shown in Table 3, the performance of

our methods, based on 40 training samples per cate-
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

160 training SMLSPM 92.35 ± 0.83 92.57 ± 0.91 92.91 ± 0.84
MKSPM 91.85 ± 0.98 91.95 ± 0.83 91.76 ± 0.97

ScSPM [28] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

KSPM [18] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

CTSPM 78.61 ± 1.33 78.71 ± 1.18 78.69 ± 0.81

80 training SMLSPM 90.82 ± 1.28 90.29 ± 0.68 91.08 ± 0.69
MKSPM 89.83 ± 1.15 89.78 ± 1.09 89.44 ± 1.20

ScSPM [28] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

KSPM [18] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

CTSPM 75.93 ± 1.18 76.06 ± 1.52 76.19 ± 1.33

40 training SMLSPM 88.05 ± 1.38 87.88 ± 1.04 88.54 ± 1.42
MKSPM 87.38 ± 1.38 87.06 ± 1.52 86.37 ± 1.73

ScSPM [28] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05

KSPM [18] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

CTSPM 73.10 ± 1.51 72.90 ± 1.09 72.65 ± 1.41

Table 3. Performance of different methods on the GBM dataset, where SMLSPM and MKSPM were evaluated based on the segmentation

method: MRGC [6].

Figure 3. KIRC Examples. First row: Tumor; Second row: Normal; Third row: Stromal.

gory, is better than the performance of ScSPM, KSPM

and CTSPM based on 160 training samples per cat-

egory. With respect to the KIRC dataset, shown in

Table 5, the performance of our methods, based on

70 training samples per category, is comparable to the

performance of ScSPM, KSPM and CTSPM based on

280 training samples per category. Given the fact that

TCGA datasets contain large amount of technical and

biological variations [17, 19], these results clearly indi-

cate the robustness of our morphometric context repre-

sentation, which dramatically improved the reliability

of our approaches.

3. Invariance to different segmentation algorithms. Ta-

bles 4 and 6 indicate that the performance of our ap-

proaches are almost invariant to different segmentation

algorithms, given the fact that the segmentation perfor-

mance itself varies a lot, as shown in Table 1. More im-

portantly, even with the simplest segmentation strategy

OTGR, SMLSPM outperforms the methods in [28, 18]

on both datasets, and MRSPM outperforms the meth-

ods in [28, 18] on the GBM dataset, while generat-

ing comparable results on the KIRC dataset. Given the

fact that, in a lot of studies, both nuclear segmentation

and tissue classification are necessary components, the
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

280 training SMLSPM 98.15 ± 0.46 98.50 ± 0.42 98.21 ± 0.44

MKSPM 97.37 ± 0.49 97.34 ± 0.48 97.22 ± 0.50

ScSPM [28] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

KSPM [18] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

CTSPM 87.45 ± 0.59 87.95 ± 0.49 88.53 ± 0.49

140 training SMLSPM 97.40 ± 0.50 97.98 ± 0.35 97.35 ± 0.48

MKSPM 96.56 ± 0.53 96.54 ± 0.50 96.41 ± 0.56

ScSPM [28] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

KSPM [18] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

CTSPM 86.55 ± 0.99 86.40 ± 0.54 86.49 ± 0.58

70 training SMLSPM 96.20 ± 0.85 96.37 ± 0.85 96.19 ± 0.62

MKSPM 95.62 ± 0.62 95.47 ± 0.71 95.27 ± 0.72

ScSPM [28] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86

KSPM [18] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

CTSPM 84.76 ± 1.32 84.29 ± 1.53 83.71 ± 1.42

Table 5. Performance of different methods on the KIRC dataset, where SMLSPM and MKSPM were evaluated based on the segmentation

mehtod: MRGC [6].

use of pre-computed morphometric features dramati-

cally improve the efficiency by avoiding extra feature

extraction steps. For example, in our implementation,

SIFT costs 1.5 sec/block ( a block is a 1000 × 1000
image decomposed from a whole slide tissue section

). For the whole GBM dataset (∼600,000 blocks), by

avoiding SIFT operation, it saves ∼10 days for pro-

cessing.

4. Scalability of training and high speed testing for SML-

SPM. Our experiments show that the morphometric

context representation in SMLSPM works well with

linear SVMs, which dramatically improves the scala-

bility of training and the speed of testing. This is very

important for the analyzing large cohort of whole slide

images.

To study the impact of pooling strategies on the SML-

SPM method, we also provide an experimental comparison

among max pooling and two other common pooling meth-

ods, which are defined as follows,

Sqrt : fj =

√√√√ 1

M

M∑
i=1

z2ij

Abs : fj =
1

M

M∑
i=1

|zij | (7)

where the meaning of the notations are the same as in Equa-

tion 5. As shown in Table 7, the max pooling strategy out-

performs the other two, which is probably due to its robust-

ness to local translations.

The experiments above also indicate a slightly improved

performance of SMLSPM over MKSPM; this is probably

due to the following factors: i) sparse coding has much less

quantization errors than vector quantization; ii) the statis-

tics derived by max pooling are more robust to local trans-

lations compared with the average pooling in the histogram

representation.

5. Conclusion and Future Work
In this paper, we proposed two spatial pyramid matching

approaches based on morphometric features and morpho-

metric sparse code, respectively, for tissue image classifica-

tion. By modeling the context of the morphometric infor-

mation, these methods outperform traditional ones which

were typically based on pixel- or patch-level features. The

most encouraging results of this paper are that, our methods

are highly i) extensible to different tumor types; ii) robust

in the presence of large amounts of technical and biolog-

ical variations; iii) invariant to different segmentation al-

gorithms; and iv) scalable to extremely large training and

testing sample sizes. Due to i) the effectiveness of our

morphometric context representations; and ii) the impor-

tant role of cellular context for the study of different cell

assays, proposed methods are suggested to be extendable

to image classification tasks for different cell assays. Fu-

ture work will be focused on accelerating the sparse coding

through the sparse auto encoder [15], utilizing supervised

dictionary learning [21] for possible improvement, and fur-

ther validating our methods on other tissue types and other

cell assays.
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